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The recognition of brain nuclei is the basis for localizing brain functions. Traditional

histological research, represented by atlas illustration, achieves the goal of nucleus

boundary recognition by manual delineation, but it has become increasingly difficult

to extend this handmade method to delineating brain regions and nuclei from large

datasets acquired by the recently developed single-cell-resolution imaging techniques

for the whole brain. Here, we propose a method based on a closed cubic spline (CCS),

which can automatically segment the boundaries of nuclei that differ to a relatively high

degree in cell density from the surrounding areas and has been validated on model

images and Nissl-stained microimages of mouse brain. It may even be extended to the

segmentation of target outlines on MRI or CT images. The proposed method for the

automatic extraction of nucleus boundaries would greatly accelerate the illustration of

high-resolution brain atlases.
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INTRODUCTION

The brain consists of massive nuclei with different functions. In neuroscience research, the precise
recognition and delineation of nucleus boundaries is the crux of brain area identification and atlas
illustration.

The contemporary automatic recognition methods for nucleus boundaries are mainly based on
MR images (Wiegell et al., 2003; van der Lijn et al., 2008) and micro-optical images (McDonald,
1982; Geisler et al., 2003). In MR images and low-resolution histological images, the distribution
of gray level in a nucleus is homogenous, facilitating the application of many classical image-
segmentation techniques (Balafar et al., 2010). In contrast, nuclei on cytoarchitectural images at
single-cell resolution do not exhibit an even and continuous distribution of the gray level but,
rather, clusters of discrete recognizable neurons. Microscopic images clearly show that the cell
morphologies and cell densities of brain nuclei differ from each other, resulting in blurry borders
between nuclei and their neighboring areas (Gahr, 1997). The illustration of traditional histological
brain atlases, for instance, Brodmann’s human brain atlas (Brodmann, 1908), the mouse brain in
stereotaxic coordinates (Paxinos and Franklin, 2004) and the Allen Reference Atlas (Dong, 2008),
relies on the experience of anatomical experts (Brunjes et al., 2005), who draw the boundaries
of nuclei with smooth curves on a limited number of sections according to the morphology
and density differences of the imaged cells. These handmade atlases have been widely used in
neurobiological research. However, given the rise of whole-brain continuous imaging techniques
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with single-cell resolution (Li et al., 2010), the data volume
of sections from a single mouse brain has exceeded what
was acquired with traditional methods. As a result, it has
become unrealistic to manually segment the boundaries of
brain regions and nuclei. Thus, the development of method
for the automatic recognition and segmentation of entire
and continuous boundaries of nuclei on large, high-resolution
histological images is urgently needed.

Some efforts have been made for automatic parcellation of
brain regions and nuclei on single-cell-resolution histological
images. Xiang et al. segmented the abducens nucleus based on the
Gabor wavelet, which yielded discontinuous boundaries (Xiang
et al., 2004). Mesejo et al. segmented the pyramidal cell layer and
granular cell layer of the hippocampus formation (Mesejo et al.,
2012, 2013). However, their selected sections were thick, and the
cells of the two segmented structures overlapped one another,
resulting in a homogeneous distribution of the gray level. The
Otsu thresholding and Chan-Vese model applied in their work
were only suitable for the segmentation of these homogeneous
regions, not targets made up of isolated cells. Amunts et al.
automatically acquired the dividing lines between neighboring
brain regions in the cortex by extracting the curve features from
gray level index profiles on Nissl-stained images (Amunts et al.,
2013). Meyer et al. divided the anterior olfactory nucleus region
into several parts by statistically analyzing the cell distribution
(Meyer et al., 2006). However, they only manually delineated the
outline of brain structures and then automatically computed the
dividing lines among the subregions within; they did not directly
segment an entire closed outline of the brain regions and nuclei
from original cytoarchitectural images. Briefly, the methods
mentioned above all have some shortcomings in segmenting
continuous boundaries of nuclei consisting of isolated cell bodies.

