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Abstract: The new advances in multiple types of devices and machine learning models provide
opportunities for practical automatic computer-aided diagnosis (CAD) systems for ECG classification
methods to be practicable in an actual clinical environment. This imposes the requirements for the
ECG arrhythmia classification methods that are inter-patient. We aim in this paper to design and
investigate an automatic classification system using a new comprehensive ECG database inter-patient
paradigm separation to improve the minority arrhythmical classes detection without performing
any features extraction. We investigated four supervised machine learning models: support vector
machine (SVM), k-nearest neighbors (KNN), Random Forest (RF), and the ensemble of these three
methods. We test the performance of these techniques in classifying: Normal beat (NOR), Left Bundle
Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial Contraction
(PAC), and Premature Ventricular Contraction (PVC), using inter-patient real ECG records from MIT-
DB after segmentation and normalization of the data, and measuring four metrics: accuracy, precision,
recall, and f1-score. The experimental results emphasized that with applying no complicated data
pre-processing or feature engineering methods, the SVM classifier outperforms the other methods
using our proposed inter-patient paradigm, in terms of all metrics used in experiments, achieving
an accuracy of 0.83 and in terms of computational cost, which remains a very important factor in
implementing classification models for ECG arrhythmia. This method is more realistic in a clinical
environment, where varieties of ECG signals are collected from different patients.

Keywords: electrocardiogram; ECG; classification; support vector machines (SVMs); k-nearest
neighbors (kNN); Random Forest (RF); voting ensemble; inter-patient paradigm

1. Introduction

One of the most fundamental vital organs is the heart. It’s the engine that pumps blood
to many networks of vessels. The heart moves constantly, beating 100,000 times a day by
providing oxygen and nutrients while clearing away harmful waste matter. The beating of
the heart produces electrical actions measured on the body surface by an electrocardiogram
recording (ECG). Skin electrodes record the electrical activity, exposing how each chamber
operates in the form of PQRST waves, as illustrated in Figure 1. Therefore, the morphology
and heart rate variability (HRV) extracted from the ECG signal reveal the cardiac behavior.
The heart behavior analysis expressed by the electrocardiogram signal provides specific
information about the heart. Thus, if the ECG is irregular or faster, or slower than normal,
that means cardiac arrhythmia. Arrhythmia can cause several types of consequences; an
imminent threat to a patient’s life (e.g., ventricular fibrillation and tachycardia), long-term
threats, or even more causing death, the thing that made it the most common leading cause
of deaths in the world.
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Figure 1. PQRST waves.

Normal cardiac rhythm is occasionally interrupted by a beat that occurs before the
regular time of the next sinus beat, and this is described as a premature beat or premature
contraction (the terms “ectopic beat” and “extrasystole” are frequently used as synonyms).
Originally, the sinus beats start from the SA node, unlike the premature beat, which is
preceded by an ectopic focus that may be localized in any section of the heart other than
the SA node [1]. Thus, the premature beat is classified into two types depending on
the location of the focus; Premature Atrial Contraction (PAC) (also known as an atrial
premature beat (APB)) if its origin is above the ventricles, i.e., in the atria or the AV node,
or Premature Ventricular Contraction (PVC) (also known as a ventricular premature beat
(VPB)) if its origin is in the ventricles. We can recognize the PAC and PVC based on specific
characteristics and different circumstances. The usual traditional variety of PAC is linked
with an abnormal P wave morphology and a QRS complex morphology matching that of a
normal sinus beat, but for the associated compensatory pause; the interval between the two
sinus beats that enclose the PAC is less than the length of two normal RR intervals. Unlike
the PAC, the presence of a PVC almost always prevents the occurrence of the next sinus
beat. Although the SA node discharges on schedule, the impulse cannot propagate to the
ventricles because the premature beat has made the tissue refractory. The pause that results
between the PVC and the next sinus beat is called the compensatory pause. But the problem
with the PVC is that it may originate from any area beyond the point where the common
bundle has branched into the left and right bundle branches. And since the electrical
impulse of the ventricular ectopic focus does not follow the normal conduction pathways,
as a result, the produced QRS complex is abnormally prolonged and has a morphology that
deviates considerably from that of a sinus beat (it is often much larger and bizarre-looking).
In most cases where the PACs are identified by premature onset and a deformed p wave,
it shows the origin of a mostly right atrial “focus” distant from the sinus node [1]. In an
aberration of early PACs, the right bundle-branch block is more common than the left
bundle-branch block. If the PAC occurs quite early, it may be entirely AV blocked [2]. In
these cases, a false diagnosis of the sinuatrial block is sometimes made. If a PAC falls in
the probably vulnerable phase of the re-polarization of the preceding atrial beat (“p on
Ta”), it may produce atrial fibrillation. Atrial bigeminy is rare; salvos of PACs are rarely
observed. In contrast to short episodes of atrial tachycardia, the rhythm is irregular and
can lead to diagnostic difficulties. Premature Atrial Contraction (PAC) is less frequent than
premature ventricular contractions (PVC) but much more common than super-ventricular
premature beats occurring in the atrioventricular (AV) junction. Usually, PACs are not
linked with heart disease. However, frequent PACs could be an early symptom of heart
failure and may precede atrial fibrillation [3]. More than 80% of deaths in patients with
heart failure identify a cause related to cardiovascular disease [4]. In up to 64% of healthy
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young individuals, some PACs are discovered in an ambulatory electrocardiogram (Holter
ECG), and in most samples without symptoms [2]. For the Bundle Branch Block, it occurs
when the left/right bundle branch cannot transmit the impulse fast enough. Therefore,
the QRS duration is prolonged [3]. Many myocardial diseases are associated with bundle
branch block. The prognosis of bundle branch block indicates the underlying myocardial
disease and is therefore variable. Mass electrocardiographic surveys show that many
apparently healthy individuals have bundle branch block, [5] and in most people, bundle
branch block doesn’t cause symptoms. These arrhythmias in the ECG waveform are a
sign of cardiovascular complications and are more common in people with underlying
heart disease. In terms of diagnosis, it can be detected during a physical examination and
confirmed by an electrocardiogram (ECG) recording. But sometimes, doctors must use a
Holter monitor to reveal the severity of these arrhythmias, and in some cases, stress tests to
perform the right diagnosis and treatment. The hand-operated analysis of ECG signals,
especially a Holter recording of three leads, is difficult and time-consuming as it can be
a form of 24 h or more of normal daily activities of the patient’s ECG recording. Thus, it
requires specialists trained to identify and categorize different waveform morphology in
the signal, which remains a hard task, especially for these arrhythmias revealed above, as
they are nearly related to each other. A computer-aided diagnosis (CAD) for monitoring
cardiac health allows cardiologists diagnostic aid and improves medical decision-making.
A large amount of research has been devoted to automated systems for biomedical ECG
signal interpretation for early-stage detection of cardiac arrhythmias.

