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Abstract

Introduction. The risk of infectious disease transmission, including COVID-19, is disproportionately high in correc-
tional facilities due to close living conditions, relatively low levels of vaccination, and reduced access to testing and
treatment. While much progress has been made on describing and mitigating COVID-19 and other infectious disease
risk in jails and prisons, there are open questions about which data can best predict future outbreaks. Methods. We
used facility data and demographic and health data collected from 24 prison facilities in the Pennsylvania
Department of Corrections from March 2020 to May 2021 to determine which sources of data best predict a coming
COVID-19 outbreak in a prison facility. We used machine learning methods to cluster the prisons into groups based
on similar facility-level characteristics, including size, rurality, and demographics of incarcerated people. We devel-
oped logistic regression classification models to predict for each cluster, before and after vaccine availability, whether
there would be no cases, an outbreak defined as 2 or more cases, or a large outbreak, defined as 10 or more cases in
the next 1, 2, and 3 d. We compared these predictions to data on outbreaks that occurred. Results. Facilities were
divided into 8 clusters of sizes varying from 1 to 7 facilities per cluster. We trained 60 logistic regressions; 20 had test
sets with between 35% and 65% of days with outbreaks detected. Of these, 8 logistic regressions correctly predicted
the occurrence of an outbreak more than 55% of the time. The most common predictive feature was incident cases
among the incarcerated population from 2 to 32 d prior. Other predictive features included the number of tests admi-
nistered from 1 to 33 d prior, total population, test positivity rate, and county deaths, hospitalizations, and incident
cases. Cumulative cases, vaccination rates, and race, ethnicity, or age statistics for incarcerated populations were gen-
erally not predictive. Conclusions. County-level measures of COVID-19, facility population, and test positivity rate
appear as potential promising predictors of COVID-19 outbreaks in correctional facilities, suggesting that correc-
tional facilities should monitor community transmission in addition to facility transmission to inform future out-
break response decisions. These efforts should not be limited to COVID-19 but should include any large-scale
infectious disease outbreak that may involve institution-community transmission.
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Highlights

� The risk of infectious disease transmission, including COVID-19, is disproportionately high in correctional
facilities.

� We used machine learning methods with data collected from 24 prison facilities in the Pennsylvania
Department of Corrections to determine which sources of data best predict a coming COVID-19 outbreak in
a prison facility.

� Key predictors included county-level measures of COVID-19, facility population, and the test positivity rate
in a facility.

� Fortifying correctional facilities with the ability to monitor local community rates of infection (e.g., though
improved interagency collaboration and data sharing) along with continued testing of incarcerated people
and staff can help correctional facilities better predict—and respond to—future infectious disease outbreaks.
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As of autumn 2023, COVID-19 had caused more than
1.1 million deaths in the United States.1 The risk of
COVID-19 and other infectious diseases is disproportio-
nately high in correctional facilities due to close living
conditions, relatively low levels of vaccination, and
reduced access to testing and treatment, among other
factors. Previous studies have quantified the risk of
COVID-19 in terms of level of transmission, death rates,
and intervention effectiveness. One study found that
between April 2020 and January 2021, COVID-19 case
rates were 2.8 times higher among prison staff than the
general population and 3.1 times higher among the
prison population than the general population.2 Other
work has found similar discrepancies in incidence and a
death rate 2.5 times higher in prisons than in the general
US population.3

While much progress has been made in describing and
mitigating COVID-19 disease risk in jails and prisons,4–6

and prison systems have adaptively made a variety of
changes in response to outbreaks that have already
occurred,7–9 there are open questions about which data
can best predict outbreaks and why health outcomes dif-
fer between correctional facilities. Previous studies fore-
casting COVID-19 incident cases on a national level in
several countries have used machine learning methods
ranging from simple linear regression to deep learning
models.10 Models vary in their prediction accuracy, but
many models focus on using time series data (e.g., past
cases) and autoregressions to predict future cases, deaths,
or hospitalizations.11–14

Future risk of COVID-19 infection or other infectious
diseases, however, is not strictly limited to the current or
previous number of infected individuals. Some research
suggests that in correctional facilities, the correctional
facility size, facility wastewater surveillance, correctional
officer infection rates, and even community rates of infec-
tion affect transmission in the facility.15,16 A study of zip
codes near Cook County Jail in Chicago found that jail-
community cycling was the most important factor in pre-
dicting COVID-19 cases.16

