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Abstract

Species B human adenoviruses (Ads) are increasingly associated with outbreaks of acute respiratory disease in U.S. military
personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber
knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by
serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown
species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor
screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting
surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs). We subsequently found that HSPGs
acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a
new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The
interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35
interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands.
In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest
that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection.
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Introduction

Human adenoviruses (Ads) have been classified into six species (A

to F) currently containing 51 serotypes. Most Ad serotypes utilize

the coxsackie-adenovirus-receptor, CAR, as a primary attachment

receptor [1]. However, this is not the case for species B Ad serotypes

[1]. Species B Ads form two genetic clusters, B1 (Ad3, Ad7, Ad16,

Ad21, and Ad50) and B2 (Ad11p, Ad14, Ad34, and Ad35) [2]. This

classification of species B partially correlates with tissue tropism but

does not indicate receptor usage. Recently, we have suggested a new

grouping of species B Ads based on their receptor usage [3]. Group

1: (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor;

Group 2: (Ad3, Ad7, 14) share the same non-identified receptor/s

which we refer to as receptor X; Group 3: (Ad11p) preferentially

interacts with CD46, but also utilizes receptor X if CD46 is blocked

[3]. Importantly, our previous study showed that receptor X is

identical for Ad3, 7, 11p and 14 [3]. This novel receptor-usage

based grouping system is supported by studies from others and us

that also found CD46-usage for Ad serotype 11p, 16, 21, 35 and 50

but not for serotype 3 and 7 [4–7]. The finding that Ad11p is the

only species B Ad family member that evolved to efficiently use both

CD46 and receptor X has also been indicated by other previous

studies from Gustafsson et al. and Marttila et al. [4,7]. Marttila et al.

confirmed that CD46 blockade on human cells did not affect Ad3

and Ad7 infection, only partially inhibited Ad11p infection and

completely abolished infection by serotype 16, 21, 35 and 50 [4].

For Ad14, Marttila et al. suggested that infection of this serotype

might partially depend on CD46, however this finding was

apparently not significant as indicated by the margin of error in

the Ad14 infection assay of this study [4]. Thus, together with the

findings of our studies, it appears that Ad16, 21, 35 and 50 nearly

exclusively use CD46, Ad11p uses both CD46 and receptor X,

while Ad3, 7 and 14 only utilize receptor X as attachment receptors

for cellular infection.

Several groups recently attempted to identify receptor X, and

various candidates such as CD46, CD80, and/or CD86 were

suggested [8–11]. However, we and others were so far not able to

independently verify that one of these surface molecules represent

receptor X. Furthermore studies from others and us (this study

included) actually provide contrary evidence that CD46, CD80

and CD86 are not receptor X [3,4,6,7,12].

Ads cause continuous outbreaks of acute respiratory disease

(ARD) in US military training facilities. Studies conducted

between 1999 and 2002 revealed that .95% of Ads isolated

from recruits were serotype Ad4. Based on this, the US army

reinstated an Ad4 vaccination program. The dominance of Ad4

continued through 2005, followed by a simultaneous emergence of

diverse species B serotypes at the majority of sites. This included

the group 1 serotypes 21 and the group 2 serotypes 3, 7, and 14

[13,14]. Ad14 outbreaks also occurred in the civil population.

During March–June 2007, a total of 140 cases of confirmed Ad14

respiratory illness were identified in clusters of patients in Oregon,
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Washington and Texas. Thirty eight percent of these patients were

hospitalized, including 17% who were admitted to intensive care

units (ICUs); 5% of patients died [15]. Furthermore, ARD caused

by outbreaks of Ad35 were reported in the past [16,17].

