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Cancer cells dying from ferroptosis impede
dendritic cell-mediated anti-tumor immunity
Bartosz Wiernicki1,2,3, Sophia Maschalidi 2,4,8, Jonathan Pinney5, Sandy Adjemian1,2,3,

Tom Vanden Berghe1,2,3,5, Kodi S. Ravichandran1,2,4,6 & Peter Vandenabeele 1,2,3,7,8✉

Immunogenic cell death significantly contributes to the success of anti-cancer therapies, but

immunogenicity of different cell death modalities widely varies. Ferroptosis, a form of cell

death that is characterized by iron accumulation and lipid peroxidation, has not yet been fully

evaluated from this perspective. Here we present an inducible model of ferroptosis, distin-

guishing three phases in the process—‘initial’ associated with lipid peroxidation, ‘inter-

mediate’ correlated with ATP release and ‘terminal’ recognized by HMGB1 release and loss of

plasma membrane integrity—that serves as tool to study immune cell responses to ferrop-

totic cancer cells. Co-culturing ferroptotic cancer cells with dendritic cells (DC), reveals that

‘initial’ ferroptotic cells decrease maturation of DC, are poorly engulfed, and dampen antigen

cross-presentation. DC loaded with ferroptotic, in contrast to necroptotic, cancer cells fail to

protect against tumor growth. Adding ferroptotic cancer cells to immunogenic apoptotic cells

dramatically reduces their prophylactic vaccination potential. Our study thus shows that

ferroptosis negatively impacts antigen presenting cells and hence the adaptive immune

response, which might hinder therapeutic applications of ferroptosis induction.
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Ferroptosis was coined in 20121 and refers to an iron-
dependent type of necrotic cell death, characterized by a
disruption of the intracellular redox balance and excessive

lipid peroxidation2. Molecules that modulate iron metabolism
and lipid peroxidation can induce or inhibit ferroptosis, such as
glutathione peroxidase 4 (GPX4)3, the glutamate/cystine anti-
porter System Xc

− 1,4, ferroptosis suppressor protein 1 (FSP1)5–7,
nuclear factor erythroid 2-related factor 2 (NRF2)8, or p539–11.
Recently, ferroptosis has emerged as a powerful tool in anti-
cancer therapy to bypass chemotherapy resistance12,13 and to
eliminate metastatic tumors14. Furthermore, newly developed
ferroptosis inducers have been combined with nanotechnology-
based targeting of tumor cells15,16.

However, despite the promising therapeutic applications of
ferroptosis induction, it remains unclear how ferroptosis interacts
with the immune system. Therefore, there is a growing need to
understand how this newly discovered form of cell death relates
to cancer, including immunotherapy. During the last decade, the
concept of immunogenic cell death (ICD) of cancer cells has
emerged as a type of cellular demise that results in mounting a
cytotoxic T-cell (CTL) response targeting cancer cells and con-
tributing to tumor eradication. Induction of immunogenic cell
death is a resultant of three components in the interaction
between cancer cells and the immune system, namely, delivery,
processing, and presentation of tumor-associated antigens (TAA)
on the surface of dendritic cells (DC), the release of damage-
associated molecular patterns (DAMP) propagating adjuvanticity,
and chemokine, cytokine, and interferon-driven immune
stimulation17.

To evaluate the role of ferroptosis in inducing ICD, we examine
the capacity of ferroptotic cells to modulate the specific anti-
tumor response using several settings of prophylactic and ther-
apeutic vaccination in vivo, at the level of maturation and pha-
gocytosis by DC, and DC’s ability to cross-present antigens and
activate antigen-specific T cells. Our results provide insight into
how ferroptosis, despite its ability to overcome cancer cell death
resistance, may interfere with existing cancer (immuno)therapies.

Results
Ferroptotic, in contrast to apoptotic and necrotic, cancer cells
completely fail to elicit immune protection despite the release
of DAMP and cytokines. Prophylactic cancer vaccination models
are a powerful approach to test the immunogenicity of a parti-
cular cell death modality18. To this end dying tumor cells are
initially administered on one flank, and protection against
tumorigenesis is tested by subsequent subcutaneous injection of
live cancer cells on the other flank (Fig. 1a). Treatment of
fibrosarcoma MCA205 cells with ML162, a class II ferroptosis
inducer that directly inhibit GPX419, leads to ferroptosis char-
acterized by increased levels of lipid peroxidation. This cell death
is inhibited by the iron chelator Deferoxamine (DFO) and the
lipid peroxidation inhibitor Ferrostatin-1 (Fer1), but not by
apoptosis (zVAD-fmk) and necroptosis (Necrostatin 1s, Nec1s)
inhibitors (Supplementary Fig. 1a–c). Prophylactic vaccination
with ML162-killed ferroptotic MCA205 cancer cells (Supple-
mentary Fig. 1d) does not protect against a subsequent challenge
with live tumor cells, in contrast to previously described vacci-
nation with MCA205 cancer killed by immunogenic apoptosis20

(Fig. 1a). No difference in the tumor growth rate is observed
among the animals that succumbed to the challenge regardless of
the vaccination (Supplementary Fig. 1e).

The immunogenicity of dying cancer cells depends on the
release of DAMP, chemokines, cytokines, and type I interferons
(IFN)17,21. Analysis of supernatants from MCA205 cancer cells
stimulated with ML162 and two other ferroptosis inducers, RSL-3

(class II) and Erastin22 (class I, relying on the blockage of the
cystine–glutamate antiporter system Xc

−) (Supplementary
Fig. 1a–c) reveal the presence of DAMP including ATP and
HMGB1 as well as cytokines including CXCL1, TNF, and IFN-β
(Fig. 1b, Supplementary Fig. 2a). The release of ATP already
occurs before cell membrane permeabilization, while HMGB1
detection is revealed concomitantly with plasma membrane
rupture (Supplementary Fig. 1f). Exposure of calreticulin, an
endoplasmic reticulum protein that is translocated to the plasma
membrane surface and facilitates phagocytosis in ICD20,23, can be
detected for ML162, RSL-3 and Erastin. These induce eventually
similar maximal CRT levels per cell as those observed during
immunogenic apoptosis by doxorubicin (Fig. 1c, Supplementary
Fig. 2b, c). However, contrary to doxorubicin treatment,
calreticulin exposure in ferroptosis occurs in small population
of non-permeabilized cells at the later stages when the majority of
cells are already dead and does not reach statistical significance
compared to the untreated cells (Fig. 1d, Supplementary Fig. 2c).
Altogether, these data show that ferroptosis death despite the
release and exposure of immunogenic cell death-related DAMP
and cytokines is not an immunogenic type of cell death.

Synchronizing ferroptosis induction allows the distinction of
three non-immunogenic phases. Because we observed the release
of ATP, CXCL1, and IFN-β already at the early stages of cell
death, we decided to perform a prophylactic vaccination assay
using partially killed MCA205 cells. Like previously reported24, a
timely treatment of MCA205 cells with GPX4 inhibitor for 6 h
does not result in complete cell death. Indeed, the prophylactic
vaccination with these incompletely induced ferroptotic cells
resulted in tumor growth at the vaccination site (Supplementary
Fig. 3a) making the interpretation of the vaccination data pro-
blematic, according to the gold standard of prophylactic cancer
vaccination18. The addition of live cells during prophylactic
vaccination and the consecutive tumor growth may lead to the
development of immunogenicity against the challenge through
so-called concomitant immunity25. The phenomenon has been
described in melanoma tumors26 and occurs also in MCA205
model (Supplementary Fig. 3b, c). To overcome this issue and to
better delineate the kinetics of the immunomodulatory factors
released by ferroptotic cells, we designed an inducible model of
ferroptosis via doxycycline (dox)-inducible knockdown of GPX4
(denoted iGPX4KD) (Fig. 2a). Administration of doxycycline
induced cell death in iGPX4KD cells within 48–72 h that was
completely rescued by Fer1 (Supplementary Fig. 4a–c). After
washing out the Fer1 inhibitor following doxycycline induction
(Fig. 2b) synchronized cell death reached nearly 100% at 8 h
(Fig. 2c, Supplementary Movie 1, Supplementary Movie 2). The
analysis of synchronized cell death in iGPX4KD cells revealed
that ferroptosis starts with a strong increase in lipid ROS at the
plasma membrane and cytosolic ROS production (coined “initial
ferroptosis”, 1–2 h), followed next by rounding of the cells and
release of ATP and exposure of calreticulin (“intermediate fer-
roptosis”, 3–4 h) and eventually ending in plasma membrane
permeabilization coinciding with the release of LDH, HMGB1,
cytokines, chemokines and IFN (“terminal ferroptosis”, 5–8 h)
(Fig. 2c). The observed cell death induction is not associated with
NF-κB activation (Supplementary Fig. 4d) suggesting that the
production of cytokines during cell death occurs through another
signaling cascade. Similar to drug-induced ferroptosis, the expo-
sure of calreticulin occurs in a subpopulation of cells only shortly
before their permeabilization and can be associated with reaching
late intermediate/terminal stage of ferroptosis (Fig. 2d, e). A point
of no return in iGPX4KD cells was determined at 2 h following
induction and removal of Fer1. At this time point, re-adding Fer1
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does not prevent further progression to complete cell death
(Fig. 2f), while re-adding Fer1 at 1 h following synchronized
ferroptosis induction results in complete viability rescue.