In this paper, we propose a method to automatically segment
the outlines of nuclei whose cell densities differ to a relatively

FIGURE 1 | The workflow.

high degree relative to their surrounding areas. This method uses
a closed cubic spline (CCS) as its action object and guides the
automatic evolution of CCS in the whole image sequence based
on the features extracted from the surrounding images of the
CCS control points, and the entire closed outline of the target
nucleus on the whole image sequence was successfully acquired.
The proposed method was applied to nuclei with densely packed
cells, such as the mitral cell layer of the olfactory bulb, and nuclei
with low cell density but surrounded by areas of high cell density,
such as the molecular layer of the cerebellar lobe. This method
was also extended to the segmentation of non-nucleus targets.

METHOD

The whole workflow is shown as Figure 1. First, we manually
delineated the boundary of the target nucleus on the first image
of the given image sequence and extracted the feature points
of the boundary, which we used to construct a CCS that was
overlaid on the image next to the first one. Then, we traversed
each control point of the CCS and moved each to its new
position on the new image by calculating the image similarities
and maximizing the difference between the inner and outer sides
of each control point. After traversing all control points, we
generated a new boundary based on the control points at their
new positions. We repeated this process throughout the image
sequence. A detailed explanation of every step of our method
follows.

Manual Segmentation of the Initial
Boundary and Extraction of Control Points
The manual segmentation of the boundary of nucleus on the first
image of the sequence was implemented by the Segmentation
Editor module of Amira (FEI, Hillsboro, OR, USA). The
segmented boundary was saved as a label image, in which the gray
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value of the pixels inside the boundary was 255 and that of the
ones outside the boundary was 0.

Using the corner detection algorithms of Harris (Harris and
Stephens, 1988), Log (Lindeberg, 1998) and Gilles (Gilles, 1999),
we extracted the points that could describe the shape features
of the segmented boundary, which could then be used as CSS
control points.

CCS Encoding of the Initial Boundary
The CCS was a type of smooth and closed curve comprising n
control points and n segments. At each control point, the CCS
was continuous and differentiable (Press, 2007). The CCS was
deduced from the control point set according to Kershaw (1972).

The coordinates of any point on the ith segment of the CCS
could be interpolated by the following equation set depending on
variable t (t∈[0, 1]):

x(t) = bix1 + bix2t + bix3t
2 + bix4t

3 (1)

y(t) = biy1 + biy2t + biy3t
2 + biy4t

3 (2)

where bxj and byj (j = 1, 2, 3) are the parameters of the ith
segment of the CCS. When variable t was given a value 0 or 1,
the values of x and y corresponded to the coordinates of the start
or end point of the ith segment, respectively. Eight parameters
were needed to describe one segment, and thus, a total of 8n
parameters is required to describe the whole CCS. Note that
the expressions of x (t) and y (t) are symmetrical. We deduced
bx1−bx4 in Equation (1) as an example, which can be extended to
the deduction of a total of 4n parameters of the x coordinate of
CCS.

The CCS was denoted as C, and the start and end points of the
ith segment of C were marked as Pi−1 and Pi, respectively. We
denoted the control points of C to be P = {P1, P2, . . . , Pn}, and
thus, for the ith segment of C, we have















x(0) = bix1 = Pi−1(x)
x(1) = bix1 + bix2 + bix3 + bix4 = Pi(x)
dx(0)
dt

= bix2 = P′i−1(x)
dx(1)
dt

= bix2 + 2bix3 + 3bix4 = P′i(x)

(3)

where Pi−1 (x) and Pi (x), respectively, are the x coordinates of
Pi−1 and Pi, and P′i−1 (x) and P′i (x) are the first derivatives of the
x coordinates at Pi−1 (x) and Pi (x) with respect to t. According
to (3), we have















bix1 = Pi−1(x)
bix2 = P′i−1(x)
bix3 = 3Pi(x)− P′i(x)− 2P′i−1(x)− 3Pi−1(x)
bix4 = P′i(x)+ P′i−1(x)+ 2Pi−1(x)− 2Pi(x)