Species B-derived, replication-deficient vectors (in particular

Ad5/3 and Ad5/35 capsid/fiber chimeric vectors) have recently

shown promises as vehicles for gene transfer into multiple human

cell types including cancer cells and tissue stem cells [18,19]. In

contrast to most human Ads, the infection mechanism and cellular

attachment receptor/s of several B species serotypes, in particular

Ad3, 7, and 14, have been elusive so far. Considering the

emergence of diverse species B Ads as a critical pathogen and the

potential practical importance of species B based vectors for gene

therapy, we attempted to identify the cellular receptors that are

used by species B Ads in addition to CD46. We focused in this

study on species B serotypes 3 and 35 that are representative for

group 1 and group 2 Ads.

The outer protein capsid of Ads consists of 240 trimeric hexon

capsomers, 12 pentameric penton base capsomers and 12 trimeric

fibers projecting from the vertices of the icosahedral capsid and

ending with a C-terminal fiber knob domain (knob). The knob

domain has been identified as a major determinant for the initial

cellular attachment of Ads to host cells. We therefore set out to

discover yet-unknown Ad3 and Ad35 receptors using the

corresponding recombinant fiber knobs.

We identified cellular heparan sulfate proteoglycans (HSPGs) as

the main ligand of Ad3 knob but not Ad35 knob. HSPGs were,

however, not the main high-affinity receptor for Ad3 (receptor X).

Ad3 interacted in a low-affinity manner via fiber knob with HSPGs

in order to increase interaction with receptor X (Ad3 co-receptor

function of HSPGs). Additionally, we identified a new HSPG-

dependent mechanism of Ad35 infection, which was not mediated

by the Ad35 fiber knob and was independent of CD46 (Ad35

receptor function of HSPGs). Together, this study shows that both

serotypes evolved to utilize HSPGs as co/receptors for infection.

HSPGs typically consist of long polyanionic heparan sulfate (HS)

chains (repeating disaccharide units of N-acetylglucoseamine and

glucoronic/iduronic acid), which are covalently linked to a protein

core (mostly membrane proteins, in particular glypicans, syndecans

and CD44v3) [20]. During HSPG biosynthesis successive modifica-

tion via N-deacetylation-N-sulphatation, epimerization, 2-O-sulpha-

tion, 6-O-sulphation and 3-O-sulfation result in a high structural

variety in HS-chains. This allows HSPGs to bind to a wide range of

proteins (including FGF and TGF family members) [20–22]. The

classic view of HSPGs is that they serve as co-receptors that bind via

their HS chain to various ligands and promote interaction and

subsequent signaling via the cognate membrane localized ligand

receptors [21]. One example is fibronectin, which binds with different

domains to HS-chains of syndecans and to integrins to induce cell

spreading and focal adhesion formation [23]. Another example is

FGF that requires binding to both, HS-chains and FGF receptor to

efficiently induce signaling and endocytosis. HS-chains typically show

regions with high, intermediate and low sulfation [24]. In particular,

highly sulfated HSPG regions have been shown to participate in the

binding of physiologic ligands [20,22,25]. HSPGs are also exploited

as co/receptors by a wide spectrum of viruses and other parasites.

Within the family of human adenoviruses, HSPG interaction has

been described for two other serotypes (Ad2 and Ad5) so far [26].

HSPG-Ad5 interaction is via fiber knob and has been proposed to

trigger macropinocytosis and subsequent uptake into natural target

cells, in particular, lacrimal acini cells [27] and similar observations

have been made for the uptake of Ad2 into epithelial cells [28].

Importantly, Ad3 has recently also been shown to utilize macro-

pinocytosis as an uptake mechanism into host cells [29]. These

findings, together with the data reported in the present study suggest a

general role of HSPGs in Ad infection.

Results

Ad3 but not Ad35 fiber knob interacts with cellular
HSPGs

For protein receptor identification we used recombinant trimeric

Ad3 and Ad35 knobs for pull down assays using purified HeLa

membrane proteins as described before [12]. (HeLa cells express

both CD46 and receptor X at high levels [3]). Mass spectrometry

analysis of pulled down protein revealed CD46 as an interacting

membrane protein for Ad35 knob, which is in agreement with our

earlier study [12]. However, for Ad3 knob no valid interacting

membrane protein/s could be identified (data not shown). We

therefore tested the functionality of purified Ad3 and Ad35 knob via

competition for cellular attachment with the corresponding viruses.