Various types of techniques have been investigated and analyzed for this purpose
and other purposes such as decision trees [6], random forest (RF) [7,8], k-nearest neighbors
(KNN) [9,10], hidden Markov models [11,12], hyper-box classifiers [13], optimum-path
forest [14], conditional random fields [15], besides other methods such as [16–21].

Most papers in the literature use the intra-patient paradigm, which is mainly based
on beat types. In this way, the ECG recording belonging to the same person can appear in
both subgroups (training and testing), and this can lead to a result bias, which makes the
classifier produce overly optimistic results [22]. Conforming to the clinical environment,
which means real-world clinical practice, the training and test set should contain heartbeats
from diverse individuals, and this refers to the inter-patient paradigm. The well-known
inter-patient paradigm for ECG beat classification was proposed by [23]. The authors
suggested separating the patients into two groups with particular patients, one for training
and the other for testing, and the classes employed conformed to the Advancement of
Medical Instrumentation (AAMI) standard. They put their method to the test by using
extracted features and prior knowledge of ECG morphology; the results were encouraging,
but there was still room for improvement. This inter-patient paradigm has been used in
several papers [24–27]. For the non-AAMI standard classes, there are a few papers that
worked and used inter-patient paradigms for classes such as Normal Beat (NOR), Left
Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial
Contraction (PAC), and Premature Ventricular Contraction (PVC) [22,28]. For instance,
ref. [28] proposed a combination of three classifiers using the majority vote approach to
distinguish three classes, namely Normal, Left Bundle Branch Block Beat (LBBB), and Right
Bundle Branch Block Beat (RBBB), and used the inter-patient separation presented by [23].
In their approach, they used a weighted LDA classifier to define the classes NOR and
RBBB, a weighted SVM classifier to implement LBBB and NOR, and a minimum distance
classifier (MDC) to implement LBBB and NOR. The outcomes were encouraging for each
approach, but the results needed improvement when classifying all the classes at once.

However, we believe that there is a better technique to divide patients for an inter-
patient paradigm, which would enhance classification results for all classes, particularly
those with a small data set. In this work, we introduced a new patient separation approach
and compared our results to those of [23].

Several models of machine learning are investigated in the literature for ECG classifica-
tion. For instance, ref. [29] proposed a classification method using a different set of features,
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such as empirical and variational mode decomposition and Decision Tree Algorithm, as
well as in [8] where the authors extracted different features from the time and frequency
domains and used Random Forest as a classifier. These techniques provide promising
results, but they cause an interesting computational cost. Authors in [15] suggested the
use of weighted Conditional Random Fields for the classification of arrhythmias and com-
pared it with support vector machine (SVM) and LDs. The analysis revealed that the
introduced approach gets promising results for the minority arrhythmical classes (SVEB
e VEB). In [30] authors used a classifier based on KNN and declared favorable results,
though the computational cost was not mentioned. [31] presented a k-nearest neighbor
with two types of heartbeat features. [32] presented an SVM classifier with a proposed
‘generalized discrimination analysis based feature selection’ (GDAFS) using an extracted
heart rate variability (HRV) from an ECG time series, taking R-to-R periods from each two
continuous R points.

In view of the foregoing, we aim in this paper to design and investigate an automatic
classification system using a new comprehensive ECG database inter-patient paradigm
separation to improve the minority arrhythmical classes detection without performing any
feature extraction. We investigated four supervised machine learning models: support
vector machine (SVM), k-nearest neighbors (KNN), Random Forest (RF), and the ensemble
of these three methods. We test the performance of these techniques in classifying: Normal
beat (NOR), Left Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB),
Premature Atrial Contraction (PAC), and Premature Ventricular Contraction (PVC), using
inter-patient real ECG records from MIT-DB after segmentation and normalization of
the data, and measuring four metrics: accuracy, precision, recall, and f1-score. Figure 2
illustrates a summary of the overall procedures used in this paper.

The rest of this paper is organized as follows: In the next section, we represent the
methods. Section 3, describes the results, and a detailed discussion of these results is spread
in Section 4. To finish, we conclude the paper in Section 5.

Figure 2. Overall procedures in ECG arrhythmia classification based on proposed models.