(4)

Given the continuous and differentiable characteristics of the
CCS at any control point, we have

d2P i(x− 0)

dt2
=

d2P i(x+ 0)

dt2
(5)

Substituting the second-derivative expression of the CCS into
Equation (5), we have

2bix3 + 6bix4 = 2bi+1
x3 (6)

Then, combining Equations (4) and (6) to eliminate parameter b,
we can acquire the equation set with respect to P and P′:















4P′1(x)+ P′2(x)+ P′n(x) = 3P2(x)− 3Pn(x)
P′i−1(x)+ 4P′i(x)+ P′i+1(x) = 3Pi+1(x)− 3Pi−1(x), i

= 2, 3, ..., n− 1
P′1(x)+ P′n−1(x)+ 4P′n(x) = 3P1(x)− 3Pn−1(x)

(7)

The above equations can then be rewritten as a matrix
multiplication expression, as shown below:

















4 1 0 ... 0 1
1 4 0
0 ... ...
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0 4 1
1 0 ... 0 1 4
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(8)

By solving the matrix Equation (8), we obtain P′i (x), where i =
1,2,. . . ,n. After substituting the values of P′i (x) into Equation (4),
we attain the 4n parameters for the x coordinate of the CCS. The
same procedure was used to acquire the 4n parameters for the y
coordinate.

Control Point Evolution of CCS
To iterate each control point of the CCS, at control point Pk, we
extracted the surrounding image Ikalong the normal direction vk
of Pk. The width and height were w and h, respectively, as shown
in Figure 2A. We then overlaid the CCS onto the next section
of the image sequence and extracted the surrounding image I′

k
of

Pk along its normal direction, as shown in Figure 2B. The width
of I′

k
was also w, whereas the height was the height of Ik with

a sliding range r. We let the point Pk slide along vk in I′
k
and

denoted the moving Pk as P
′
k
. We defined the distance of P′

k
and

the bottom edge of I′
k
as x. A sliding window Win, whose height

was h and width was w, was then constructed along the direction
of vk with P′

k
as its center. The value of x was required to be an

integer with pixel as the unit, and thus, there were only r possible
values of x.

As shown in Figure 2C, with a line through P′
k
, I′

k
can be

divided into an inner part and outer part, which are denoted
as Iinand Iout , respectively. The mean gray values of these two
parts are indicated as meanin and meanout , respectively. When
Pk moved to the position marked P′

k1 where |meanin −meanout|

was maximized, the value of x was denoted xd, indicating that
the difference between Iin and Iout was maximized. Then, we
calculated the similarities between Win and Ik given all possible
values of x. The measurements of similarity included the sum
the variance of the gray value, the covariance, the correlation
coefficient and the angle cosine. The values of x with maximal
similarity under the 4 criteria were recorded and sorted. The
median of the 4 values of x is denoted xs and was regarded as
the value of x at which Win and Ik exhibited the best match, as
shown in Figure 2D.

The value of x was determined by both xd and xs. We
constructed a minimum object function as indicated below,
where α and β were constant:

f = α (x− xs)
2 + β (x− xd)

2
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FIGURE 2 | Control point evolution. (A) The nth image of the sequence. The green curve is a segment of the computed CCS in the current image. Pk is the kth

control point of CCS, and vk is the normal vector at the point Pk . Centered on Pk , the black rectangle Ik is the surrounding image of Pk , which was extracted along vk ,

with width w and height h. (B) The n+1st image of the sequence. The green curve is the CCS segment of the nth image, and the blue curve is the evolved new CCS

segment, on which the control point Pkmoved to its new position along vk and is denoted P′
k
. The black rectangle I′

k
is the surrounding image of Pk , with width w and

the height h+ r. (C) I′
k
is divided by the moving point into two parts: Iin and Iout. When the difference in the mean gray values of Iin and Iout is maximized, the moving

point is labeled P′
k1, and its coordinate is xd . (D) Centered on the moving point, a sliding window Win is constructed. When the content of Win reaches maximal

similarity with Ik , the moving point is marked as P′
k2, and its coordinate is xs.