Pre-incubation of HeLa and 293 cells with the recombinant knobs

blocked attachment of the corresponding viruses (Figure 1A and

Figure S1). This indicated that the knobs of both viruses are major

determinants for attachment of the corresponding viruses. Overall,

Ad3 knob showed different blocking properties as compared to

Ad35 knob: (i) Ad35 knob reduced binding of Ad35 virus particles

by ,90% (293 cells) and 95% (HeLa cells) at relatively low

concentrations (10 ng Ad35 knob/105 cells = 9.46104 Ad35 knob

trimers per cell); and (ii) Ad3 knob reduced binding of Ad3 virus

particles only 63% (293 cells) and 76% (HeLa cells) and 50-fold

higher concentrations (500 ng Ad3 knob/105 cells = 4.76106 Ad3

knob trimers per cell) were required for this effect. Next, we

incubated HeLa cells with an increasing amount of Ad3 and Ad35

knob and detected the amount of bound knob via flow cytometry. In

contrast to Ad35 knob an approximately 50-fold higher concentra-

tion of Ad3 knob was necessary to reach a similar amount of knob

binding to HeLa cells and no saturation point of Ad3 knob binding

was observed, whereas Ad35 knob reached a saturation of binding

to HeLa cells at 40 ng knob/105 cells (Figure 1B and Figure S2). In

summary, both knobs bound to human cells and competed the

binding of the corresponding viruses. However, in contrast to Ad35

Author Summary

In this study, we attempted to identify binding receptors
that are used by the two human adenovirus (Ad) serotypes
3 and 35. Ad3 uses yet-unknown receptors and is one of
the most common Ads causing epidemic conjunctivitis,
and respiratory and gastrointestinal diseases. Ad35 uses
the complement receptor CD46 as an attachment receptor
and mainly causes infections of the kidney and urinary
tract. We utilized novel high-throughput techniques in
combination with the recombinant viral proteins (fiber
knobs), which mediate the initial interaction of Ads with
host cells. We found that both serotypes interacted with
cellular heparan sulfate proteoglycans (HSPGs). In subse-
quent assays, we show that HSPGs were not major
receptors, but acted as low-affinity co-receptors for both
Ad3 and Ad35. Ad3 and Ad35 used different viral proteins
in order to interact with HSPGs. Both serotypes, however,
used the same regions within HSPGs that show high levels
of sulfation and are important for binding of extracellular
located physiologic ligands. In summary, we show that
Ad3 and Ad35 evolved to ‘‘highjack’’ yet another class of
cellular surface molecules that are essential for the
function of the target host cells and are ubiquitously
expressed. This provides new insights into the emerging
picture of the infection mechanism of Ad3 and Ad35.

Ad3 and Ad35 Interaction with HSPGs
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Figure 1. Ad3 but not Ad35 fiber knob interacts with cellular HSPGs. (A) Competition of Ad3 and Ad35 virus particle attachment to HeLa
cells using pre-incubation of cells with increasing concentrations of the corresponding knob proteins. (B) Ad3 and Ad35 fiber knob binding to HeLa
cells. Note that Ad35 but not Ad3 knob reached saturation of available receptors (for representative flow charts see Figure S2). (C) Ad3 and Ad35
knob binding to CHO-K1 and CHO-C2 cells. (D) Heparin competition of Ad3 and Ad35 knob binding to HeLa cells. (E) Heparinase competition of Ad3
and Ad35 knob binding to HeLa, CHO-C2, and Y79 cells. (F) Ad3 knob binding to CHO-K1 and CHO-pgsA-745 cells. (G) Ad3 and Ad35 knob and virus
particle binding to Ramos cells. (H) Ad3 and Ad35 knob binding to Heparin and soluble CD46 assessed via western blot. (A–G) Data points represent
the mean and standard deviation of experiments performed in triplicate. All experiments were independently repeated at least once with a similar
outcome.
doi:10.1371/journal.ppat.1000189.g001
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knob the Ad3 knob could not be used to identify an interacting

membrane protein using mass spectrometry analysis.