Previous work forecasting outbreaks among incarcer-
ated populations has not used multilevel data, including
facility data (e.g., prison size, demographics of incarcer-
ated individuals) and county data (e.g., country deaths,
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hospitalizations, and incident cases). In this article, we
use comprehensive individual-level, facility-level, and
community-level data collected from a state prison sys-
tem to determine which data elements best predict a com-
ing COVID-19 outbreak in a prison facility. We
hypothesized that community-level data would be impor-
tant to predicting outbreaks within correctional facilities.
This analysis adds important insights for local and state
public health agencies and correctional administrators on
how best to allocate resources to collect data and harness
available elements to forecast an upcoming outbreak.
Although we focus on COVID-19, our methodology and
qualitative conclusions are applicable to other infectious
diseases of an epidemic nature.

Methods

Setting

We used data collected by the Pennsylvania Department
of Corrections and publicly available data from the
Pennsylvania Department of Health from March 2020 to
May 2021 to build our prediction models. The
Pennsylvania Department of Corrections houses incar-
cerated individuals in 24 facilities across the state in both
rural and urban areas. Throughout the pandemic, the
Department of Corrections collected detailed individual-
level data on COVID-19 tests, results, and vaccination
status as well as facility-level data on wastewater
COVID-19 surveillance testing, facility layout, popula-
tion demographics, COVID-19 outcomes, and comor-
bidities of incarcerated residents.

Data

We used different types of data to perform the clustering
and prediction tasks. For the clustering task, we used
descriptive data composed of 1) facility data, including
the number of housing zones, security level, bed utiliza-
tion, total facility footprint (square footage), and number
of buildings; 2) demographic data, including population
custody level mix (custody levels include community,
minimum, medium, close, and maximum), total popula-
tion, average age, variance of age, average racial and eth-
nic mix, average fraction with chronic conditions, and
percentage of staff who live outside of the county in
which they work; 3) facility COVID-19 data, including
vaccine uptake after 90 d, number of incarcerated people
vaccinated in the first 30 d after vaccine availability, was-
tewater testing frequency, average daily incident cases,
largest single-day incident cases, and number of deaths;
and 4) county COVID-19 data, including average

vaccinations per day in the first 30 and 90 d of vaccine
availability, average daily incident cases, largest single-
day incident cases, average daily hospitalizations, aver-
age daily deaths, and largest single-day deaths.

For the prediction model, we used time series demo-
graphic data including facility population categorized by
age, race, number of correctional staff, and number of
people who are incarcerated; facility COVID-19 data
including cumulative cases in the last 3, 7, 14, and 21 d;
incident cases in the last 0 to 35 d (with cases separated
into total, staff, incarcerated, vaccinated, and unvacci-
nated populations); number of tests administered in the
last 0 to 35 d; test positivity in the last 0 to 35 d; days
since the most recent wastewater test; number of waste-
water tests in the last 14 d; number of wastewater detec-
tions in the last 14 d; and county COVID-19 data
including county cases, deaths, hospitalizations, and vac-
cinations in the last 0 to 35 d. These features capture the
range of individual-level and facility-level data provided
to us by the Pennsylvania Department of Corrections
and community-level data available from the Department
of Health and include features to explore autoregressions
that forecasted well in previous work.11–14

We divided the prediction data into pre- and postvac-
cination data sets. The first day of the postvaccination
data set corresponds to the day of the first recorded vac-
cination of any person living or working in a prison facil-
ity. Therefore, the pre- and postvaccination data set sizes
vary slightly by facility.

Each of the data sets (clustering, prediction prevacci-
nation, and prediction postvaccination) has features with
different measurement units. To make the features com-
parable, we scaled them using z-score standardization.
The z-score of each data point, x, is zx =

x�m

s
, where m is

the mean value of the feature and s is the standard devia-
tion of the feature.

Facility Clustering

After splitting the data into pre- and postvaccination peri-
ods, the number of observations in each training set was
too low to generate accurate predictions. For example,
for the Coal Township facility, there were 141 observa-
tions prevaccination and 360 observations postvaccina-
tion. Therefore, we expanded the number of observations
in the training data by clustering similar facilities. We first
determined the number of clusters to use. We evaluated
the sum of squared distances of prisons to their closest
cluster center for 1 to 24 clusters (Figure 1). Using the
‘‘elbow’’ method,17 we visually identified the lowest num-
ber of clusters for which the rate of decline in the sum of
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squared distances decreases substantially and determined
this to be 8 clusters. By using 8 clusters, we expand the
size of the training and test set for each cluster while keep-
ing cluster sizes small enough to keep results tailored
to very similar types of institutions. We then used the
k-means algorithm via the sklearn library in Python18 to
group the 24 prison facilities into 8 clusters. We used ran-
dom initial seeding of the cluster centroids and tested 10
different initial seeding positions.