The value of x that minimized the object function f was

x =
α

α + β
xs +

β

α + β
xd

Therefore, x can be seen as a linear combination of xd and xs.
As α increased, xs weighed more, indicating that the value of
x was increasingly related to the similarity of the two images
surrounding the control point on neighboring sections; as β

increased, xd weighed more, and thus, x was more determined
by the difference between the inner and outer parts of the
surrounding image divided by the control point. According to
our experience, the values of α and β were both set to 0.5.

Subsequently, the point Pk moved to its new position, as
shown in Figure 2B. The calculation above was performed for
every control point of the CCS, giving the new positions of all
the control points.

Reconstruction of CCS from Evolved
Control Points
The method of constructing a new CCS from control points with
new coordinates was the same as described above. Note that if the
shape of a contour was complicated, the neighboring nodes of the
CCS might exchange their positions, causing intersections of the
CCS around these control points. To avoid these intersections,
we applied the procedures below:

(1) Calculate the distance between every control point and its
nth (n = 1, 2, . . . , m − 1, where m is the number of control
points of CCS) neighboring control points on the right
side;

(2) Define D as the index depth, T1 as the thresholding of the
nearest distance between control points, and any control
point together with any of its right-side neighbor as a control
point pair. Find all of the control point pairs with distances
less than T1 and differences between their index numbers
less than D. If the distance between the two points of a
control point pair was less than T1, remove one from the pair
and the points in between.

(3) Calculate the distance between the remaining control points
and insert new control points between the neighboring
control points with distances exceeding a manually assigned
maximal distance threshold T2.

The values of T1, T2 and D were set to 10, 20 and 4, respectively,
based on our experience.

Design of CCS Toolkit
We also developed a Matlab toolkit named CCSToolkit, which
can be downloaded from https://github.com/VBNProject/CCS-
Segmentation-Toolkit. This toolkit includes 22 functions that
implement the code necessary for our method and the common
operations on the CCS. The functions in the toolkit can be
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grouped into 3 categories: construction/decomposition of the
CCS, information extraction and CCS computation.

Construction Method of Model Data
To validate our method, we created several image sequences that
simulated nuclei formed by packed cells with randomly generated
particles. The process was as follows.

(1) In a limited space (200 × 200 × 200 voxels), we defined a
spherical area with radius 60 and center coordinate (100, 100,
100) as the target nucleus. The remaining area was defined as
background.

(2) We traversed every voxel in the created 3D space. For voxels
in the nucleus and background areas, we generated randomly
distributed particles with radii in the range [2, 3] and gray level
values in the range [140, 255] by different probabilities Po and
Pb, respectively, to simulate different cell densities within and
outside the target nucleus.

(3) We stored the created 3D space as an image sequence.

Evaluation Method
We evaluated the results obtained using our method on model
images using a supervised evaluation strategy. The chosen
evaluation parameters were the Dice coefficient (DC) (Dice,
1945) and the Hausdorff distance (Huttenlocher et al., 1993).
NHD is used for measuring the similarities between the
segmentation results and real boundaries, while DC is used
for calculating the overlapping of segmented area and the area
surrounded by real boundaries.

In any given image from the model image sequence, we
defined the real area occupied by the target nucleus as Ar , and
the calculated area as Ac; thus, the DC was defined as follows:

κ =
2
∣

∣Ar
⋂

Ac

∣

∣

|Ar| + |Ac|

Here, for convenience, the area was approximated as the pixel
number, and Ar was defined as the number of pixels occupied
by the nucleus area. Considering that the randomly generated
particles belonging to the nucleus area could be on the boundary
of the nucleus, we adopted the convention that the outside area
of these particles was included in Ar .