Since we did not identify a valid Ad3 knob interacting membrane

protein via mass spectrometry analysis we next hypothesized that

Ad3 knob might interact with carbohydrates. To test this hypothesis

we utilized human and non-human cells. Ad3 knob significantly

bound to Chinese hamster ovarian cells (CHO-K1), whereas Ad35

knob only bound to these cells when they were transformed to

express human CD46 (CHO-C2; Figure 1C). Removal of sialic

acids from the cellular surface of HeLa cells did not reduce Ad3 or

Ad35 knob binding, whereas FITC-labeled wheat germ agglutinin

(that specifically interacts with sialic acid) showed significantly

reduced binding (,50%, Figure S3). Next we tested whether pre-

incubation of knobs with Heparin might abrogate their attachment

to cells. Ad3 knob binding was completely blocked, whereas Ad35

knob binding only minimally affected by Heparin (Figure 1D).

Heparin is similarly structured to the heparan sulfate (HS) side

chains of heparan sulfate proteoglycans (HSPGs), but generally

displays higher levels of sulfation as compared to HSPGs [22].

Therefore, we then pretreated HeLa cells with Heparinase I in

order to test whether cellular HSPGs might interact with Ad3 knob.

Heparinase I reduced HSPG levels on HeLa, CHO-C2 and Y79

cells (72%, 79% and 75% decreased HSPG levels, respectively (data

not shown). Importantly, Ad3 knob binding was also reduced upon

this treatment to similar extends (HeLa, 61%; CHO-C2, 102%;

Y79, 66% decreased Ad3 knob binding, respectively) (Figure 1E). In

contrast, for Ad35 knob increased levels of binding were detected on

all cell lines upon HSPG removal from the cellular surface.

Together these data indicated that Ad3 knob binds to HSPGs on

human and hamster cells whereas HSPGs had an inhibitory effect

on Ad35 knob attachment to cells.

To further investigate the possibility of HSPGs being a receptor

for Ad3 knob we utilized CHO cells that are specifically HSPG-

negative due to Xylosyltransferase deficiency (CHO-pgsA-745

[30]). These cells did not bind anti-HSPG antibody, whereas

native CHO-K1 cells show high levels of anti-HSPG antibody

staining. Intriguingly, CHO-pgsA-745 cells did not bind any Ad3

knob at all, which is in stark contrast to native HSPG-positive

CHO-K1 cells (Figure 1F). In addition, Ramos cells (which totally

lack HSPG expression, Figure S4) do not bind Ad3 knob or Ad3

virus particles (Figure 1G). Interestingly, Ramos cells expressed

CD46 and CD86 (Figure S4) and efficiently bound Ad35 knob and

virus particles (Figure 1G). Finally, we used 1 mg of each fiber

knob and soluble CD46 and Heparin in a highly sensitive western

blot assay. Ad35 knob efficiently bound to soluble CD46, whereas

Ad3 knob did not show any binding of soluble CD46 at all

(Figure 1H). However, Ad3 knob showed efficient binding to

Heparin. To our surprise Ad35 also bound to Heparin in the

western blot assay, although to a lesser degree as compared to Ad3

knob. However, the biologic relevance of the detected Ad35 knob

interaction with Heparin might be questionable since the cell-

based assays did not show any receptor function of HSPGs for

Ad35 knob, in particular (i) HSPG removal from cells actually

increased attachment of Ad35 knob (probably due to better access

to the high-affinity ligand CD46 after HSPG removal (Figure 1C))

and (ii) Ad35 knob (in contrast to Ad3 knob) did not efficiently

attach to CHO-K1 cells (these cells have high HSPG-levels

(Figure 2D) but lack the high-affinity ligand CD46 (Figure 1C)).