Having defined “initial” and “terminal ferroptosis” as well as
the time point when cells are still viable, but ferroptosis is
inevitable, we could use these conditions in a prophylactic

vaccination experiment without the risk of tumor growth on the
vaccination site. Prophylactic vaccination with neither initial nor
terminal ferroptosis elicited a protective response against a
challenge with living tumor cells underlining the absence of
immunogenicity of ferroptotic cancer cells following prophylactic
vaccination (Fig. 2g). Tumors originating from the challenge had
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a similar dynamic of growth regardless of the stage of cell death
during vaccination (Fig. 2h). Our data demonstrate that both
initial and terminal ferroptotic cancer cells are unable to generate
anti-cancer protection following prophylactic vaccination, despite
the release of DAMP, cytokines, chemokines, and IFN.

Initial ferroptotic cancer cells reduce DC maturation and are
not engulfed. To unravel how ferroptotic cancer cells—despite
releasing DAMP, cytokines, chemokines and IFN—are not
immunogenic, we performed a set of experiments to study the
interaction between ferroptotic dying cancer cells and DC. This
interplay is crucial for ICD induction18 and involves phagocytosis
of dead cancer cell corpses by DC as well as maturation and
cytokine production required for clonal expansion of TAA-
specific cytotoxic T cells. Co-incubation of bone marrow-derived
dendritic cells (BMDC) with ML162, RSL-3 and Erastin-induced
ferroptotic cancer cells cause increased exposure of CD86, CD40,
and MHCIIhigh (Supplementary Fig. 5a) indicative for strong DC
maturation. Further experiments relying on the synchronized
iGPX4KD model of ferroptosis revealed how each stage of the
ferroptosis process impacted the maturation of BMDC (Fig. 3a).
We found that co-incubation with the initial stage of ferroptotic
cancer cells negatively impacts the level of BMDC maturation. In
contrast, when dendritic cells are co-incubated with ferroptotic
cancer cells at the intermediate and late stage, they mature to a
much greater extent as revealed by increased expression levels of
CD86, CD40, and MHCIIhigh, while the expression of PD-L1
decreased (Fig. 3b). Interestingly, BMDC exposed to synchro-
nized ferroptotic cancer cells (early, intermediate, late) in contrast
to UVB-treated apoptotic cells did not produce substantial
amounts of cytokines related to inflammation (IL-6, IL-12, TNF,
IFN-β) and adaptive immune response (IL-10, IFN-γ) (Fig. 3c).
Similar results were obtained with chemically induced ferroptosis
(ML162, RSL-3, Erastin) except for IL-6 induction by ML162-
killed cells (Supplementary Fig. 5b) suggesting a non-specific
effect of the ML162 drug in this context. Altogether, these data
reveal the inherent inability of the ferroptotic cancer cells to elicit
profound cytokine and interferon production in BMDC in con-
trast to the same UVB-treated cancer cells, as a prototype of
apoptotic ICD (Fig. 3c).

Unlike apoptosis27,28 or necroptosis29,30, ferroptosis does not
evoke the exposure of phosphatidylserine at the outer leaflet of
the plasma membrane prior to cell membrane permeabilization,
serving as an “eat me” signal during efferocytosis by phagocytes
(Fig. 3d, Supplementary Fig. 6a). While the products of LPO in
the membrane have been suggested as ligands for DC in the so-
called lipid whisker model during recognition and phagocytosis

by CD3631,32, incubation of BMDC with synchronized iGPX4KD
cells at the initial and terminal stage of ferroptosis results in the
engulfment only of the latter stage (Fig. 3e), similarly to
chemically induced ferroptotic cells (Supplementary Fig. 6b).
Using macrophages as phagocytes confirmed the delay in
uptake of ferroptotic cells (Supplementary Fig. 6c). Note, that
the observed phagocytosis is independent of PS (Fig. 3f) unlike
the uptake of apoptotic cells28 (Supplementary Fig. 6d) and is
also not CRT-dependent (Fig. 3g). The accumulation of lipid
droplets has been associated with impaired functionality of
dendritic cells in terms of their antigen cross-presentation
capabilities33. The analysis of BODIPY 493/503 probe fluores-
cence intensity in the dendritic cells incubated with MCA205
cells showed that co-culture with ferroptotic cancer cells
increases the levels of lipid droplets in BMDC (Fig. 3h). Further
experiments using flow cytometry confirmed that incubation
with ferroptotic cells increases BODIPY 493/503 fluorescence in
BMDC and the exposure to the initial ferroptosis is the most
significant (Fig. 3i). The analysis of dendritic cells co-cultured
with MCA205 killed by drug-induced ferroptosis, apoptosis or
by accidental necrosis showed that exposure to ferroptotic
corpses causes stronger lipid droplet accumulation in BMDC
than apoptotic cells but is on the same level as accidental
necrosis cells (Supplementary Fig. 5c).

Engulfment of ferroptotic cells by DC suppresses the expres-
sion of genes associated with adaptive immune response. To
further explore the effect of ferroptotic cancer cells on dendritic
cells, we performed transcriptomic analysis of BMDC engulfing
ferroptotic corpses. Fluorescently labeled human ferroptotic Jur-
kat cells killed by ML162 were co-cultured with mouse BMDC for
4 h. Sorted BMDC with ferroptotic cargo (BMDC-fer) were
subjected to murine transcriptome analysis using untreated
BMDC as a control (Fig. 4a). Among the differentially regulated
genes (Fig. 4a), we found those directly impacting DC function in
generating adaptive immune response (Fig. 4b). We observed
downregulation of members of the NF-κB family, specifically
RelB, c-Rel and NFKB1 possibly explaining the low levels of
cytokine production in BMDC exposed to ferroptotic cells. We
also observed downregulation of the Jak2, Stat4 signaling mole-
cules, which may affect the autocrine effect of IL-12 during DC
priming34. Interesting patterns were also observed in genes
associated with chemotaxis. BMDC engulfing ferroptotic cells had
decreased expression of chemokine Ccr6, and Ccr7, the latter
being required for the trafficking of the DC to the lymph nodes
for antigen presentation35. At the same time, there was an
upregulation of genes coding chemokines, e.g., Ccl3, Ccl4