We then defined Sr to be the real boundary of the nucleus
area and sr to be any pixel that belonged to Sr . Thus, the shortest
distance from any pixel p to Sr was

d
(

p, Sr
)

= min
sr∈Sr

∥

∥p− sr
∥

∥

The Hausdorff distance was defined as

HD (Sr, Sc) = max

{

max
sr∈Sr

d (sr, Sc) ,max
sc∈Sc

d (sc, Sr)

}

where Sc was defined as the calculated boundary of the nucleus
and sc as any pixel that belonged to Sc.

To avoid the influence of the target’s area on the value of the
Hausdorff distance, we normalized the Hausdorff distance by the
real perimeter of the target area as below:

NHD (Sr, Sc) =
HD (Sr, Sc)

Sr

RESULTS

We validated our method using the 4 created models and applied
the DC and Normalized Hausdorff distance (NHD) to evaluate
the precision of our method. Next, we tested our method on
Nissl-stained mouse brain images acquired by Micro-Optical
Sectioning Tomography system (MOST) (Li et al., 2010). Finally,
we applied our method to the segmentation of the outline of a
mouse brain using the coronal sections acquired by MRI and CT.

Model Testing
Using different Po and Pb values, we created 4 sets of model image
data, which are shown in the 1st-4th rows in Figure 3. In model
1, the probability of the occurrence of particles in the target area
was much higher than in the background area; thus, the particles
in the target area were densely packed, and the boundary of the
target area was the most unambiguous of all the tested models.
In model 2, the probability of the occurrence of particles in the
background area was higher than that in model 1, which could
disturb the decision making about the boundary of the target
area. In model 3, the possibility of particles occurring in the
target area was lower than that in model 1, resulting in a blurry
boundary around the target area. Inmodel 4, the possibility of the
occurrence of particles in the background area was higher than
that in model 3, and this model had the blurriest boundaries.

The values of the parameters w, h and r of model 1 and
model 2 were set to 30, 20, and 20, respectively. For model 3
and model 4, the aforementioned parameters were set to 80,
40, and 20, respectively, to reduce the effects of the particles
of the background area. Figure 3 shows that our method could
extract the boundaries of nuclei in areas with different nucleus-
area densities and background densities. It could also be seen
that some particles next to the computed boundaries were not
included. These particles were firstly appeared isolatedly around
the target nucleus. When these particles were starting to contact
with the border of nucleus, our method would not include
them into the segmented boundary immediately, until more
particles appeared around these particles in the next section of the
image sequence. This strategy can reduce the influence of noises
effectively.

We calculated the boundaries of the nucleus from the 41st
to the 159th images of the whole model dataset and compared
the results with the real boundaries according to NHD and DC.
The statistical results are shown in Figure 4. In the first and last
images of the sequence, in which the target nucleus appeared and
vanished, because the area was small, the segmentation result
could have been more easily influenced by particles outside the
nucleus, leading to a higher NHD value and a lower DC value and
implying a higher bias of the calculation results obtained using
the real boundaries. However, the DC values of all the images
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FIGURE 3 | Results of the model data. The 1st–4th rows show the computational results obtained using 4 model datasets. The 1st column is the 3D

reconstruction of the image sequence of the model data. Blue indicates the “cells” in the background area, whereas green indicates the “cells” in the nucleus area. n1

to n3 are 3 sections chosen from the image sequences that correspond to the 2nd–4th columns. The blue curves in the 2nd–4th columns are the computed CCS of

the outline of the “nuclei” in the model data. The 5th row shows the 3D reconstruction of the computation results. The (Po, Pb) parameters of the 4 models are (2%,

0.001%), (2%, 0.1%), (0.7%, 0.05%), and (0.7%, 0.1%), respectively.

in the 4 models exceeded 0.65, and the NHD values were lower
than 0.5. In different models, as the content of the model image
became more complicated and the particle density of the nucleus
area decreased, the DC value decreased gradually, and the NHD
value increased slowly, which corresponded to a slow decrease
in the segmentation precision. The mean value and standard
deviation of the NHD and DC values are listed in the first and
second column of Table 1. From the table, we can see that the
average DC of eachmodel image exceeded 0.90 and that the NHD
was lower than 0.15. We also evaluated the 3D reconstruction
results of 4 models with DC. The results are also shown in the
third column of Table 1. We could see that all the DC values of
the 4 models are above 0.90, which shows a good match between
our segmentation results and the real boundaries.