Overall the western blot assay confirmed our finding that Ad3

knob interacts with Heparin/HSPGs.

Together these data indicated that Ad3 knob binds to HSPGs

on cells in a specific and low-affinity manner. In contrast, Ad35

knob interacted with CD46 in a high-affinity manner and HSPGs

had an inhibitory effect on Ad35 knob binding to CD46.

Sulfation of HSPGs is essential for interaction with Ad3
fiber knob

Since Ad3 knob directly interacted with HSPGs, we used a

glycan array in order to screen for further carbohydrates that

might be used by the Ad3 or Ad35 knobs. The glycan array

currently consists of 320 natural and synthesized glycans that are

linked to a glass slide. After Ad3 and Ad35 knob incubation on the

glass slides and detection of the relative amount of bound knob via

primary and secondary AlexaFluor488-labeled antibody,

glycan#26 showed the highest level of binding for Ad3 knob

(Figure 2A). Ad35 knob also bound to this glycan, although to

overall lower levels. Importantly, glycan#26 is the only glycan in

the array that has a total of 3 sulfate groups. All other glycans in

the array have less or no sulfates (Table 1). Disaccharides that were

structured identical, with the only difference being reduced

sulfation, bound significantly less Ad3 knob (e.g. glycan#35, 45,

288, 287, 286, etc.; Figure 2B and Table 1). There was a direct

correlation of reduced sulfation status (absence of one, two or all

sulfate groups) and reduced Ad3 knob binding (Figure 2B and

Table 1). Together the array data strongly indicated that the

sulfation status of glycans is crucial for Ad3 knob binding. It is

important to mention that the array also contained glycans with

sialic acid and that these glycans did not show any significant Ad3

or Ad35 knob binding, which argues against a charge-mediated

interaction of Ad3 knob with HSPGs (both, sialic acid and HSPGs

are negatively charged at neutral pH).

To test the possibility that Ad3 knob uses highly sulfated regions

within cellular HSPGs, we utilized CHO cells that are Heparan

sulfate N-sulfotransferase deficient (CHO-pgsE-606, [31]). These

cells express HSPGs that are grossly non-sulfated. Incubation of

these cells with a primary mAb against HS that reacts with an HS

epitope that is destroyed by N-desulfation [32] showed ,75%

reduced binding as compared to native CHO-K1 cells (Figure 2D).

Ad3 knob binding to CHO-pgsE-606 cells was also greatly

reduced (,90%) as compared to CHO-K1 cells (Figure 2C),

which confirmed our finding on the glycan array that Ad3 knob

specifically interacts with sulfated HSPGs but not with non-

sulfated HSPGs. Ad35 knob attached with no quantitative

difference and at nearly non-detectable levels to both CHO-K1

and CHO-pgsE-606 cells.

Together these data indicated that Ad3 knob, but not Ad35

knob, binds to highly sulfated regions within cellular HSPGs.

Effect of HSPG-expression and HSPG-sulfation on Ad3
and Ad35 virus particle attachment to cells

Since we identified sulfated HSPGs as a major cellular receptor

for Ad3 knob, we next tested whether this interaction would also

be required for the attachment of the corresponding Ad3 virus

particles. Our earlier studies showed that Ad3 virus particles

interact with receptor X in a trypsin and cation-dependent

(EDTA-sensitive) manner [3]. We therefore hypothesized that

binding of the Ad3 knob to human cells would also be ablated by

these agents. Indeed, trypsin pretreatment of HeLa cells reduced

both HSPG levels (data not shown) and binding of Ad3 knob and

Ad3 viral particles by ,80% (Figure 3A and 3B). However

EDTA-pretreatment of cells had no inhibitory effect on Ad3 knob

binding (Figure 3A). This is in contrast to binding of Ad3 virus

particles, which was reduced 78% by the same EDTA concen-

tration (Figure 3B; similar observation on A549 cells, data not

shown). We next tested whether Heparin pre-incubation of Ad3

virus particles might decrease virus attachment to HeLa cells.