2. Machine Learning Models
2.1. Support Vector Machines

Support vector machine (SVM) is a well-known classification technique in supervised
machine learning [33–35]. Practically, the SVM technique performs a classification task by
constructing a separating hyper-plane in n-dimensional space (n is the number of features
used as inputs) that separates different class labels by maximizing the geometric margin
between the input data classes mapped in a higher-dimensional space and minimizing
the empirical classification error [36,37]. SVM depends in all this classification process on
the kernel functions [38], either as a linear or nonlinear classifier according to the type
of its kernel function. A linear kernel function makes the SVM a linear classifier. On the
other hand, the polynomial and sigmoid kernels make the SVM a non-linear classifier.
However, the selection of a good kernel function remains a challenging task. We suppose
a training set that consists of N samples (yj,xj), j = 1, ..., N, where xj ∈ IRn indicates
the n-dimensional feature vector of the jth example and yj ∈ IR signifies the matching
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class label and yj ∈ ±1. A decision function g(x) learned from the training set makes a
representation of the optimal hyper-plane that predicts the class label in the subsequent
tests. By using the kernel, the decision function is formulated as follow [39,40]:

g(x) = sign

(
∑

i∈SVs

αiyiK(x, xi) + b

)
(1)

where α is the Lagrange multiplier for each training data set and K(xj, x) is the kernel
function that maps the data into higher dimensional space and is defined as in the case of
the polynomial Kernel [39]:

K(x, xi) = ∑(x, xi)
d (2)

where d is the degree of the polynomial function.
Essentially, the SVM is a binary classification technique. In order to be extended for a

multi-classification task, two techniques are commonly used to make it possible, and these
methods are one-versus-one (OVO), one-versus-rest (OVR). In the literature, SVM is one of
the most popular classifiers used for other applications in biology [41], specifically for ECG
arrhythmia classification [33,42–46].

2.2. k-Nearest Neighbors

K-Nearest Neighbors (KNN) is a common supervised machine learning technique
and is considered the simplest technique used mostly for classification tasks. KNN is also
known as a non-parametric lazy algorithm because it does not use any model to fit, it is only
based on memory. Practically, the KNN classifies feature vectors according to the labels
of the closest training samples in the feature space. The k-nearest neighbors are collected
by calculating the distance (such as Hamming, Euclidean, or Minkowski distance defined
in Equation (3)) between an unknown feature vector or new sample and all the vectors
in the training set. The unknown feature vector is assigned then to the class to which the
closest k samples mostly belong with the help of the votes got from the neighbors [9,47].
The class with the most votes is considered as the prediction. The KNN classifiers require
two parameters: the value K and the threshold value. The K value shows the number of
nearby neighbors, and the threshold value is used for the evaluation of unusual neighbors.

D(X, Y) =

(
n

∑
i=1
|xi − yi|p

) 1
p

(3)

where p is the order and X = (x1, x2, ..., xn), Y = (y1, y2, ...yn) ∈ Rn.
The KNN has been widely used and employed in some recent ECG classification

studies [20,48–51].

2.3. Random Forest

Random forest (RF) is another famous supervised machine learning technique, which
is primarily an ensemble of decision trees to train and predict outcomes, and was proposed
first by [52]. The RF is a parametric algorithm regarding the number of trees in the forest
and is also a stochastic method because of its two origins of randomness: random attribute
sub-set selection and bootstrap data sampling. This randomness helps to avoid over-
fitting during the training process. Essentially, the constructed model depends on several
parameters. The most important ones are the number of trees, the maximum depth, and
the maximum split. The decision trees pick their splitting properties from a random subset
of k characteristics at each internal node. The best split is taken within these randomly
chosen attributes, and it builds the trees without trimming. RF is universally used in
many classification challenges, particularly in areas with larger numbers of attributes and
situations, because of its high-speed [7,8,20,53].
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2.4. Performance Evaluation Measures

There are various metric performance measures to evaluate the classification results.
In the literature, four metrics mostly used are [32]:

• Accuracy: which can be described as the ratio of exact classification of the total classi-
fied outcomes.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision: also known as positive predictivity, is the ratio of the actual positives within
the total number of positively predicted samples and is described as:

Precision =
TP

TP + FP
(5)

• Recall: which is also known as sensitivity, is the percentage of positively predicted
samples to the total amount of actually positive samples and is defined as:

Recall =
TP

TP + FN
(6)

• F1-score: is the consonant mean of precision and recall and is described as:

F1-score = 2× Precision× Recall
Precision + Recall

(7)

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,
and false negatives, respectively.

All the experiments were run on a laptop equipped with an Intel Core i3 processor
and 4 GB of RAM.

3. Experimental Results
3.1. Data Preparation

To compare the proposed methods in this paper, we used real ECG signals from the
MIT-BIH Arrhythmia Database (MITDB) [54]. The MIT-BIH Arrhythmia Database contains
48 half-hours of data. Each record comprises two-channel ambulatory ECG recordings
from 47 subjects. The data is digitized at 360 samples per second per channel. The first
lead is a changed limb lead II (MLII) for 45 records and a changed lead V5 for the rest. The
second lead is the pericardial lead and was conducted as V1 for 40 recordings and V2, V4,
or V5 for the others. The original annotation of this data set contains 16 classes of rhythms.
The classical method of creating test data is to divide our data into two subsets: the training
data set and the test data set. With ECG heartbeat classification, two data separation
paradigms are usually used: intra-and inter-patient paradigms. The intra-patient paradigm
type divides the data based on the beat type. One of the main weaknesses of this system is
that it results in an overoptimistic estimate of the actual classifier performance, because
the heartbeats from the same patient can appear in both subsets, the training and test set.
The robust split and more realistic to real-world situations is the use of the inter-patient
paradigm; here, the records used to train the model are dissimilar to the records used to
evaluate it. This ensures that beats from the same patient do not exist in the train and
test data sets. It further considers the inter-individual differences and therefore gives
non-biased estimates of the classification performance.