TABLE 1 | Statistical analysis of the results obtained from model images.

NHD DC DC (3D)

Model 1 0.052 ± 0.047 0.972 ± 0.027 0.981

Model 2 0.105 ± 0.057 0.961 ± 0.032 0.972

Model 3 0.130 ± 0.068 0.907 ± 0.061 0.927

Model 4 0.133 ± 0.073 0.900 ± 0.067 0.926

Test on Real Cytoarchitectural Images
To validate our method for single-cell-resolution image
sequences, we selected a 3D mouse whole-brain dataset with
0.35-µm horizontal resolution and 1-µm axial resolution
acquired by the MOST system and saved as consecutive coronal

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2016 | Volume 10 | Article 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Feng et al. Automatic Segmentation via CCS Toolkit

sections. The dataset was acquired from an 8-week-old C57BL/6
male mouse (Jackson Laboratory). All of the animal experiments
followed procedures approved by the Institutional Animal Ethics
Committee of Huazhong University of Science and Technology.

We selected the image sequence containing the granular layer
of Lobule II (CENT2gr) to demonstrate the performance of
our method in a typically encountered situation. The cells in
CENT2gr are compact, whereas the cells in the surrounding area
are sparse, which was similar to model 3. Based on our method,
we correctly extracted the boundaries of this selected nucleus in
100 consecutive coronal sections (Figures 5A1–A5).

We then used the mitral layer of the main olfactory bulb
(MOBmi) to evaluate our method in a more complicated
situation. The MOBmi is a very thin circular area with relatively
high cell density. The outside and inside of the MOBmi are
the outer plexiform layer (MOBopl) and inner plexiform layer
(MOBipl), respectively. The cell densities of these two nuclei
are lower than those of MOBmi but not drastically so. We
evaluated our method on a series of 100 coronal sections to
determine the border between MOBmi and MOBopl, as shown
in Figures 5B1–B5.

Our method can also be applied to extract the boundaries
of nuclei with low cell density that are surrounded by areas
with high cell density. On coronal sections of mouse brain,
the molecular layer of Lobule II (CENT2mo) and Lobule III
(CENT3mo) of the cerebellum have low cell density and are
surrounded by the granular layers of Lobule II (CENT2gr)
and Lobule III (CENT3gr). Using our method, we extracted
the boundary of CENT2mo and CENT3mo as a whole
(Figures 5C1–C5).

Finally, this method could even be applied to the segmentation
of traditional non-nucleus objects with an even distribution of
gray level values. We used the outline of the mouse brain in
coronal sections for demonstration. We manually segmented
the outline of the mouse brain in the first section and then
calculated the outline of the mouse brain in the subsequent
sections (Figures 5D1–D5).

As shown in Figure 5, the segmentation results were more or
less influenced by the existence of blood vessels with high gray

level values that traversed through the boundaries of the nuclei
in Nissl-stained sections. Figures 5G,H show the blood vessels at
the border of the nucleus that then stretched to press the border
toward the inside. Before a blood vessel had vanished, the border
did not immediately retract, as shown in Figure 5E. When the
blood vessel disappeared, the segmented boundary converged to
the real boundary of the nucleus, as shown in Figure 5F. Note
that our method was unable to fit the sharp hollows of the target’s
boundary very well due to the smoothness and continuousness of
CCS in math, as shown in Figure 5E. Considering the different
sizes of the aforementioned target nuclei, the computational
parameters, namely, width (w), height (h) and sliding range (r),
were set to different values (Table 2).