However, the same concentration that completely ablated Ad3

knob binding (Figure 1D) reduced Ad3 virus particle binding only

Ad3 and Ad35 Interaction with HSPGs
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27% (Figure 3C). Ad35 virus particle binding was even reduced to

a greater extent (57%) via pre-incubation with the same Heparin

concentration (Figure 3C). Next, we tested whether Heparinase I

pre-treatment of cells would have an impact on Ad3 virus particle

binding. In contrast to the Ad3 knob (Figure 1E), Heparinase I

pretreatment did not reduce Ad3 virus particle attachment to

Figure 2. Sulfation of HSPGs is essential for interaction with Ad3 fiber knob. (A) Glycan binding specificity of Ad3 and Ad35 knob on glycan
array. The plot shows the average relative fluorescence units (RFU; y-axis) for the six addresses of each glycan versus glycan number (x-axis) as bars.
Standard deviations in the fluorescence for the six addresses are indicated for each glycan. Sulfated glycans are indicated with black bars. Arrows
indicate glycan#26. (B) Ad3 and Ad35 knob binding specificity to sulfated glycans on glycan array. For structure of sulfated glycans see Table 1. (C)
Ad3 and Ad35 knob binding to CHO-K1 and CHO-pgsE-606 cells. (D) Binding of anti-HSPG antibody to CHO-K1, CHO-pgsA-745, and CHO-pgsE-606
cells. (C,D) Bars represent the mean and standard deviation of experiments performed in triplicate. These experiments were independently repeated
once with a similar outcome.
doi:10.1371/journal.ppat.1000189.g002
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HeLa or Y79 cells, but slightly increased the number of Ad3 virus

particles attached per cell (HeLa: 13% increase, P = 0.072; Y79:

27% increase, P = 0.017; Figure 3D). Ad35 virus particle

attachment showed an even higher increase upon Heparinase I

treatment of cells (HeLa: 34% increase, P = 0.057; Y79: 45%

increase, P = 0.0054; Figure 3D). Altogether, this indicated that

HSPGs have an inhibitory effect on Ad3 and Ad35 virus particle

attachment to cells. To further study the role of HSPGs in Ad3

and Ad35 virus particle attachment we next used CHO-pgsA-745

and CHO-pgsE-606 cells that are grossly deficient for HSPG

expression and HSPG sulfation, respectively. Overall, Ad3 and

Ad35 virus both attached at comparatively low levels to CHO cells

(e.g. ,15-fold lower as compared to HeLa cells) (Figure 3E). Ad3

attached to CHO cells in an EDTA-sensitive manner, which was

not observed for Ad35 (Figure 3E) indicating that both serotypes

utilize different mechanisms for attachment. For Ad3 the highest

binding levels were observed for CHO-pgsA-745 cells followed by

CHO-K1 and CHO-pgsE-606 cells (CHO-pgsE-606 versus

CHO-pgsA-745: 34% increase, P = 0.025). For Ad35 virus the

highest attachment levels were observed for CHO-K1 cells as

compared to CHO-pgsA-745 and CHO-pgsE-606 cells (CHO-

pgsA-745 versus CHO-K1: 46% increase, P = 0.012; CHO-pgsE-

606 versus CHO-K1: 44% increase, P = 0.019).

In summary, these data show that cellular HSPGs were not

essential for Ad3 or Ad35 attachment to cells.