Sensitivity Analysis

We also analyzed the effect of cluster size on prediction
model performance. To do so, we performed the same
analysis with 4 clusters instead of 8.

Outbreak Prediction Model

We used the clustered facility data in the machine learn-
ing prediction model. The goal of the prediction task is
to determine which features best predict an impending
outbreak. We investigated prediction accuracy for a
variety of outbreak sizes and prediction windows.
Specifically, we developed several logistic regression clas-
sification models to predict for each cluster, pre- and
postvaccination, whether there would be no cases, an
outbreak with 2 or more cases, or a large outbreak with
10 or more cases in the next 1, 2, and 3 d; thus, for each
cluster, we trained 18 different logistic regressions.
Logistic regression was used because it is a type of
regression that estimates the probability of a binary
event occurring.18

As a first step, we split the data into training and test
sets. The training set is the first 80% of days in the over-
all data set, and the test set is the remaining 20%. We fil-
tered out some features using the index of dispersion,
D= s2

m
, where s2 is the variance of a feature and m is the

mean of a feature. If D\0:1 for a given feature in the
training set, we removed that feature from both the train-
ing and test sets. By doing so, we removed features that
changed very little over time, thereby reducing unneces-
sary noise in the data.

Then, we used feed-forward selection18 to identify the
4 most predictive features of a given outbreak scenario.
To do so, we trained the logistic regression model using
only 1 feature at a time and recorded the accuracy of the
predictions compared with the test set for each feature in
the data set. The feature with the highest accuracy on its
own is the best feature. We then trained the logistic
regression model using the best feature combined with
one other feature at a time and recorded the accuracy of
the predictions compared with the test set for each
remaining feature in the data set. The feature with the
highest accuracy when paired with the best feature is the
second-best feature. We repeated this process twice more
to find the feature that had the highest accuracy when
paired with the best- and second-best-performing fea-
tures and then with the best, second-best, and third-best-
performing features. The result of the feed-forward fea-
ture selection is the 4 most predictive features for each of
the 18 logistic regressions for each cluster.

Results

Facility Clustering

The 8 clusters consisted of varying numbers of prisons
(Table 1). Several features stood out as delineating the
clusters. Clusters 5 and 8 are women’s prison facilities.
Cluster 8 (Quehanna Boot Camp) has the highest pro-
portion of individuals at the community custody level,
which was the lowest level of carceral control at around
10% of the population compared with 0% to 1% in
other clusters (Supplementary Figure S1). This facility is
unlike the other prison facilities in that it is designed as a
military-style boot camp. Prisons in cluster 1 have a
higher Hispanic population than any other cluster
(Supplementary Figure S2) and also have the highest
average county daily incident cases, hospitalizations, and
deaths (Supplementary Figures S3–S5). Both cluster 1
prisons are close to a major urban area, possibly explain-
ing the demographic difference. Clusters 6 and 8 have
low vaccination uptakes in the first 90 d after vaccine
availability, while clusters 4 and 7 have high vaccination

Figure 1 Sum of squared distances of prisons to their nearest
cluster centroid for 1 to 24 clusters.
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uptakes (Supplementary Figure S6). Clusters 4 and 5
had the largest single-day COVID-19 outbreaks (incident
cases; Supplementary Figure S7).

For visualization purposes, we used principal compo-
nent analysis to reduce the 33-dimensional feature space
to 2 dimensions. Since k-means clustering is based on
Euclidean distance, this visualization gives an approximate
2-dimensional visualization of the results (Supplementary
Figure S8). Clusters 2 and 7 and clusters 3 and 5 are simi-
larly located on the 2-dimensional plane, meaning that
those clusters are more similar to each other than other
clusters are. Clusters 1, 4, and 8 are further in Euclidean
distance on the principal component plane.