The Outline Segmentation of MRI/CT
Mouse Brain Images
Our method can be applied to MRI and CT data in addition
to cytoarchitectural images. We used a C57BL/6 mouse brain
MRI dataset (Bruker Biospect, 7.0 T/20 cm, 300 MHz) with a
resolution of 60µm/pixel and dimensions of 200 × 200 × 320.
Fifty coronal sections were chosen for testing, and the results are
shown in the first row of Figure 6.

We then selected a C57BL/6 mouse brain CT dataset
(UltraBright, Oxford Instruments; PaxScan2520V, Varian
Medical Systems. 50 kV, 40W) with a resolution of 31.8µm/pixel
and dimensions of 800× 800× 800; 50 sections were chosen for
our test. Note that the gray level range of the acquired original
CT data was -0.402 to 0.136. We extended this range to 0–255

TABLE 2 | Computational parameters used to analyze the

cytoarchitectural image data.

Width (pixel) Height (pixel) Range (pixel)

CENT2gr 100 200 60

CENT2mo 100 200 60

MOBmi 100 200 10

outline 50 25 10

FIGURE 4 | Quantitative analysis of the results obtained from model images. The NHD and DC of the results obtained from the 4 model image datasets. The

horizontal axis is the number of images in the sequence. The vertical axis in (A) is the NHD value, whereas in (B), it is the DC value.
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FIGURE 5 | Results from cytoarchitectural images. The results obtained by applying our method to 4 cytoarchitectural image datasets. (A1–D5) The 1st–4th

rows present the contour evolution processes of CENT2gr, CENT2/3mo, MOBmi and the whole mouse brain. (E–I) The 5th row gives the computational details. The

red curves are the computed CCS. n1 represents the 20th section of the image sequence of every dataset. The image to the right of each column is the 20th image

after it.

for convenience. The results are shown in the second row of
Figure 6.

The parameters w, h and r used to analyze the MRI and CT
data were set to 10, 5 and 3, respectively.

DISCUSSION

We developed a method to extract the boundaries of nuclei
with relatively high cell density in an image sequence with CCS,
which can also be used for the segmentation of nuclei with low
cell density that are surrounded by areas with high cell density.
Our method is also able to extract the boundaries of traditional
non-nucleus objects.

Compared to our method, the classical segmentation
algorithms used in the image segmentation field are difficult to
apply to the segmentation of nuclei consisting of scattered cell
bodies. The traditional thresholding method tends to extract
the boundaries of isolated cells but not the whole boundary
of the nucleus. The region-growing method is suitable for
the segmentation of target areas with homogenous gray level
distributions. The snake algorithm is easily disturbed by cells

near the boundary, whereas the level set method tends to cause
the boundary to converge onto isolated cells.

In the past, the boundaries of nuclei in high-resolution
cytoarchitectural images were manually delineated based on
experts’ experience. With the emergence of high-resolution data-
acquisition techniques, such as MOST, it has become unrealistic
to draw lines on tens of thousands of sections by hand. Our
method can automatically segment the boundaries of nuclei
that differ in cell density to a high degree relative to their
surrounding area, thereby partially automating the delineation of
nucleus boundaries in high-resolution cytoarchitectural images
and ensuring future application in the illustration of high-
resolution brain atlases.

Our method has some limitations. In the mouse brain, many
nuclei have complicated morphologies, and their boundaries
occasionally split and merge along the coronal direction,
which cannot be handled by our method. Our next goal is
to extract nuclei with complicated morphologies and solve
this problem by determining a series of conditions to detect
the occurrence of the splitting and merging of nucleus
boundaries.
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FIGURE 6 | Segmentation of MRI and CT data. The results obtained by applying our method to MRI and CT data. (A1–A5) The 1st row shows the contour

evolution process in MR images. (B1–B5) The 2nd row shows the process using CT data. The red curves are the computed CCS of the outline of the target area. n1
represents the 10th section of the image sequence of every dataset. The image to the right of each column is the 10th image after it.
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