Fig. 1 Ferroptosis does not induce immunological protection against cancer cells despite the release of DAMP. a Prophylactic vaccination model with
MCA205 cells was used to assess the immunogenic potential of ferroptosis (ML162, 0.5 µM, 14 h) via their ability to induce protection against cancer
tumor growth. Immunogenic (Mitoxantrone, 1 µM, 24 h) and non-immunogenic (Mitomycin C, 30 µM, 24 h) apoptosis, as well as accidental necrosis
(Freeze/thaw, three cycles) conditions, were used as controls. Kaplan–Meier curves represent the % of tumor-free mice after the challenge with live
cancer cells. Data from n= 3 independent experiments was analyzed by Kaplan–Meier simple survival analysis. b DAMP release from MCA205 cells
stimulated with three inducers of ferroptosis: ML162 (0.5 µM), RSL-3 (0.5 µM) and Erastin (2.0 µM) as well as doxorubicin (1 µM, 24 h). Release of LDH,
ATP, HMGB1 as well as cytokines CXCL1, TNF and IFN-β was analyzed at different time points after cell death induction. Data from n= 3 biologically
independent samples are presented as floating bars with bounds showing the range and the center showing the mean. Data analyzed by one-way ANOVA
with Dunnett’s post-hoc tests for each ferroptosis stimuli separately and two-sided t-test for doxorubicin treatment comparing the values to the untreated
sample. c Analysis of calreticulin exposure on the surface of ferroptotic cells, ML162 (0.5 µM), RSL-3 (0.5 µM) and Erastin (2.0 µM). Treatment with
doxorubicin (1 µM, 24 h) served as a positive control. Histograms represent the fluorescence intensity detected in non-permeabilized cells. Bounds of the
bars show the range, and the center shows the mean of fold change in fluorescence intensity generated by comparing the MFI of treated cells to MFI of
untreated cells. Data were generated from n= 3 biologically independent samples. One-way ANOVA, with Dunnett’s post-hoc test for each ferroptosis
stimuli and two-sided t-test for doxorubicin treatment comparing the obtained values to the untreated sample d. The % of live cells exposing calreticulin
during cell death. Data presented as range (box bounds) and mean (center) of n= 3 independent experiments. One-way ANOVA with Dunnett’s post-hoc
test for each ferroptosis stimuli and the t-test for the doxorubicin treatment in comparison to the untreated sample.
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previously linked to the attraction of T cells to the tumor bed36.
BMDC carrying a ferroptotic cargo strongly upregulated the
expression of IFN-β and TNF, both of which positively correlate
with the induction of immunogenicity37,38. An unbiased global
pathway analysis (GSEA) revealed a picture that ferroptotic cells
negatively regulated genes involved in the induction of T-cell

proliferation, differentiation, and inflammatory response (Fig. 4c)
while at the same time upregulated programs related to migra-
tion, due to the strong increase in chemokine gene signature.
These data suggest that exposure to ferroptotic cancer cells
negatively impacts the antigen-presenting features of DC at a
transcriptional level.
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Ferroptotic cells inhibit cross-presentation of soluble antigens.
To validate the results of RNAseq of BMDC-fer cells, we func-
tionally addressed the potential of BMDC to perform antigen
cross-presentation following exposure to ferroptotic cancer cells
and to induce clonal expansion of antigen-specific CTLs. To this
end, we incubated BMDC with soluble antigen ovalbumin (OVA)
in the presence of ferroptotic or necrotic cells for 16 h. Next, the
supernatant containing non-internalized antigen and dead cell
corpses was removed and the BMDC were incubated with OVA-
specific naïve CD8+ T cells isolated from OT-I Rag2−/− trans-
genic mice39 (Fig. 5a). The exposure of BMDC to chemically
induced ferroptotic cancer cells negatively impacted the ability of
OVA-loaded BMDC to support the proliferation of OVA-specific
CD8+ T cells (Fig. 5b, c). The inhibition of antigen cross-
presentation was more pronounced with RSL3- and Erastin-
induced cell death, although at a higher ferroptotic cell to BMDC
ratio the exposure to ML162-induced ferroptotic cancer cells also
resulted in reduced antigen-specific T-cell proliferation. To vali-
date and exclude the interference of drug transfer during antigen
cross-presentation, BMDC were exposed to antigen from the
initial, intermediate, or terminal stages of ferroptotic cell death.
Co-incubation with iGPX4KD cells regardless of the stage of cell
death showed similar, diminished proliferation of CTL (Fig. 5d, e)
suggesting that the presence of ferroptotic cell corpses rather than
the release of soluble molecules negatively impact the prolifera-
tion of CD8+ T cells. These data also put forward that the release
of pro-immunogenic DAMP like ATP or HMGB1 that occur
during ferroptosis is not able to alter this response.

Ferroptosis is less potent in controlling tumor growth com-
pared to apoptosis and necroptosis and reduces the immuno-
genicity of apoptosis. We then compared the immunogenicity of
different cell death modalities in a prophylactic vaccination
model using OVA-expressing non-tumorigenic BM1 mouse
embryonic fibroblasts cells dying by apoptosis, necroptosis, or
ferroptosis (Supplementary Fig. 7a). The results showed that
apoptotic and necroptotic cells are superior in protecting against
challenge with OVA-expressing B16 cancer cells (Fig. 6a) and
retarding tumor growth (Fig. 6b) suggesting that ferroptotic in
contrast to apoptotic and necroptotic cancer cells impair the
processing and presentation of tumor-associated antigen. The
inability of ferroptotic cancer cells in mounting an anti-tumor
response was also confirmed in the therapeutic vaccination model
utilizing conventional dendritic cell type I (cDC1) loaded with a
cargo of OVA-expressing ferroptotic cells. As a positive control

for efficient immunogenic cell death, we used the same cancer
cells that underwent necroptosis25,40. Immunocompetent mice
already bearing B16-OVA tumors were injected with 5 × 105

cDC1 with engulfed BM1-OVA cargo (Fig. 6c, Supplementary
Fig. 7b). Follow-up measurements of the tumor showed that cDC1
with a ferroptotic cargo were less potent in inhibiting tumor growth
for the following week than the same setting with necroptotic cells
(Fig. 6c). Additionally, injection with cDC1 carrying necroptotic
cells significantly delayed the time of animal euthanasia due to the
size of the tumor compared to cDC1 carrying ferroptotic cells
(Fig. 6d). Finally, as in most cancer treatments, a mixture of cell
death modalities is observed41, we examined the potential crosstalk
between ferroptosis and immunogenic apoptosis in a population of
cancer cells. For this, we performed a prophylactic vaccination
experiment using mixes of immunogenic apoptosis and ferroptosis.
The addition of ferroptotic cells strongly diminished the immu-
nogenic potential of mitoxantrone-killed cells (Fig. 6e), although, in
those animals that succumbed to challenge there was no significant
difference in tumor growth (Supplementary Fig. 7c). These data
suggest that ferroptosis may possess immunoregulatory properties
that can affect the responses of neighboring cancer cells that die in
an immunogenic way.

Discussion
Ferroptosis is a newly described form of regulated necrotic cell
death, characterized by free iron-dependent lipid peroxidation1.
Preventing ferroptosis is part of cellular homeostasis maintained
by a continuous activity of GSH-dependent GPX4 activity42.
Failing to do so contributes to many pathological conditions such
as ischemia/reperfusion injury43–45, neurodegenerative diseases46,
or diabetes47. On the other hand, induction of ferroptosis also
plays a crucial role in suppressing carcinogenesis10 and tumor
growth3,16. Accumulating evidence suggests that ferroptosis may
be utilized in cancer treatment as a novel way to circumvent
therapeutic resistance13, by sensitizing radiotherapy48,49 and by
combination with conventional chemotherapy50,51. Ferroptosis
induction by blocking GPX4 was particularly potent in experi-
mental models of lung metastasis, because of the oxygen-rich
environment favoring lipid peroxidation52. Ferroptosis inducers
have also been combined with nanotechnology, specifically tar-
geting tumor cells15,16. Less is known on the immunoregulatory
features of ferroptotic cell death. Ferroptotic cells have been
shown to release immunogenic DAMP such as HMGB124,53 and
to expose calreticulin at the surface54, and were therefore pos-
tulated as an immunogenic cell death modality24. In the present