3.2. New Separation Scheme

In our experiment, we proposed a new separation approach of the patients for an
inter-patient paradigm that enhances the classification results for all classes, particularly
those with a small data set, which we define as minority. For this purpose, we studied the
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records and classes in all the records of each patient to ensure the best separation of the
patients, taking into consideration that:

• In the inter-patient separation, we must ensure that each patient’s record can only be
found in the training or test set. which means each patient’s record is assigned to only
one group. In addition, records 201 and 202 belong to the same patient. These two
records must be allocated to the same group.

• All the classes have a fair amount of data in each group without affecting the distribu-
tion of the patients.

• The five categories, NOR, LBBB, RBBB, PAC, and PVC, should have approximately
the same number of samples, as much as possible, in the training and test sets.

In the inter-patient paradigm separation we proposed, the patients are divided into
two data groups; each group contains twenty-two records, as the number of patients in
each group was proposed in [23], but the separation of the patients is different, it was
chosen carefully to maintain the best training of the model on all the features needed for
each class to be well detected. We also took into consideration that the data used for the
training contains, as possible, more samples of each class than the test set for the model to
learn all the features. Both data sets contain normal heartbeats and a mixture of routine and
complex arrhythmia recordings. The form of the data separation is described in Table 1.

Table 1. heartbeat types with the number of samples of, group 1 (G1) and group 2 (G2) from the
MIT-BIH.

Data Set Heart Beat Type NOR LBBB RBBB PAC PVC

G1 Number of total records 37,018 3949 5608 430 3485
G2 Number of total records 37,528 4126 1651 2116 3418

The first data (G1) is considered as the train data set to train the models, it contains
data from recordings: [100, 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 203, 205,
207, 208, 212, 215, 220, 223 and 230]. The second data set (G2) was separated into two sets:
20% for a validation set and 80% for the test set, contain data from recordings: [103, 105,
111, 113, 117,121, 123, 200, 201, 202, 209, 210, 213, 214, 219, 221, 222, 228, 231, 232, 233 and
234]. It is worth noting that Records [102, 104, 107, and 217] are excluded from all the data.
We used the validation to validate the model during the experiments, and the test set for
the final performance evaluation of the models as described in Figure 3.

Figure 3. Data separation.

3.3. Data Pre-Processing
3.3.1. Normalization

We used the first lead of each record from all the data sets and performed normaliza-
tion of the ECG signal into 0 and 1 using the min-max normalization. This method changes
the value of the min limit (a) and max limit (b) on the amplitude of a signal to the desired
range with a guarantee of no changing of the pattern or shape of the signal features. In this
study, the data was acquired in the pre-process with the min limit (0) and max limit (1),
respectively. The mathematical function of the normalization with min-max normalization
is as follows:

x′′ ′ = a +
(x− xmin)(b− a)

xmax − xmin
(8)
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where x′′ ′ is the normalized signal, xmax and xmin are the maximum and minimum values
of the data set, respectively, a and b are the min limit and max limit values.

After the normalization process, we denoised the signal using a low-pass Butter-worth
digital filter with a cutoff frequency of 0.25 and a filter order of 3 to remove the noise.

3.3.2. Segmentation

After filtering the signal, we performed a sampling of 0.66 s segment for each beat,
which means 236 samples in each segment Figure 4, using the annotation data available in
the data set for R-peak positions of each beat. The segment’s section is divided into two
intervals of t = 0.33 s before and after the annotation position in the signal. From all the
data, we used only 5 specific known annotations, from all the labels which are: Normal Beat
(NOR), Left Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB),
Premature Atrial Contraction (PAC), and Premature Ventricular Contraction (PVC) as
shown in Figure 4. To maintain the fluctuations in the data and yield a better insight of
the signal features, we removed a linear trend from the resulting data by calculating the
least-squares regression line to estimate the growth rate r. Then subtract the differences (i.e.,
the deviations from the least-squares fit line) from the data. This method enables the model
to focus more on the class features during the training. The final results are demonstrated
in Figure 4.

(a)

(b) (c)

Figure 4. Cont.
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(d) (e)

Figure 4. Illustration of different arrhythmias after pre-processing stage including: (a) Normal
Sinus Rhythm, (b) Left Bundle Branch Block, (c) Right Bundle Branch Block, (d) Premature Atrial
Contraction, (e) Premature Ventricular Contraction.

3.4. Hyper-Parameters Selection

There are several parameter keys in each model of machine learning to be determined,
called Hyper-parameters. The Hyper-parameters help to control the behavior of machine
learning algorithms in a way of finding the right balance between bias and variance when
optimizing for performance. But there are no fast rules that guarantee the best performance
on certain data sets. The classical way to discover the parameters of the model that can
achieve the most important prediction results is to perform different varieties of hyper-
parameters on each model, and this process is time-consuming. In this paper, we performed
a grid search on each model by providing a combination of parameter grids. Table 2 shows
the range grid of the hyper-parameters optimized in our experiment.

Table 2. Optimized Hyper-parameters for each model.

Models Range of Grid

SVM kernel = [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’], C = [ 10, 100, 1000], degree = [2, 3, 4]

kNN
metric = [‘euclidean’, ‘manhattan’, ‘minkowski’], n-neighbors =

[1:21]interval:2, weights = [‘uniform’, ‘distance’]

RF
n-estimators = [100, 200, 400, 800, 1000], criterion = [‘gini’, ‘entropy’],

max-depth = [5, 15, 25], min-samples-split = [5, 10, 15, 100]

For the hyper-parameter finding, we used the train set to train the models, and the
validation set is considered a test set to validate the models’ performance. The halving grid
search algorithm fits the parameters grid on the training set and evaluates its performance
on the validation set using successive halving. The successive halving is an iterative
selection process where all candidates (the parameter combinations) are evaluated with
a few resources at the first iteration. Only some of these candidates are chosen for the
next iteration, etc. Thus, only a subset of candidates lasts until the last iteration, which
means that is consistently rated among the top-scoring candidates across all iterations.
The average of the best-performing model is kept and exposed as the best estimator. All
processes are done by using the HalvingGridSearchCV function from the scikit-learn [55].
This experiment outcome revealed the best optimal set hyper-parameters combination that
can serve the model in the best way to get the most skillful predictions which will be used
for the rest of the experiments in this paper. The hyper-parameter combinations selected
are described in Table 3.
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Table 3. selected hyper-parameters.