Outbreak Prediction Model

We trained logistic regressions only for data sets in which
there was at least 1 d in which an outbreak was detected
and at least 1 d in which no outbreak was detected. In
total, we trained 60 different logistic regressions: 12 for
cluster 6; 9 each for clusters 1, 2, 3, 5, and 7; and 3 for
cluster 4. Of the 60 regressions, 52 were trained on pre-
vaccination data and 8 on postvaccination data. The
accuracy of the model on the test set varied from 39% to
99%, the area under the receiver operating characteristic
curve (AUC) varied from 0.17 to 0.82 in the test set and
from 0.54 to 0.98 in the training set, and the percentage
of positive labels (that is, an indication of whether an out-
break of a given size will occur on a given day) in the test
set varied from 0% to 89% (Figure 2). Generally, when
the classification model was predicting whether there
would be 10 or more cases, accuracy was highest, but a
large majority of the labels in the test set data were nega-
tive; in other words, there were very few days with 10 or
more cases per cluster. The models with higher accuracy
were those with the highest class imbalance; that is, they
had close to all true or all false outcomes, and therefore,

the model could easily predict just true or just false for
every instance and still have high accuracy. About half of
the models had an AUC between 0.50 and 0.65.

We next limited the results to logistic regressions in
which the test set data had between 35% and 65% positive
labels, where a positive label signifies the occurrence of an
outbreak. Class imbalance (that is, an unequal fraction of
cases with positive v. negative labels) was common because
the occurrence of an outbreak in the data was typically of
low frequency. The resulting balanced test sets can provide
a more reliable picture of model performance because they
have large samples of both days with and without out-
breaks. The subset of test sets that fit this description lim-
ited the results to 20 different logistic regressions: 5
regressions from cluster 3, 4 each from clusters 5 and 7, 3
each from clusters 1 and 2, and 1 from cluster 4. Clusters 6
and 8 did not have any balanced test sets. All of the
balanced test sets were prevaccination. The accuracy of the
logistic regression models on the test set ranged from 45%
to 63% (Figure 3), and the AUC ranged from 0.42 to 0.66
on the test set and 0.59 to 0.96 on the training set.

To draw conclusions about important features, we
further limited the regression results to those models that
achieved at least 55% accuracy on a balanced test set.
There were 9 such logistic regressions, and all were pre-
vaccination (Table 2). From cluster 3, the best-
performing logistic regression, with 63% accuracy and
AUC 0.55, was that of predicting whether there would
be 10 or more cases in the next 3 d, followed by predict-
ing whether there would be 2 or more cases in the next

Table 1 Clusters Resulting from 8-Means Clustering

Cluster Prisons

1 Chester, Phoenix
2 Fayette, Frackville, Huntingdon, Pine Grove,

Rockview
3 Laurel Highlands, Mercer, Waymart
4 Forest
5 Cambridge Springs, Muncy
6 Coal Township, Greene, Smithfield
7 Albion, Benner Township, Camp Hill, Dallas,

Houtzdale, Mahanoy, Somerset
8 Quehanna Boot Camp

Figure 2 Graph of logistic regression accuracy compared with
the percentage of positive labels in the test set.

Malloy et al. 5



day with 56% accuracy and AUC 0.48. From cluster 5,
the best-performing logistic regression was that of pre-
dicting whether there would be no cases in the next day
(62% accuracy, AUC 0.65), followed by predicting
whether there would be 2 or more cases in the next 2 d
(55% accuracy, AUC 0.59). From cluster 1, the best-
performing logistic regression was that of predicting
whether there would be 2 or more cases in the next 3 d
(60% accuracy, AUC 0.57), followed by predicting
whether there would be no cases in the next day (58%
accuracy, AUC 0.51). From cluster 7, the best-
performing logistic regression was that of predicting
whether there would be 10 or more cases in the next 3 d
(59% accuracy, AUC 0.45), followed by predicting
whether there would be 2 or more cases in the next day
(57% accuracy, AUC 0.57). Lastly, from cluster 2, the
best-performing logistic regression was that of predicting
whether there would be no cases in the next day (55%
accuracy, AUC 0.53).

No strong pattern was observed for prediction accu-
racy as a function of prediction window or outbreak size
(Table 2). Four of the 9 most accurate regressions were
for predicting an outbreak of 2 or more cases, 3 were for
predicting no cases, and 2 were for predicting an out-
break of 10 or more cases. Five of the regressions had a
1-d prediction window, 1 regression had a 2-d prediction
window, and 3 regressions had a 3-d prediction window.