Fig. 2 Ferroptotic cells are not immunogenic regardless of the stage of cell death. a Induction of GPX4 knockdown by doxycycline administration (1 µg/
ml) in iGPX4KD MCA205 cell line measured by western blotting. One of two independent experiments is presented. b Scheme of ferroptosis induction in
iGPX4KD cells. c Analysis of lipid ROS, cytosolic ROS accumulation in the cells, levels of calreticulin on the surface of dying, non-permeabilized cells, and
ATP, HMGB1, LDH, IFN-β, TNFα, and CXCL release from cells during ferroptosis. Three stages of ferroptosis can be distinguished: initial ferroptosis where
cells experience accumulation of lipid ROS; intermediate ferroptosis involving partial permeabilization and release of ATP and exposure of calreticulin, and
terminal ferroptosis with complete permeabilization and release of LDH, HMGB1, and cytokines. Data obtained from n= 3 independent samples are
presented as mean. Microscopy pictures represent one of n= 2 independent live cells imaging experiments. d The analysis of calreticulin exposure during
ferroptosis. Data generated from n= 3 biologically independent samples are presented as floating bars with bounds as the range and center as median of
the relative MFI prior to membrane permeabilization; histograms represent the shift of calreticulin fluorescence in non-permeabilized cells. One-way
ANOVA with Dunnett’s post-hoc test in comparison to the ‘0 h’ sample. e The % of live cells exposing calreticulin during the process of ferroptotic cell
death. Data generated from n= 3 biologically independent samples are presented as floating bars with bounds as the range and center as median of CRT+

cells. One-way ANOVA with Dunnett’s post-hoc test in comparison to the ‘0 h’ sample. f Establishing the point of no return for ferroptosis in iGPX4KD
cells. Re-adding ferroptosis inhibitor Fer1 2 h or later after cell death induction does not rescue cells from dying. Data presented as mean ± SEM from n= 3
independent experiments. g Prophylactic vaccination model using iGPX4KD cells at the initial and terminal stage of cell death. Mitoxantrone-treated (1 μM,
24 h) iGPX4KD cells undergoing immunogenic apoptosis served as a positive control. Kaplan–Meier curves represent the effectiveness of dying iGPX4KD
cells in preventing tumor growth on the challenge site. The experiment was performed n= 2 and analyzed by Kaplan–Meier simple survival analysis. h The
tumor growth on the challenge site in prophylactic vaccination model. Only data presented as mean ± SEM from animals that developed the tumor
is shown.
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work, we investigated the potential immunogenicity of ferroptotic
cancer cells at multiple levels: their efficacy in eliciting a pro-
phylactic cancer vaccination, the release of DAMP, cytokines,
chemokines and IFN, and finally its interplay with DC at the level
of efferocytosis, transcriptional regulation and antigen cross-
presentation.

Adjuvanticity of cell death has been attributed to the concerted
action of the release of DAMP, cytokines, chemokines and IFN17.
In our work, we showed the exposure of calreticulin in a sub-
population of ferroptotic cells shortly before their rupture, as well
as ATP, HMGB1, CXCL1, TNF and IFN-β release in the course of
a drug- and genetically induced models of ferroptosis in cancer
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Fig. 3 Initial ferroptosis impairs the maturation of dendritic cells. a MCA205 cells with depleted levels of GPX4 and doomed for ferroptosis were co-
incubated with dendritic cells for 16 h. To address the role of each ferroptosis stage on the dendritic cell maturation, iGPX4KD cells at different stages of
cell death were used. In all conditions iGPX4KD cells reached terminal stage during the co-culture. b The analysis of the maturation of dendritic cells
incubated with ferroptotic cells. The levels of CD86, CD40, PD-L1 and percentage of dendritic cell population expressing high levels of MHCII was assessed
by flow cytometry measurements. Data from n= 3 independent samples for CD40 and MHCII measurement and n= 4 independent samples for CD86 and
PD-L1. Data are presented as floating bar plots with box bounds representing the range and center showing the median of obtained measurements. One-
way ANOVA, with Dunnett’s post-hoc test analyzing comparison to ‘0 h’ sample. c The analysis of cytokine production from the dendritic cells incubated
with ferroptotic cells. Data from n= 4 independent biological replicates and presented as floating bars with bar limits showing the range and the center
describing the median. One-way ANOVA, with Dunnett’s post-hoc comparing results from the co-cultures to the untreated bone marrow-derived dendritic
cells (BMDC). d The analysis of phosphatidylserine exposure on the surface of the ferroptotic cells at different stages of cell death. Representative contour
plot of flow cytometry analysis using Annexin V and 7-AAD. Bar graphs show the mean ± SEM of n= 3 independent experiments. e The level of
phagocytosis of untreated and undergoing the initial or terminal ferroptosis. CypHer-labeled MCA205 cells were incubated with CFSE-labeled bone
marrow-derived dendritic cells (BMDC) for 2 h. Afterwards the phagocytosis was determined by the detection of CypHer fluorescence in CFSE-stained
BMDC. Cytochalasin D and Fer1 were used as inhibitors of phagocytosis and lipid peroxidation respectively. Data from n= 3 independent biological
samples and is presented as floating bars with bounds representing the range and the center showing the median of % of phagocytic BMDC. Two-way
ANOVA with Dunnett’s post-hoc test shows the comparison to the untreated condition with the same inhibitor. Contour plots represent the stages of cell
death (upper panel) and the gating strategy for phagocytosis detection. f The analysis of the dendritic cells phagocytosis of the terminal ferroptotic cells
with and without PS blockage by Annexin V. Data presented as median and range and come from n= 3 biological replicates, two-sided t-test, ns—not
significant. g The analysis of dendritic cells phagocytosis of terminal ferroptotic cells with blocked calreticulin. Data presented as floating bars with bounds
representing the range and the center showing the median of n= 3 biological replicates, two-sided t-test, ns—not significant. h The microscopy analysis of
lipid droplets accumulation using BODIPY 493/503 nm probe. Bone marrow-derived dendritic cells (BMDC) were incubated with iGPX4KD cells at
different stages of cell death O/N. Afterwards, cells were fixed and visualized on confocal microscope. Box plot shows the analysis of the relative volume of
detected lipid droplets in the BMDC for each condition and is presented as a box showing median (center line), 25th and 75th percentile (box bounds) and
range of the observed results (whiskers) from n= 3 independent experiments, where each dot represents one cell in the analyzed images. One-way
ANOVA with Dunnett’s post-hoc test analyzing the comparison to the untreated BMDC. i The flow cytometry analysis of BODIPY 493/503 nm
accumulation in the BMDC after the incubation with untreated or ferroptotic iGPX4KD cells. Data presented as floating bar plots with bounds representing
the range and the center showing the median of values generated from n= 4 independent experiments. One-way ANOVA with Dunnett’s post-hoc test
analyzing the comparison of ferroptosis conditions to ‘0 h’ condition.
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Fig. 4 Engulfment of ferroptotic cells by DC suppresses expression of genes associated with adaptive immune response. a Fluorescently labeled
ferroptotic Jurkat cells were co-cultured with BMDC for 4 h after which BMDC carrying ferroptotic cargo were sorted and subjected to murine total RNA
sequencing (n= 4 independently collected samples). Uptake of ferroptotic Jurkat cells led to transcriptional changes in 2586 genes. b Expression of
selected genes involved in adaptive immune response. c GSEA pathway analysis of BMDC carrying ferroptotic cargo revealing transcriptional changes in
pathways involved in inducing adaptive immune response.
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cells. Altogether, the release of DAMP and cytokines during
ferroptosis looks very similar to previously described modes of
ICD such as apoptosis55 and necroptosis25,56. Based on the
genetically induced model of synchronized ferroptosis induction
we show that the release of ATP from ferroptotic cells occurs
before cell membrane breakage, much like in immunogenic
apoptosis where it is facilitated through pannexin-1 channel
opening57. HMGB1 release during ferroptosis has been reported
to contribute to macrophage activation58, while CXCL1, TNF and
IFN-β release contribute to the features of ICD55,59,60. On the
other hand, calreticulin which has been described as a crucial
component of ICD induction20 and efferocytosis23, has been
exposed on the subpopulation of ferroptotic cells shortly before
cell membrane rupture contrary to immunogenic apoptosis,
where it was observed with a large time gap prior to cell mem-
brane permeabilization61. This difference in kinetics of calreti-
culin exposure may be because dying ferroptotic cells rapidly
proceed to plasma membrane permeabilization, while in ferrop-
totic cells that die later accumulation of cellular stress such as ER
stress can occur which may initiate calreticulin exposure.
Nevertheless, the presence of calreticulin on the surface of fer-
roptotic cells does not facilitate their uptake by the dendritic cells,
possibly contributing to the lack of immunogenicity62. It is
important to underline that while the DAMP release is required
for ICD, it does not automatically guarantee the induction of
immunogenicity18. Several mechanisms that could negatively

impact immunogenicity have been associated with lipid meta-
bolism which could also occur during ferroptosis. Increased
expression of cyclooxygenase 2, an enzyme responsible for
prostaglandin E2 (PGE2) production, has been marked as a
hallmark of ferroptosis3. PGE2 can inhibit the activation of the
immune system63,64 and induce FOXP3 transcription factor in T
lymphocytes suggesting its positive role in inducing regulatory
phenotype65. Furthermore, ferroptosis is accompanied by exces-
sive production of oxidized phospholipids66 and these have been
shown to possess strong immunosuppressive properties on
APC67,68. In line with these potential immunosuppressive
mechanisms of ferroptosis, our results show that exposure to co-
stimulatory molecules such as CD86 and MHCII on the surface of
BMDC decreased when exposed to early ferroptotic cells. The
latter is characterized by a higher accumulation of lipids ROS
than terminal ferroptotic cells.