Models Final Hyper-Parameter Values

SVM C = 10, degree = 2, kernel = ‘poly’

kNN metric = ‘minkowski’, n-neighbors = 11, weights = ‘uniform’

RF n-estimators = 800, max-depth = 5, min-samples split = 15

These hyper-parameters cannot be taken by blind eyes further to the predictions; they
need to be evaluated to indicate the performance of each model over time and to show
distinct changes that can accrue and prevent over-fitting and under-fitting of the models.

3.5. Qualitative Results

To estimate how the models are expected to perform during training and when used to
make predictions on unseen data, to see if the model is well-fitted, we performed a learning
curve graph. The learning curve reflects the model’s learning process, which is illustrated
by measuring the accuracy of each size of training and validation set that starts from a
small data size to the maximum. The accuracy should maximize as more data is fitted,
and if it reaches 1 (100% of accuracy), it means the training data set is perfectly learned.
The learning curve calculated using a training set shows how the model is learning, and
the learning curve calculated from the hold-out validation set provides an idea of if the
model is generalizing on unseen data. We tested each model with its hyper-parameters
selected above by making a dual learning curve of the training set and a validation set, and
measuring the accuracy of each one. The results are shown in Figures 5–7.

Figure 5. SVM classifier’s Learning curve.

As we see from the Figures 5–7, all the tested models have nearly similar results
with few variations. SVM classifier shows almost perfect learning, as we can see from the
accuracy achieved by the training set, which goes above 0.99, and it provides promising
predictions, as it is obvious from the accuracy achieved using the validation set, which
maximizes as more data is fitted, the thing that makes the model learn more features and
provide consistent predictions. The maximum accuracy achieved is 0.84. This result reflects
that the model is well fitted and generalizes better on unseen data.

The RF classifier shows almost the same behavior as SVM, as we can see from the
accuracy achieved by the training set, which goes above 0.98, and as well as provides
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promising predictions using the validation set, which maximizes linearly as more data is
fitted. The maximum accuracy achieved is 0.82. This result reflects that the model is well
fitted and generalizes better on unseen data.

Figure 6. RF classifier’s Learning curve.

Figure 7. KNN classifier’s Learning curve.

Unlike the other classifiers, the KNN model achieves good accuracy on the training
set, which goes above 0.99, but it shows different behavior using the validation set. With
more data is fitted, the accuracy is exponentially decreasing, with a small variance from
0.80 to 0.78. However, it does not affect the model to be under-fitted or not generalizing on
unseen data, and this is just because of the model’s way of dealing with large data, which
certainly affects the accuracy with small variance. In the end, we conclude that all the
models are well-fitted and well trained to be tested on the test set.
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After training the models on the train set and validating them with a validation set,
the next step is predicting the outcomes. We tested all the models on the unseen data and
the test set. As a performance evaluation, we measured four metrics: accuracy, F1-score,
precision, and recall. Table 4 shows the results metrics got from each model in predicting
all the classes. For the evaluation comparison of the model’s performance in terms of all
metrics, SVM got the best performance results in predicting the outcome of the unseen data
by achieving an accuracy of 0.83 and a good precision value of 0.64, followed by RF and
KNN classifier, respectively. This performance comparison seems promising to predict all
the classes, and this is because the models are well trained on the classes’ features, which
can serve better predictions.

Table 4. Prediction’s performance comparison.

Classifier Accuracy F1-Score Precision Recall

SVM 0.83 0.55 0.64 0.59
RF 0.82 0.43 0.42 0.49
KNN 0.78 0.40 0.38 0.50

To have a clear view of the model’s performance on each class, we measured three
metrics: precision, recall, and f1-score for each class predicted by the models, and the
results are illustrated in Figures 8–10.

Figure 8. SVM Prediction’s performance on each class.

Figure 8 illustrates the results achieved using the SVM classifier. From the results,
it is obvious that the SVM model succeeded in predicting all the classes with different
performances. The most predictable classes for SVM are NOR and RBBB, achieving the
highest measurement in terms of all metrics which go above 0.75, followed by the PVC.
But for LBBB and PAC, it seems to be difficult to predict, as the model didn’t achieve good
results that went under 0.50 in terms of all metrics, except for LBBB, which achieved good
precision of 0.70. However, it is not surprising for PAC to be less predictable as it has
insufficient data in Table 1 for the model to train on because most PACs used in the test set
belong to one patient and the rest are from different patients.
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Figure 9. RF Prediction’s performance on each class.

Figure 10. KNN Prediction’s performance on each class.

Figures 9 and 10 describe the results achieved using the RF and KNN classifiers. The
RF and KNN models have the same performance concerning the labels NOR, RBBB, and
PVC as the SVM model with little variance. Unlike the SVM, the RF and KNN models
didn’t succeed in classifying the LBBB class, even with a sufficient amount of data available
for this class for the model to train on. The KNN got a precision of 0.19 in classifying the
PAC class, unlike the RF model that didn’t predict it.