Using the feed-forward feature selection method, we
identified 36 of the most predictive features in total for T
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Figure 3 Graph of logistic regression accuracy compared with
the percentage of positive labels in the balanced test sets where
there are 35% to 65% positive labels.
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the 9 logistic regression models with high accuracy on
the balanced test sets (Table 2). The most common pre-
dictive feature (constituting 11 of the 36 most predictive
features) was incident cases among the total population
from 3 to 32 d prior. However, it was never the most
important feature in any of the 9 models. The second
most common predictive features (each constituting 5 of
the 36 most predictive features) were the number of tests
from 4 to 33 d prior and test positivity from 13 to 28 d
prior. Other features include incident cases in the incar-
cerated population (4 of 36), county deaths (4 of 36),
population size (3 of 36), county incident cases (2 of 36),
county hospitalizations (1 of 36), and county vaccina-
tions (1 of 36). Despite the feed-forward feature selection
method, the absolute value of the coefficients of the top
4 features of each model did not always align with the
order in which they were chosen by the algorithm. The
first feature selected had the highest coefficient absolute
value in only 4 of the 9 models.

Sensitivity Analysis

We reran the analyses using 4 facility clusters instead of
8. The 4 clusters of corrections facilities were of similar
size except for cluster 3, which included only the Phoenix
facility (Supplementary Table S1). There were a total of
44 different models; of these, 12 had test set data with
between 35% and 65% positive labels, and 8 had an
accuracy greater than 55%. The accuracy of the 8 logis-
tic regressions ranged from 56% to 68%, and the AUC
ranged from 0.53 to 0.71 on the test set and 0.60 to 0.84
on the training set (Supplementary Table S2). The most
common predictive feature (constituting 9 of the 32 most
predictive features) was test positivity from 2 to 34 d
prior. The second most common predictive feature (con-
stituting 6 of the 32 most predictive features) was the
number of tests administered from 2 to 30 d prior. Other
features include county deaths (5 of 32), incident cases
among the incarcerated population from 16 to 34 d prior
(4 of 32), incident cases among the total prison popula-
tion (incarcerated and staff) from 0 to 5 d prior (3 of
32), county hospitalizations (3 of 32), and total prison
population (2 of 32). These features were similar to those
of the base-case scenario with 8 clusters and again high-
light the importance of considering county-level data in
predicting outbreaks.

Discussion

We identified predictors of COVID-19 outbreaks in
prison facilities using machine learning. Not surprisingly,

important features identified in this analysis were number
of tests carried out in a facility and incident cases, sug-
gesting that investment in case surveillance is important.
This is consistent with previous modeling efforts that
focused on forecasting COVID-19 using the case counts
from prior days.11–14 Intuitively, one would expect past
incident cases and testing levels to correlate with future
reported incident cases. In the Pennsylvania Department
of Corrections, mass testing began early on during the
outbreak in almost every facility, enabling daily identifi-
cation of asymptomatic and symptomatic people. These
findings suggest that as COVID-19 continues to spread
in correctional facilities, it is important for state govern-
ments to invest in surveillance activities and to continue
testing, vaccination, and other preventive measures.

County deaths, hospitalizations, and cases were also
important predictors, further highlighting a link between
community and facility COVID-19 spread. These predic-
tors were most important in clusters 1, 2, and 3, which
include prisons in rural areas. Prior work has found a
similar link via correlations in COVID-19 cases among
prison staff19 and spikes in prison COVID-19 cases fol-
lowing a spike in community COVID-19 cases.20

Fortifying relationships and data sharing between cor-
rectional facilities and public health management teams
in surrounding communities may help better manage
community spread of infection through correctional
facilities. When community cases of infection grow, these
may be early signs to implement stricter employee testing
and visitation restrictions within correctional facilities.21

Future research should also be conducted on the corol-
lary of when best to ease these restrictions.

Facility-level characteristics, such as cumulative cases,
vaccination rates, wastewater surveillance, and incarcer-
ated populations broken out by race and ethnicity or by
age, were not found to be predictive. This could be due in
part to facility clustering, in which the clusters have similar
facility-level features but the added noise in each feature
prevents strong predictive relationships from appearing. It
is also plausible that since policies were evenly implemen-
ted across facilities in Pennsylvania, the model did not
identify any facility-level or individual-level characteristics
as predictive of outbreaks, as has been the case in other
state prison systems.15