However, the crucial feature of immunogenic cell death is the
elicitation of properly processed and presented tumor antigens69.
In that context, we have shown previously that necroptotic dying
cancer cells were able to stimulate a broader spectrum of antigen-
specific T cells56. Here, we document the decreased potential of
BMDC to induce antigen-specific T-cell proliferation when
exposed to ferroptotic cancer cells compared to untreated cells or
cells killed by accidental necrosis. Because dendritic cells under-
went maturation (increased CD86, CD40, MHCIIhigh), we suspect
that the reason may rather lay in a direct effect resulting in

a
ML162
RSL-3
ErastinBMDC

MCA205

OVALBUMIN

OVA-specific CD8+ 
T cells

Analysis of 
T cell prolif.

78% 37% 41% 25% 74%
FTML162 RSL-3 Erastin

BMDC+MCA205

BMDCs

CFSE

c OVALBUMIN

16h 72h

BMDC+iGPX4KD MCA205
BMDCs

CFSE

e

79,1% 40,4% 49,3% 37,8% 28,4% 42,3% 39,7%

OVALBUMIN

0h 2h 3h 4h 6h TT T T T T

Missing 
Initial

Missing Initial
and Intermediate

0 50K 100K 150K 200K 250K

FSC-A

0

50K

100K

150K

200K

250K

SS
C

-A

0 50K 100K 150K 200K 250K

FSC-A

0

50K

100K

150K

200K

250K

FS
C

-H

0 50K 100K 150K 200K 250K

SSC-A

0

50K

100K

150K

200K

250K

SS
C

-H

0 10
3

10
4

10
5

SytoxBlue®

0

50K

100K

150K

200K

250K

SS
C

-H

0 10
3

10
4

10
5

CD8-PE/Cy7

0

10
3

10
4

10
5

C
D

3-
A

F7
00

Cells, 84.7% Single cells, 91.6% Single cells 97.6% Live cells 56.5% CD3+CD8+ 68.9%

Necrosis

d
OVA-specific CD8+ 

T cellsBMDCs
iGPX4KD

OVALBUMIN Analysis of 
T cell prolif.16h 72h

Initial
Intermediate
Terminal

b

M
L162

R
SL-3

Erastin
N

ecrosis

M
L162

R
SL-3

Erastin
N

ecrosis

M
L162

R
SL-3

Erastin
N

ecrosis

0
20
40
60
80

100

MCA205:BMDC
1:1 5:1 10:1

Pr
ol

ife
ra

tio
n 

(%
)

p=.02
p=.02 p=.003

p=.017 p=.002

p=.002
p=.0006

Fig. 5 Ferroptotic cells impair dendritic cells ability to perform antigen cross-presentation. a Bone marrow-derived dendritic cells (BMDC) were
incubated with soluble OVA in the presence of ferroptotic (ML162 0.5 µM, 14 h; RSL-3, 0.5 µM, 14 h; Erastin 2.0 µM, 24 h) or necrotic (3 cycles of freeze/
thaw, FT) cancer cells. Afterwards, fluorescently labeled OVA-specific CD8+ cells, were added to the co-culture and their proliferation was assessed 72 h
later. The flow cytometry dot plots present gating strategy. b Percentage of proliferating OVA-specific CD8+ T cells after co-incubation of ferroptotic and
necrotic cells with BMDC. Data comes from n= 3 independent experiments and is presented as floating bars showing the range (box bounds) and mean
(center line). One-way ANOVA, with Dunnett’s post-hoc test analyzing the comparison to the FT condition. c Representative histogram of OVA-specific
T-cell proliferation after incubation with BMDC exposed to MCA205 cells, ferroptotic or killed by accidental necrosis (FT—freeze/thaw). d Scheme of co-
culture experiments involving iGPX4KD cell line to address the importance of early events of ferroptosis in inhibiting T-cell proliferation. e Representative
histograms from n= 2 independent experiments of cytotoxic T-cell proliferation after co-incubation with bone marrow-derived dendritic cells with
ferroptotic cells at different stages of cell death.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31218-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3676 | https://doi.org/10.1038/s41467-022-31218-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


0 10 20 30 40

10 20 30 40

0

00

100
200
300
400
500

20
40
60
80

100

Days after challenge

Days after challenge

Day 1
Vaccination

Day 8
Challenge

Monitoring tumor growth 
on the challenge site

ed

f

b c

a

Tumor size (mm3)

Spleen isolation
Incubation with 

necroptotic/ferroptotic 
BM1OVA

FACS sorting of 
cDC1 “eaters”

Injection 5x105of cDC1

0 5 10 15
0

200

400

600

cDC1 
ferroptosis 
(n=8)

cDC1 
ferroptosis

cDC1 
necroptosis 
(n=6)

cDC1 
necroptosis

Days after cDC1 injection Days after cDC1 injection

B16-OVA 
tumor bearing 

0 10 20 30

Time of euthanasia

20
40
60
80

100

0

Immunogenic apoptosis (Mitoxantrone)
Immunogenic apoptosis (Mitoxantrone)
+ferroptosis (ML162)

Inject Untreated 
MCA205 cells

Inject MCA205 cells 
undergoing: 

Monitoring tumor growth 
on the challenge site

Inject ovalbumin expressing 
melanoma cells (B16-OVA)

Day 1
Vaccination

Day 8
Challenge

Inject ovalbumin 
expressing MEF cells 
(BM1-OVA)

Apoptosis (TNF+TAK1i)
Necroptosis (TNF+TAK1i+zVAD.fmk)
Ferroptosis (ML162)

% of tumor free mice

Tumor size (mm3)

Apoptosis (n=7)
Necroptosis (n=7)
Ferroptosis (n=8)
HBSS (n=13)

Apoptosis (n=6) 
Necroptosis (n=7) 

Ferroptosis (n=8) 
HBSS (n=13) 

p=.010

p=.012

p=.002

p=.003

Immunogenic apoptosis,1.5x105 (n=6)
Immunogenic apoptosis, 3.0x105 (n=9)

Immunogenic apoptosis, 3.0x105 
+ Ferroptosis, 3.0x105  (n=12)

Immunogenic apoptosis, 1.5x105 
+ Ferroptosis, 1.5x105 (n=12)

Days after challenge
10 20 300

% of tumor free mice

20

40

60

80

100

0

p=.022

p=.049p=.038

Fig. 6 Ferroptosis is less potent in controlling the tumor growth compared to apoptosis and necroptosis and diminishes the immunogenicity of
apoptosis. a Prophylactic vaccination model assessing the immunogenicity of ferroptosis. ML162-induced ferroptosis (5 μM, 14 h), in comparison with
apoptosis (1000 IU/ml TNF+ 10 μM TAK1i, 14 h) and necroptosis (1000 IU/ml TNF+ 10 μM TAK1i+ 10 μM zVAD.fmk, 24 h). OVA-expressing non-
tumorigenic MEF cells (BM1-OVA) were used as a vaccine and live ovalbumin expressing melanoma cells (B16-OVA) were used as challenge.
Kaplan–Meier curves represent the effectiveness of ferroptotic cells in preventing the tumor growth at the challenge site. Data were analyzed by
Kaplan–Meier simple survival analysis. b Tumor size of B16-OVA derived melanoma after vaccination with BM1-OVA cells. Data presented as mean ± SEM.
c Scheme of the therapeutic vaccination experiment. Conventional dendritic cells type 1 (cDC1) carrying ferroptotic or necroptotic cargo were intradermally
injected in melanoma tumor-bearing mice. d B16-OVA tumor size progression of animals receiving either cDC1 with ferroptotic (5 μM, 14 h) or necroptotic
(1000 IU/ml TNF+ 10 μM TAK1i+ 10 μM zVAD.fmk, 24 h) cargo. Data presented as mean ± SEM. Statistical significance was determined by two-sided t-
test on each day of measurement. e Comparison of euthanasia time determined by the size of the tumor. Kaplan–Meier curves show the time of
euthanasia, Data analyzed by Kaplan–Meier simple survival analysis. f Prophylactic vaccination model using either Mitoxantrone-treated MCA205 cells
(1 μM, 24 h) or Mitoxantrone-treated MCA205 mixed with ML162-killed cells (0.5 µM, 14 h). Kaplan–Meier curves show the percentage of tumor-free
mice after the challenge with live cancer cells. Data were analyzed by Kaplan–Meier simple survival analysis.
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reduced antigen processing and presentation by DC exposed to
ferroptotic cells. Incubation with the initial, intermediate and
terminal ferroptosis led to the accumulation of lipid droplets, a
phenomenon previously linked to depleted capacity to cross-
present antigens70,71. Additionally, oxPL can also impact the
activity of CTLs and block their proliferation in in vitro settings72

and potentially contribute to CD36-mediated survival of reg-
ulatory T cells73.