We presented the classification report of each model to give an unobstructed view
of the number of samples classified into certain classes by each model. Table 5 shows the
classification report of the SVM classifier, and it is obvious that the classifier performed
well in predicting with a significant percentage of the samples provided as inputs, even
for the LBBB and PAC, which remain hard to predict. However, the SVM model has
mislabelled some input data, which can be considered a serious issue. As we can see in
Table 5, the samples that have an LBBB class, 0.57%, which means half the samples, are
predicted as normal cases and 0.35% as PVC classes. The same thing is true for the PAC
class, where 0.47% of samples are predicted as Normal (NOR) and 0.21% as RBBB classes.
These results cannot be acceptable, at least for the LBBB and the PAC class, as the model
didn’t predict more than half of the samples provided. And this is probably because of the
weak representation of features in data provided for training the model.
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Table 5. SVM classification report.

Predicted Label

NOR LBBB RBBB PAC PVC

True Label

NOR 0.94 0.0019 0.00033 0.023 0.034
LBBB 0.57 0.068 0 0.013 0.35
RBBB 0.091 0 0.80 0.023 0.089
PAC 0.47 0.01 0.21 0.25 0.065
PVC 0.07 0.0077 0.0055 0.004 0.91

Table 6 shows the classification report of the RF classifier, as we can see from the table,
the RF model succeeds to predict just three classes: NOR, RBBB, and PVC, as true classes
from the five classes provided with important percentages. The model mislabeled all the
other two classes, like other classes. The model classified 0.73% of samples with the class
of LBBB as NOR class and 0.25% as PVC class. The same thing goes for the PAC class,
where 0.40% of samples are classified as NOR class and 0.53% as PVC class. This behavior
is probably because of the model’s way of mapping between inputs and outputs of the
data set, which didn’t succeed in recognising the new data provided.

Table 6. RF classification report.

Predicted Label

NOR LBBB RBBB PAC PVC

True label

NOR 0.96 0.0023 0.00063 3.3× 10−5 0.039
LBBB 0.73 0 0.00061 0 0.27
RBBB 0.0068 0 0.61 0 0.38
PAC 0.4 0 0.074 0 0.53
PVC 0.095 0.0018 0.0066 0.00074 0.90

Table 7 describes the classification report of the RF classifier. Unlike the RF classifier,
the KNN model predicted four classes: NOR, RBBB, PAC, and PVC as true classes, out of
the five classes, with important percentages except for the PAC class, which is considered a
very weak percentage, because the model is mistakenly labeling 0.86% of the PAC class
as class NOR and the rest as other classes. From the Table 7, the result illustrates that the
LBBB class is difficult to be recognized by the KNN model from the data provided, as the
model classified 0.63 % of samples as a class NOR and the rest as class PVC.

Table 7. classification report: KNN.

Predicted Label

NOR LBBB RBBB PAC PVC

True label

NOR 0.91 0.00013 0.06 0.0023 0.03
LBBB 0.63 0 0 0 0.37
RBBB 0.14 0 0.82 0 0.039
PAC 0.86 0 0.037 0.012 0.087
PVC 0.11 0.063 0.0052 0.0081 0.81

Although it is clear that the three first classes (NOR, RBBB, and PVC) are the most
predictable labels among all the models, this is probably because of the feature clarity of
these classes, which makes them easy to learn and predict by the model. The other factor
that can help the model learn any class is certainly the amount of data used to train the
model for each class, which makes the model learn all the features of a certain label. As
a result, it will be easy for the model to figure out the outcomes of each input data set.
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Sometimes it is difficult for the model to predict nearly perfect some classes even if the
data is available, and this problem can occur if the training data doesn’t contain all the
features. As we can see, the LBBB label has sufficient training data as detailed in Table 1
but all the models had mislabeling of this class on the unseen data provided. Besides, the
poor amount of data can lead to a significant mislabeling as it is obvious for the PAC label,
which has a small amount of training data as can be seen in Table 1. However, certain
models showed a powerful performance prediction for specific classes; SVM predicted
0.91% of samples for the PVC class. The RF predicted 0.96% of samples for the NOR class,
and the KNN model predicted 0.96% of samples for the RBBB class.

To enhance the prediction of certain categories and reduce wrongful predictions of
some samples, we investigated the group power of the models tested so far to improve
and provide the best predictions, and for this reason, we used a technique called the voting
model or majority voting ensemble [56,57] which uses an ensemble of machine learning
algorithms. This technique works by combining the predictions from several contribution
models and searching for a majority vote for the prediction that will be considered the
final prediction of the input. Thus, the voting model style is appropriate when there are
two or more models that perform well in predicting certain classes, and that is the case in
our experience presented and achieved above. This is to achieve better performance than
any single model used in the group. There are two voting methods that the voting model
applies, hard voting and soft voting. Hard voting is simply summing up the predictions
for each label and taking the prediction that has the most votes. Unlike hard voting, soft
voting sums up the predicted probabilities for each class and takes the prediction that
has the highest probability. In this work, we used hard voting to keep the performance
contribution of each model.

Figure 11 shows the performance results measured by the cross-validation score
technique of each model trained with the training set and validated with the validation
set. The results revealed that the ensemble voting achieved the best performance and even
better than the other models in terms of average accuracy, as it exceeded an accuracy of
0.83 with a maximum accuracy of 0.84. However, the results are not surprising because
the mainly used set of models perform well as a single model, and thus, combining these
models with the voting technique would give better performance than the best single
model. Concerning the results specified in Figure 11, the ensemble voting method appears
to be appropriate and promising to improve the prediction results. Hence, we tested it
directly on the unseen data set, the test set.

Figure 11. A comparison performance accuracy of the single models and the Voting ensemble.
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Figure 12 illustrates the results achieved by measuring the three metrics: accuracy,
recall, and f1 score for each class predicted by the ensemble voting classifier using a test
data set. From the figure, the ensemble voting model seems similar to the KNN classifier
performance. This implies the same performance result with respect to NOR, RBBB, PAC,
and PVC labels with little difference. Likewise, for the LBBB class, where the voting model
was unsuccessful in its classification. However, the results were surprising, as we expected
the model to provide a further improvement, which means better performance than the
individual models tested above.