Our results are limited by the fact that the only test
sets that had a balance of days with an outbreak and
days without an outbreak were in the prevaccination
period; outbreaks were less common in the postvaccina-
tion period data that we had. With additional data post-
vaccination, it is possible there would be more diversity
in the test sets, as the sample size of the test set would be
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larger. Another way to increase the number of observa-
tions is to increase the size of the clusters. However, as
cluster size increases, applicability of the results to indi-
vidual facilities may diminish. That said, the recent rise
in cases and decrease in vaccine effectiveness among vac-
cinated populations with variants such as omicron22 may
mean our results may still be applicable as immunity
wanes and certainly for future pandemics without effec-
tive vaccines. This is more likely to be true of predicting
cases than deaths or hospitalizations, as newer variants
have been associated with lower disease severity.23

Beyond COVID-19, the approach outlined in this article
is applicable for determining the importance of predictive
features for other infectious disease outbreaks even when
few data are available. Our analysis shows that logistic
regression is an interpretable and effective machine learn-
ing approach for predicting infectious disease outbreaks
in a prison setting and that, for large-scale infectious dis-
ease outbreaks, it is important to consider community
spread as a potential predictive feature.

Other data limitations likely affect the conclusions of
this work. It is likely that there are inconsistent data col-
lection methods between facilities. For example, waste-
water testing occurred at different intervals for different
facilities, so data may have been collected nonuniformly
throughout the state. In addition, there could be inac-
curacies in the recorded data, such as overreporting,
underreporting, or reporting delays. Notably, few deaths
and hospitalizations were reported in the data.
Moreover, much of the staff COVID-19 data on incident
cases and vaccination were self-reported. Our methodolo-
gical approach also has some important limitations.
Logistic regression assumes that observations are indepen-
dent, which may not be true in our context as outbreaks
from one day could carry over into outbreaks on another
day. Similarly, logistic regression assumes no multicolli-
nearity among features, but increases in testing could lead
to increases in reported cases, for example. Other assump-
tions of logistic regression that are not as strong in our
context include no extreme outlier observations and a lin-
ear relationship between features and the logistic prediction
of whether an outbreak occurs. Given the dynamic nature
of the COVID-19 outbreak and the population demo-
graphics within the prison, it is possible that underlying dis-
tributions differ between test and training sets, which could
explain low AUC values in the test set. Finally, if the test
set is unbalanced, imbalance correction could lead to
biased predictions when used with logistic regression.24

This article attempts to understand what data can
help a prison system predict an impending COVID-19
outbreak. Our method, while not especially accurate

with the data we were able to obtain, could be useful
when there are sufficient data to train an accurate logis-
tic regression. Logistic regression is an ideal approach
given its interpretability and predictive ability even when
data are not abundant. Furthermore, despite limitations
in our sample size and especially the number of facilities,
our method provides insights into some predictors of an
impending COVID-19 outbreak and the relevance of test-
ing and also tracking community rates of infection. This is
valuable when correctional facilities must make budget-
constrained and labor-constrained decisions about data
collection and analysis. While autoregression models have
been used to predict COVID-19, our analysis suggests that
augmenting such models with community-level infection
data can improve predictive accuracy.

Existing public health structures do not adequately
facilitate collaboration between correctional facilities and
across other government and health care sectors that
enable the real-time analysis of data and predictive analy-
tics. Analysis of existing linkages between states’ depart-
ments of health and departments of corrections revealed
that only 9 states had a comprehensive working relation-
ship between corrections and health departments during
the peak of COVID-19.25 Because of high rates of churn
of individuals through correctional systems, higher trans-
mission dynamics, especially for respiratory infections
due to poor ventilation and older buildings, and organi-
zational challenges in large correctional systems that
require significant coordination between health and secu-
rity staff, prediction models that provide any opportunity
to mobilize limited resources in these settings allow cor-
rectional systems to respond to infection proactively,
before large outbreaks. In addition, prediction models
that use local facility and community data may provide
more flexibility in COVID-19 policies that are facility
specific and enable the opening (resumption of recrea-
tion, visitation, etc.) and closing of facilities, as opposed
to statewide correctional system policies.

Our analysis suggests that correctional facilities
should monitor and use data on community infection to
predict—and thus better respond to—outbreaks in their
facilities. These efforts should not be limited to COVID-
19 but should include any large-scale infectious disease
outbreak that may involve institution-community trans-
mission. This represents an opportunity for impactful
state government interagency collaboration and data
sharing. Fortifying correctional facilities with the ability
to monitor local community rates of infection and also
continue to test incarcerated people and staff can help
correctional facilities better prepare for future infectious
disease outbreaks.
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