In a prophylactic vaccination model, ferroptotic cancer cells
failed to elicit immunogenic protection against cancer cells
regardless of the stage of the cell death process (initial, inter-
mediate, terminal). Recently, Efimova et al. reported that brief
incubation of MCA205 cells with RSL-3, so-called early ferrop-
totic cells, can provide some protection in prophylactic vaccina-
tion model in contrast to late ferroptotic cells. The difference was
explained by the release of DAMP and cytokines in the former,
while absent in the latter. Although this explanation sounds
straightforward, a more detailed analysis of the data puts some
caution on these conclusions. Short treatment with ferroptosis
inducers does not result in complete cell death induction and
retains a high yield of living cells. Indeed, as we found and
confirmed by the authors24, removal of the chemical ferroptosis
inducers after a short period of incubation does not result in full
cell death. The presence of live cells in the vaccination mixture,
whether residual after the treatment, or added to the population
of the dead cells, results in the tumor growth on the vaccination
site making the interpretation of the data impossible. We solved
this problem of partial ferroptosis induction by the development
of an inducible model of ferroptosis relying on the doxycycline-
dependent knockdown of GPX4 allowing synchronized and
complete cell death induction and did not result in the produc-
tion of the tumor on the vaccination site.

Overall, our data demonstrate that ferroptosis of cancer cells is
not an immunogenic type of cell death. We identify several
mechanistic aspects or combinations thereof that could explain
this rather unexpected finding including reduced efferocytosis of
initial ferroptotic cells, reduced cross-presentation and additional
transcriptional effects in the dendritic cells that would affect
T-cell stimulation and proliferation. Furthermore, we found that
these immunosuppressive properties of ferroptotic cancer cells
can even overrule apoptotic immunogenic cell death. Altogether,
our findings have profound implications for experimental and
clinical immunotherapy since some cancer treatments, such as
radiotherapy, result in mixtures of cell death41,74,75. Our data
possibly explain the notion that the ferroptosis correlates with
poor prognosis of patients suffering from esophageal76, gastric77

and renal78 carcinoma. Finally, our results advance a concept in
which immunogenic cell death is not merely the result of expo-
sure to CRT at the plasma membrane and the release of intra-
cellular contents such as DAMP or cytokines63. Indeed, despite
these all happen during ferroptosis our data rather suggest that
following exposure to ferroptotic cell death, specific molecular
brakes modulate the subsequent engagement of the immune
system. Identifying these will serve as the springboard for novel
therapeutic avenues aimed at treating cancer or modulating
aberrant immune responses in affected patients.

Methods
Cancer cell lines and cell death-inducing reagents. MCA205 cells were cultured
at 37 °C with 5% CO2 in Gibco RPMI media (#52400, Gibco), supplemented with
10% fetal calf serum. Cells were split when reaching 80% of confluence and
detached using 0.25% solution of trypsin and EDTA. In the initial experiments,
ferroptosis was induced by ML162 (#AOB1514, Aobious Inc., USA), RSL-3
(#S8155, Absource, Germany) and Erastin (#S7242, Absource) at different con-
centrations. For the subsequent experiments, ML162 and RSL-3 were used at
0.5 μM and Erastin was used at 2.0 μM. Cell death inhibitors zVAD.fmk
(#BACE4026865.0005, VWR International, Belgium) and Nec-1s (synthesized by

the Laboratory of Medicinal Chemistry; University of Antwerp, Belgium) were used
at 10 μM, Fer1 (#M60042-2s, Xcess Biosciences, USA) was used at 0,5 μM and DFO
(#D-9533, Sigma-Aldrich, USA) at 50 μM. For the prophylactic vaccination model,
1 µM Mitoxantrone (#M-6545, Sigma Aldrich) and 30 µM Mitomycin C (#M-0503,
Sigma Aldrich) were used (24 h). To induce accidental necrosis, MCA205 cells were
subjected to three freeze/thaw (F/T) cycles using dry ice. For cytokine measure-
ments, MCA205 killed by 24-hour incubation with 1 µM doxorubicin (#D-1515,
Sigma Aldrich) were used as a positive control55. BM1-OVA and B16-OVA cells
were cultured in Gibco DMEM medium supplemented with 10% fetal calf serum
and maintained similarly to MCA205 cells. Jurkat cells were cultured in Gibco
RPMI medium with 10% of fetal calf serum and split twice a week by transferring a
portion of cells to a new culturing flask. In BM1-OVA79, apoptosis was induced by
incubating the cells with 1000 IU/ml TNF and 10 µM TAK1i for 14 h; necroptosis
was induced by 24 h incubation with TNF, TAK1i and 10 µM zVAD.fmk; fer-
roptosis was induced by 10 h stimulation with 5 µM ML162. In Jurkat cells, fer-
roptosis was induced by 0.5 µM ML162 for 14 h.

Generation of inducible GPX4 knockdown cellular model for ferroptosis. The
knockdown of GPX4 in MCA205 cells (iGPX4KD) was obtained by lentiviral
transduction using pLKO.1-puro vector with a cloned sequence of shRNA specific
for GPX4. The obtained pool of cells was selected with 3 μM Puromycin (#P7255,
Sigma-Aldrich). Next, cells were seeded at 1 cell/well in a 96-well plate in the
presence of the selecting antibiotic. Growing clones were screened for ferroptotic
cell death induction upon doxycycline administration (#D8991, Sigma Aldrich)
and the most potent clone was selected for further experiments. For these
experiments, iGPX4KD cells were cultured for 48 hours in the presence of 1 µM
doxycycline (#D8991, Sigma Aldrich). In order to synchronize ferroptotic cell
death induction, induction of GPX4 knockdown was done in the presence of
0.5 μM Fer1 for 48 h after which, cells were washed three times to remove Fer1 and
medium without Fer1 was added.

Western blotting. Cells were denatured in Laemmli buffer by boiling for 10 min.
Separation of proteins was performed by SDS-PAGE and proteins were transferred
to nitrocellulose membrane (Thermo Scientific) with semi-dry blotting. Membrane
was blocked using 5% non-fat dry milk solution in TBS buffer with 0.05% Tween20
(TBST). Incubation with primary antibody against GPX4 (rabbit, #ab125066,
Abcam, 1:1000), actin (mouse, #69100, clone C4, MP, 1:15000), phospho-IκBα
(Ser32/36) (mouse, #9246, Cell Signaling Technology, 1:1000), IκBɑ (rabbit, #9242,
Cell Signaling Technology, 1:1000) was performed O/N at 4 °C in TBST. After
extensive washing, the membranes were incubated with HRP-conjugated secondary
anti-rabbit (donkey, #NA934, VWR International, 1:5000), anti-mouse (sheep,
#NA931, VWR International, 1:5000) for 1 h in RT. Alternatively, tubulin antibody
conjugated with HRP (rabbit, #ab21058, Abcam, 1:10000) was used for 1 h in RT.
Membranes were developed using Western Lighting Enhanced Chemiluminescence
Substrate (Perkin Elmer).

Cell death measurement. Cell death in MCA205 stimulated with class I and class
II ferroptosis inducers was measured as described before80. Briefly, cells were
seeded at 10000 cells/well in 96-well adherent plates and the next day they were
treated with cell death inducers. All the inhibitors were added 4 hours before cell
death induction. Cell death rate was calculated based on the fluorescence intensity
of SytoxGreen® (1 µM). Fluorescence was measured by Fluostar Omega (BMG
Labtech GmbH). For PS exposure analysis, cells were collected, washed in 1x
Annexin Binding Buffer and stained with Annexin V-APC (#BMS306APC/100,
eBioscience, 1:100) or Annexin-FITC (#BMS306FI, ThermoFisher, 1:100), 1.25 µM
SytoxBlue® (#S11348, Molecular Probes,) and alternatively 1 µg/ml 7-AAD (#A-
1310, Molecular Probes) or 3 µM DRAQ7 (#DR71000, Biostatus UK) and cell
death was measured with an LSRII flow cytometer and the data were analyzed
using FlowJo 10.2 software.