Toward a clear view of comparison, we made a classification report of the predictions
on the test data set that shows the results achieved by the voting ensemble. Table 8 shows
the classification report for the classifier of the ensemble voting classifier, and it is clear
that the classifier did well in predicting samples provided as input, even for PAC, which is
difficult to predict. The ensemble voting model predicted 0.98% of the samples provided
for the NOR class, which means an improvement of 0.02% above the best single model
performance, and this remains a very important improvement. Unfortunately, the model
did not improve the prediction of samples for the other classes, as we see from the table.
For instance, the prediction of samples for the RBBB class has been reduced by 0.05%, and
for the PVC class by 0.01%, and the LBBB class was not predicted by the model.

Figure 12. Ensemble voting prediction’s performance on each class.

Table 8. Ensemble voting classification report.

Predicted Label

NOR LBBB RBBB PAC PVC

True label

NOR 0.98 0 0.00037 0.0009 0.021
LBBB 0.65 0 0 0 0.35
RBBB 0.15 0 0.77 0 0.087
PAC 0.89 0.00059 0.056 0.0035 0.051
PVC 0.089 0.0029 0.0015 0.0026 0.90

The results achieved as far by the ensemble voting, in terms of comparison with the
results accomplished above, the voting ensemble didn’t get the best prediction results,
which was the primary purpose of implementing the voting ensemble. The voting ensemble
didn’t perform well, probably because it treats all models the same, which means that all
models contribute equally to the prediction. This remains a problem sometimes because
some models can be good at some tasks and poor at others, and this doesn’t give the models
the chance to provide a powerful performance. This method can affect the results and the
improvement of the voting ensemble over the other used models. Otherwise, the voting
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ensemble has some advantages, such as higher stability or confidence at the expense of the
lower mean performance of the ensemble, which may cause the lower variance achieved
by the voting ensemble over the other models used in the ensemble.

4. Discussion

In real-world practice to analyze the ECG signal, various causes influence the appear-
ance of characteristics in an ECG recording, which include several factors such as gender,
age, medical history of the patient and the time of recordings, and previous physical ac-
tivity, besides the wide variability in ECG morphological and temporal features within a
population. This makes medical decision-making a challenging task that requires more
tests and even specialists to deal with it. There are confusing factors where unusual beat
morphologies may be recognized for the same disease or similar ones for different diseases,
e.g., the PAC and PVC, etc. [2]. For this kind of situation, the cardiologists need to process
vast amounts of data of extended ECG recordings of several hours to observe the status of
patients’ health. Furthermore, making other tests like the Holter ECG or stress tests that
require a significant amount of time, [2]. Such scenarios bring the need for an automated
arrhythmia detection system that offers diagnostic aid to cardiologists to improve medical
decision-making in a limited time.

An automated arrhythmia detection system needs to be reliable, with high quality and
performance in decision making, with less complexity, especially concerning the number of
resources required to run it, and more realistic in a clinical environment. Considering these
requirements and the metrics used in this paper, the results achieved with all the machine
learning models we investigated in this paper, and using our proposed inter-patient
paradigm separation method of the patient concerning the MIT-BIH DB, and applying no
complicated data pre-processing or feature engineering methods, prove that the SVM is
the model that outperformed the other techniques, in predicting the most classes presented
such as (NOR, RBBB, and PVC), and especially the minority ones such as the PAC, as it
predicted one quarter of the data provided, which was the purpose of the inter-patient
paradigm separation proposed. Over all models, it is noticeable that the three individual
classes (NOR, RBBB, and PVC) are the most predictable labels, as we can observe from
the Figures 8–10. This is most likely due to the feature clarification of these classes, which
makes them easier for the model to learn and predict. Another aspect that can assist the
model in learning any class is the amount of data utilized to train the model for each class,
which allows the model to learn all or most of the characteristics of a specific label. Thus,
it increases the chances of the best predictions. However, this is not necessary and the
proof for that is the LBBB class, as it has a fairly sufficient amount of training data, in
comparison with other classes investigated in Table 1, but all the models miss-predicted
and didn’t recognize it among the data provided, except for the SVM model which at least
predicted some amount. And this is probably because the data doesn’t contain all the
features needed for this class to be identified on unseen data. However, certain models
showed powerful performance predictions for specific classes, such as SVM for the PVC
class, RF for the NOR class, and the KNN model for the RBBB class. This phenomenon is
caused by the model’s methodology of mapping between the data set’s outputs and inputs,
which drives the model to strongly identify particular classes over others. In the case of
SVM, the polynomial kernel chosen by the HalvingGridsearch technique, which allows
for curved lines in the input space beside a more flexible decision boundary [58]. Despite
the powerful performance on specific classes of each model, the ensemble voting model
didn’t much succeed in enhancing the predictions performance by using all the models.
Instead, it decreased the performance prediction of some classes, except for class NOR,
which decreased by 0.02% and failed to predict other classes. This is due to the fact that
ensemble voting considers all models evenly, which means that all models vote equally
for the predictions. This remains an obstacle to the minority classes, as it is predicted by a
few models, and makes the majority models votes less, or against, this class as they do not
recognize it and limit its chance of being predicted. as a result, increasing the performance
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of the majority of the predicted classes at the expense of the minority predicted classes.
Thus, single model performance is preferred in such scenarios, which is in our case, the
SVM model. And it can be considered a more realistic and generic approach for dealing
with scenarios in which a variety of ECG signals are collected from different patients, whose
ECG data was not available during the training phase, as it is trained with an inter-patient
paradigm data. On another hand, the SVM model has a low and stable computational cost
in terms of time during training and predicting the outcomes. The other models have a
high computational cost, in terms of time, either at the training or prediction stages, as we
can see, for illustration purposes, in Table 9.