Mice. In all the experiments 6–8 weeks old C57BL/6J female mice purchased from
Janvier Labs (#C57BL/6JRj) were used. Mice were housed in individually ventilated
cages at the VIB-UGent Center for Inflammation Research in a specific pathogen-
free animal facility with the temperature at 20–24 °C and 45–65% humidity with
12 h light/dark cycle and food and water available at libitum. All of the experi-
mental setups were approved by the VIB-Ghent University ethical review board
and were performed according to the institutional, national and European animal
regulations.

Prophylactic vaccination model. The prophylactic vaccination model was per-
formed as described before61. Each animal received 3 × 105 of MCA205 cells or
7.5 × 105 BM1-OVA cells subcutaneously in their left flank, unless stated otherwise.
Seven days later, the animals were challenged with 3 × 104 MCA205, or 2 × 105

B16-OVA cells subcutaneously injected into the right flank. For the analysis of
immunogenicity of the initial and terminal stages of ferroptosis, iGPX4KD were
stimulated for cell death for 2 h (to reach the point of no return) or 8 h after which
cells were collected, washed in cold PBS and injected into the left flank of the
animals (3 × 105). The challenge was performed using wild type cells (3 × 104)
seven days later. The tumor size on the challenge site was measured every 2–3 days
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for 30 days using an electronic caliper (RS Components B.V., Brussels, Belgium).
Animals with tumors reaching 1 cm3 were euthanized prior to the end of the
experiment by cervical dislocation or inhalation of CO2.

Analysis of lipid ROS and ROS. Lipid ROS and ROS measurements were per-
formed as described before16. Briefly, cells were seeded in 6 well plates and sti-
mulated for ferroptosis, namely, 2 h stimulation with ML162 and RSL-3 and 8 h
stimulation with Erastin. For iGPX4KD, lipid ROS and cytosolic ROS were mea-
sured in 1–2 h intervals for 8 h. Cells were collected, washed with PBS and
resuspended in PBS in the presence of 2 μM C11-BODIPY (#D3861, Molecular
Probes, USA) for lipid ROS measurement or 1 µM of DHR123 (#D-1054, Sigma
Aldrich) for cytosolic ROS measurement. After a 10 min incubation at 37o C, cells
were washed and the fluorescence intensity of oxidized C11-BODIPY or DHR123
was measured using BD LSR II flow cytometer in Fl-1 channel. The extent of cell
death was measured by adding 0.5 µM DRAQ7 or 1.25 µM SytoxBlue®. Data were
analyzed using FlowJo 10.2 software. Only non-permeabilized cells were used for
the analysis.

ATP, LDH, HMGB1, and cytokine release. For the analysis of DAMP and
cytokine release, MCA205 cells were seeded at 3 × 105 cells/well in 6-well tissue
culture plates in 2 ml of medium. Supernatant from dying cells was collected at
indicated time points and stored at −20 °C. ATP release was measured using
CellTiter-Glo® Luminescent Cell Viability Assay (#G7570, Promega, USA). LDH
release was measured using colorimetric Pierce LDH cytotoxicity assay (#88954,
Life Technologies, USA) according to the manufacturer’s protocol. Both ATP and
LDH results were normalized to values obtained from untreated (live) cells.
HMGB1 release was performed using ELISA assay (#ST51011, Tecan, Switzerland)
according to the manufacturer’s instructions. Mouse cytokines in cell culture
supernatants were determined by a magnetic bead-based multiplex assay using
Luminex technology (Bio-Rad, Hercules, CA, USA).

Live cell imaging. Live cell imaging of iGPX4KD cells was performed as described
before25. Briefly, cells (untreated or stimulated for ferroptosis by removal of Fer1)
have been seeded 10 × 103 cells/well in 8 well chamber (#80826, iBidi) in 250 µl of
medium in the presence of DRAQ7 (3 µM) and the images were acquired on Leica
Sp5 AOBS confocal microscope (Leica), using an ×40 HCX PL Apo UV 1.25 na oil
objective. Obtained images were further analyzed and extracted using Fiji 1.53 built
on ImageJ 2.1.0 software.

Analysis of calreticulin exposure. Untreated or dying MCA205 WT and
iGPX4KD cells were collected, washed in FACS buffer (3% FCS in PBS) and stained
with anti-calreticulin specific antibody (#ab2907, Abcam, 1:300) or an isotype
control (PA5-23094, ThermoFisher) for 30 min on ice. Afterwards, cells were
washed three times with FACS buffer and incubated with secondary goat anti-
rabbit-FITC antibody (#35553, Thermo Fisher Scientific, 1:300) for 30 min on ice.
Following three additional washes, cells were analyzed on LSRII Fortessa using BD
FACSDIVA 8.0 software, and DRAQ7 was used as a permeabilization marker. Data
were analyzed using FlowJo 10.2 software. Only non-permeabilized cells were used
for the data analysis.

Isolation of BMDC. BMDC were isolated from the tibia and femur as described
before25. Briefly, the bones were isolated from the 6–8 weeks old female C57BL/6J
mice and cells were flushed out with a syringe. Red blood cells were removed by
ACK buffer (#10-548E, Biowhittaker Inc, USA). Next, cells were counted and
seeded on suspension plates at 2 × 105 cells/ml in 10 ml of medium in the presence
of 20 ng/ml GM-CSF (#130-095-739, Miltenyi Biotechnumber, USA). A fresh
portion of GM-CSF-enriched medium was added on day 3 and replaced on day 6.
Cells were seeded for experiments on day 9–10. Around 80% of cells stained
positive for CD11c marker at that time.

Phagocytosis assay. MCA205 cells were detached from the flask and resuspended
in an OptiMEM medium containing 1 µM CellTrackerGreen (#C2925, Thermo-
Fisher) for 30 min at 37oC shaking. Stained MCA205 cells were seeded and killed
by ferroptosis inducers (ML162, 0.5 µM, 14 h; RSL-3, 0.5 µM, 14 h; Erastin, 2.0 µM,
14 h) or by repeated F/T cycles. On the day of the assay, 4 × 105 BMDC were
seeded in 2 ml of medium in 6-well suspension plates. Untreated or dead cells were
collected, counted and added to the BMDC at the appropriate ratio in 2 ml of
BMDC medium. Co-culture was incubated for 2 h at 37 °C. After that, BMDC and
dead cells were collected and washed in FACS buffer (3% fetal calf serum solution
in PBS). Next, samples were stained with CD11c-APC (#117309, BioLegend, 1:200)
antibody in the presence of Fc Block antibody (553142, BD Pharmingen, 1:100) for
30 min at 4 °C. After the staining, samples were washed twice in FACS Buffer and
resuspended in a solution containing 1.25 µM of the cell death marker SytoxBlue®.
Samples were acquired using BD LSRII. CD11c+CellTrackerGreen+ positive cells
were considered as BMDC that engulfed dead cells. For ImageStream experiments,
BMDC and MCA205 were stained with 1 µM CellTraceViolet (#C34557, Molecular
Probes) and 1 µM TAMRA (#C2211, Invitrogen) respectively, incubated together
for 2 h and acquired by AmnisImageStreamX Mk II with 40x magnification. Data

were collected using INSPIRE software and further analyzed by IDEAS 6.2 soft-
ware. For the experiments describing the uptake of ferroptotic cells at different
stages of cell death, MCA205 cells were stained with 1 µM CypHer Red (#PA15405,
VWR International) and BMDC with 1 µM of CellTraceViolet for 15 min in
OptiMEM medium at 37 oC. Fer1 (0.5 µM), an inhibitor of lipid peroxidation, and
cytochalasin D (2 µM, C8273, Sigma Aldrich), an inhibitor of actin polymerization
and consequently phagocytosis, were added 30 min before co-culture. Cell-
TraceViolet+CypHer+ cells were considered to be BMDC that engulfed dead cells.
For experiments studying the effect of phosphatidylserine or calreticulin exposure
on the phagocytosis of MCA205 cells, experiments were performed as described
before81. Briefly, CFSE-stained iGPX4KD MCA205, either apoptotic (1000 IU/ml
TNF+ 10 μM TAK1i, 8 h) or terminally ferroptotic cells were incubated with
unconjugated Annexin V (100 µg/2.5 × 105cells; BioLegends, 640902) in Annexin
Binding Buffer for 30 min in room temperature. Afterwards, cells were washed in
Annexin Binding Buffer and added to the CellTraceViolet-stained BMDC for 2 h at
37 °C. The role of CRT in phagocytosis of terminal ferroptotic cells was assessed by
incubating ferroptotic cells with anti-CRT (1:300) or isotype control antibody
(1:300) in FACS buffer for 30 min at 4 °C. CellTraceViolet-stained BMDC were
washed twice with FACS buffer and then incubated with CD16/CD32 (1:100)
blocking antibody for 15 min. Washed target cells were incubated with BMDC for
2 h a 37 °C in complete medium. The analysis of phagocytosis was performed using
LSR II flow cytometer using BD FACSDIVA 8.0 software. Data were analyzed
using FlowJo 10.2 software. The population of CellTraceViolet positive cells that
were CFSE positive was considered as engulfing BMDC.