Table 9. Computational cost comparison.

Methods SVM RF KNN VE

Cost Training 39.58 s 478.64 s 0.031s 508.05 s
Prediction 19.99 s 7.61 s 135.74 s 159.85 s

The data provided remains very important to train the model on classes and provides
an unrestricted view of features of each class, which makes the prediction more feasible.
For the inter-patient paradigm separation, where the patients are divided into two data
groups, we chose carefully the data used for the training in such way it contains, as possible,
more samples of each class than the test set to ensure the best training of the model on
all the features. The proposed separation inter-patient paradigm of the patients used
in this paper made a significant improvement in predicting samples of certain classes,
e.g., the RBBB class, and especially improved the minority arrhythmical classes detection
without performing any features engineering complexity, e.g., the PAC class, which remains
challenging to predict by most models.

For a fair comparison, we used the outperformed model, the SVM model in our
proposed separation approach, and evaluated the inter-patient paradigm proposed by [23],
using the same hyper-parameters used above. We measured three metrics: accuracy, recall,
and f1 score for each class predicted by the SVM model using the [23] separation approach.
The results are shown in Figure 13. In comparison with the results described in Figure 8, our
separation approach appears to be more effective and promising for all classes, including
LBBB, and especially for the minority class PAC.

Figure 13. SVM Prediction’s performance on each class using the inter-patient paradigm separation
of [23].

Likewise, the results are supported by the classification report in Table 10 in compari-
son with the results in Table 5.
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Table 10. SVM classifier, with the same hyper-parameters used above, classification report using [23]
inter-patient paradigm.

Predicted Label

NOR LBBB RBBB PAC PVC

True label

NOR 0.95 0.0015 0.00027 0.016 0.035
LBBB 0.62 0.052 0 0.018 0.31
RBBB 0.44 0 0.018 0.0011 0.54
PAC 0.84 0.0093 0 0.016 0.13
PVC 0.076 0.0078 0.0019 0.005 0.91

As there has been no previous inter-patient research for the classification of specific
types of arrhythmia, specifically the kind we used in terms of an inter-patient paradigm, we
also compared the performance of the proposed scheme with other studies in the literature,
with one similar work. The overall accuracy achieved by the proposed method seems better
than similar work, which uses feature extraction and nearly the same models with different
inter-patient schemes and parameters. Besides better results in terms of sensitivity and
positive predictivity, considering the same model, the SVM model, and competitive ones
considering their performed model. The result we found compared to other works that
were conducted following the AAMI standard, which means a superclass of arrhythmia
as shown in Table 11, demonstrates that our proposed structure appears to compete with
other papers that use the inter-patient [23] paradigm. However, it is worth noting that
a superclass, e.g., N, contains NOR, LBBB, and RBBB classes, etc., and in comparison to
superclasses of arrhythmia, specific types of arrhythmia are difficult to classify. This gives
the proposed work the potential to be very competitive to perform well, and shows that our
proposed inter-patient model could provide even better performance if used with feature
extraction, which will compete with the state-of-the-art, the results are shown in Table 11.

Table 11. Comparison with other works in the literature.

Ref. FeEx CM Acc(%)
Se Pe+ Se Pe+ Se Pe+ Se Pe+ Se Pe+

N S V F Q

De Chazal et al. [23] Yes LD 85.8 86.8 99.1 75.9 38.5 77.7 81.9 89.4 8.6 0.0 0.0
Chen et al. [59] Yes SVM 93.1 98.4 95.4 29.5 38.4 70.8 85.1 0.0 0.0 0.0 0.0

NOR LBBB RBBB PAC PVC

Shi et al. [22] Yes SVM 60.0 98.0 84.6 0.5 11.9 36.7 87.6 76.4 34.6 88.6 75.7
EV* 74.5 95.0 85.1 27.9 83.8 79.6 88.9 81.8 54.6 88.1 76.0

Proposed Method No SVM 83.0 94.0 90.0 0.7 70.0 80.0 74.0 25.0 36.0 91.0 51.0
EV* is an ensemble voting of four models, KNN, SVM, DT, and RF.

5. Conclusions

In this paper, we investigated an automatic classification system using a new com-
prehensive ECG database inter-patient paradigm separation to improve the minority
arrhythmical classes detection without performing any features extraction. We tested four
supervised machine learning models: support vector machine (SVM), k-nearest neighbors
(KNN), Random Forest (RF), and the ensemble of these three methods. We tested the
performance of these techniques in classifying: Normal Beat (NOR), Left Bundle Branch
Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial Contrac-
tion (PAC), and Premature Ventricular Contraction (PVC), using inter-patient real ECG
records from MIT-DB after segmentation and normalization of the data, and measuring
the accuracy, precision, recall, and f1-score. The simulation shows that the SVM had the
best performance in comparison with the other methods using the proposed inter-patient
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paradigm separation, which reflects the importance of this method as a classification tool
for ECG arrhythmia.
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We have listed all the technical acronyms used in this paper:

ECG Electrocardiogram
SVM Support vector machine
RF Random forest
KNN K-Nearest Neighbors
EV Ensemble voting
LD Linear Discriminant
NOR Normal beat
LBBB Left Bundle Branch Block Beat
RBBB Right Bundle Branch Block Beat
PAC Atrial Premature Contraction
PVC Premature Ventricular Contraction
AAMI Association for the Advancement of Medical Instrumentation
FeEx Feature extraction
CM Classifier Model
Se Sensitivity
Pe+ Positive predictivity
N Nonectopic beat
S Supraventricular ectopic beat
V Ventricular ectopic beat
F Fusion beat
Q Unknown beat
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