Analysis of BMDC maturation. BMDC were stained with 1 µM CFSE for 10 min
at 37 °C in PBS, washed and seeded at 5 × 104 cells/well in 96 well suspension
plates. Next, BMDC were co-cultured with MCA205 cells in ratios 1:1; 1:5; 1:10
(BMDC:MCA205) or stimulated with 250 ng/ml of LPS (#L-2630, Sigma Aldrich).
After O/N co-culture, cells were collected, washed in ice-cold FACS buffer and
stained for surface markers: CD11c-BV650 (#117339, BioLegend, 1:200), MHCII-
APC/eFluor700 (#47-5321-82, eBioscience, 1:100), CD86-PE/Cy7 (#105116, Bio-
Legend, 1:200), CD80-PE/Cy5 (#104712, BioLegend, 1:200), CD40-APC (#558695,
BD Pharmingen, 1:200) and CD274-PE (#12-5982-82, eBioscience, 1:200). The
acquisition was performed with a LSRII flow cytometer using BD FACSDIVA
8.0 software and the analysis was performed using FlowJo 10.2 software.

Analysis of lipid droplets accumulation. BMDC incubated with ferroptotic cells
O/N were collected, washed twice with PBS in the room temperature and incubated
with 1 µM BODIPY 493/503 (#D3922, Molecular Probes) for 15 min at 37 °C. After
that, cells were washed twice with PBS, resuspended in PBS containing 1 µM
DRAQ7 and immediately analyzed by LSR II Fortessa using BD FACSDIVA
8.0 software and analyzed by FlowJo 10.2 software, or imaged by the confocal
microscope.

Antigen-specific T-cell proliferation. BMDC:MCA205 co-cultures were seeded at
5 × 104 cells in 96 well plates in 100 μl of medium with appropriate number of
MCA205 cells and model antigen 0.25 mg/ml ovalbumin endotoxin-free (#vac-
pova-100, Invivogen, France). Co-culture was maintained for 18 h at 37 °C.
Afterward, wells were washed three times with medium to remove MCA205
corpses and soluble antigen and BMDC were co-incubated with CD8+ T cells
isolated from OT-I Rag2−/− transgenic mice using MagniSort® Mouse CD8 T-cell
Enrichment Kit (#8804-6822-74, eBioscience) pre-stained for 5 min with 1 µM
CFSE (#8804-6822-74, Thermo Fisher Scientific, USA) in PBS. Co-culture was
incubated for 72 h at 37 oC. After that, cells were collected and stained with CD3-
AF700 (#56-0032-82, clone 17A2, ThermoFisher, 1:200), CD8-PE/Cy7 (#25-0081-
82, clone 53-6.7, ThermoFisher, 1:200) and SytoxBlue®. Analysis was performed on
BD LSRII using BD FACADiva 8.0 software and further analyzed using FlowJo
10.2 software.

RNA sequencing of BMDC carrying ferroptotic corpses. CellTraceViolet-stained
BMDC were co-cultured with ferroptotic Jurkat cells (0.5 µM ML162, 14 h) for 4 h,
unbound Jurkat cells were removed by washing with PBS and engulfing BMDC
were isolated by sorting with BD FACSAriaTM III Cell Sorter. Total RNA was
extracted, and an mRNA library was prepared using the Illumina Novoseq6000
platform by Novogene. HISAT2 was selected to map the filtered sequenced reads to
the reference genome. BAM files containing mapping results were counted using
the featureCounts function in the R package Rsubread. Counting was performed
using both mouse and human genomes for comparison although downstream
analyses were only performed on mouse data. DEG analysis was then performed
using DESeq2 considering all genes with FDR ≤ 0.05 and 0.58 ≤ Log2FC ≤ -0.58. All
genes that resulted from the analysis were curated using multiple methods,
including literature mining and predictive algorithms including Uniport. Func-
tional analysis of genes with FDR ≤ 0.05, regardless of Log2FC, comprised of GO
and GSEA (Gene Set Enrichment Analysis analyses. For GSEA, gene sets from
MSigDB were used in this assessment which includes curated gene sets (HALL-
MARKS), known pathways (KEGG), and gene ontology terms (BIO PROCESS &
MOLECULAR FXN).
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Therapeutic vaccination model. Therapeutic vaccination was performed as
described before82. Spleen from C57BL/6J mice was isolated, cut into small pieces
and incubated with the mix of Liberase™ TM Research Grade (5401127001, Roche)
DNAse I (10104159001, Roche) for 30min at 37 oC according to previously pub-
lished protocol83. Afterward, the single-cell suspension was washed in 1xHBSS
(14175-053, Gibco) and red blood cells were removed by 3min incubation with ACK
buffer (A1049201, Gibco). After that, the cell suspension was incubated with
TAMRA labeled BM1-OVA cells killed by necroptosis or ferroptosis for 4 h at 37 °C.
Following the staining with antibodies for XCR1-BV650 (#148220, BioLegend, 1:200)
and CD11c-BV711 (#563048, BD Pharmingen, 1:200) as well as cell death marker
eBioscience™ Fixable Viability Dye eFluor™ 506 (1/1000, #65-0866-14, Thermo-
Fisher). CD11c+XCR1+TAMRA+ cells were sorted using FACS. The obtained
population was centrifuged, resuspended in 1xHBSS and 5 × 105 cDC1 carrying
ferroptotic or necroptotic cells were injected intradermally in C57BL/6J mice bearing
B16-OVA subcutaneous tumors. The growth of the tumor was monitored every
3–4 days using an electric caliper. The size of the tumor was determined by the
formula: (3.14 × Width × Length × Depth)/6.

Statistics and reproducibility. All of the statistical analysis was performed using
GraphPad Prism v9.0 software. Microsoft Excel v16.5 was used for the initial data
transformation and cleaning when necessary.

For Figs. 1b–d, 2d, e, 3b, c, h, i, Supplementary Figs. 2a, 5b, 5c, One-way
ANOVA test was applied with Tukey or Dunnett’s post-hoc testing as indicated in
figure legends.

For Fig. 5b, Supplementary Figs. 5a, 6b a set of One-way ANOVA tests was
applied with Tukey post-hoc testing for each ratio.

For Fig. 3f, g, Supplementary Data Figs. 1c, 6d, two-tailed t-test was applied.
For Figs. 1a, 2g, 6a, 6f Supplementary Fig. 3b, Kaplan–Meier simple survival

analysis test was applied to calculate the significance of the observed difference in
tumor-free mice.

For Fig. 6e Kaplan–Meier test was applied to calculate the significance of the
observed difference in time of euthanasia of tumor-bearing mice.

For Fig. 6c, a set of two-tailed t-test for each of the time points was performed to
determine the significance of the tumor size.

For Fig. 3e, Supplementary Fig. 6c, a two-way ANOVA test was performed.
For Supplementary Fig. 1f, a simple linear regression with two-tailed Spearman

correlation analysis was performed.
In all floating bars plots, the bar represents the range of the results, and the

inner line refers to the median or mean, as indicated in the legend.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). The RNA sequencing raw data files have been
deposited at GEO under the accession code GSE205069. Source data are provided with
this paper.
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