Effect of HSPG-expression and HSPG-sulfation on Ad3
and Ad35 infection of CHO cells

After studying the role of HSPGs in Ad3 and Ad35 knob and

virus particle attachment we next investigated the role of HSPGs

in infection by these serotypes. We did not observe any difference

in Ad3 and Ad35 induced CPE formation between Heparinase I

and the mock pre-treated HeLa or A549 cells as determined via

crystal violet and MTT assay (data not shown). However, this

result was not surprising since HSPGs have a relatively short half-

life on the cellular surface (3–8 h), and are either (i) shed by the

action of proteases or specific phospholipases for GPI-linked

HSPGs or (ii) taken up by endocytosis and recycle back to the

surface or can be degraded in the lysosomes, which altogether

results in a continuous renewal of cell surface located HSPGs (a

process that is facilitated in infection assays at 37uC, but inhibited

in attachment assays at 4uC) [22,25]. Altogether, we conclude that

in contrast to attachment assays, in infection assays Heparinase I

pre-treatment is not a sufficient model. Overall these data show

that partial removal of HSPGs via Heparinase I had no effect on

Ad3 and Ad35 infection.

Since Heparinase I pretreatment did not affect adenovirus

infection, we next employed native CHO-K1 cells (HSPG

expressing), Xylosyltransferase deficient CHO cells (pgsA-745,

HSPG-expression deficient) and Heparan sulfate N-sulfotransfer-

ase deficient CHO cells (pgsE-606, HSPG-sulfation deficient). A

general advantage of these CHO mutants is that they are grossly

deficient in HSPG expression (pgsA-745) or HSPG sulfation (pgsE-

606) due to enzymatic defects (as compared to their native

counterpart CHO-K1) and therefore represent a clear-cut model

for investigating the effect of HSPG deficiency. A general

disadvantage is that these cells do not express the primary

attachment receptor of Ad35 (CD46) and only low levels of

receptor X. Low-level expression of receptor X was indicated by

Ad3 virus attached to CHO cells, which is less efficient (as

compared to human HeLa cells) but also EDTA-sensitive

(Figure 3B and 3E). In addition, we observed for Ad serotype 3

and 35 that relatively high MOIs were required to induce CPE in

CHO-K1 cells, which is not surprising since human adenoviruses

replicate generally less efficient in non-human cells. CPE

formation correlated with nuclear Ad hexon staining in Ad3 and

Ad35 infected CHO-K1 cells (determined 3 days post-infection).

Ad3 induced CPE formation and positive nuclear hexon staining

at a minimum MOI of 512 plaque-forming-units (pfu)/cell in

CHO cells (Figure 4A and 4C). However, a ,5-fold higher MOI

(2560 pfu/cell) of Ad35 was required for the same effect in CHO-

K1 cells (Figure 5A and 5C). This result indicated that CHO-K1

cells were more susceptible towards Ad3 infection. We next

investigated the effect of HSPG-expression deficiency in infection

Table 1. Structure of sulfated glycans in the glycan array.

Glycan# Glycan Structure Spacer Total Sulfates

26 [3OSO3][6OSO3] Gal b1–4 [6OSO3] GlcNAc b-Sp0 3

45 [6OSO3] Gal b1–4 [6OSO3] GlcNAc b-Sp8 2

35 [3OSO3] Gal b1–4 [6OSO3] GlcNAc b-Sp8 2

288 [6OSO3] Gal b1–4 [6OSO3] GlcNAc b-Sp0 2

287 [3OSO3][4OSO3] Gal b1–4 GlcNAc b-Sp0 2

286 [3OSO3] Gal b1–4 [6OSO3] GlcNAc b-Sp0 2

27 [3OSO3][6OSO3] Gal b1–4 GlcNAc b-Sp0 2

39 [4OSO3][6OSO3] Gal b1–4 GlcNAc b-Sp0 2

36 [3OSO3] Gal b1–4 GlcNAc b-Sp0 1

40 [4OSO3] Gal b1–4 GlcNAc b-Sp8 1

44 [6OSO3] Gal b1–4 GlcNAc b-Sp8 1

37 [3OSO3] Gal b1–4 GlcNAc b-Sp8 1

152 Gal b1–4 GlcNAc b-Sp0 0

153 Gal b1–4 GlcNAc b-Sp8 0

(Ad3 and Ad35 knob binding to these glycans is shown in Figure 2B). Glycan#, glycan number in the array; [3OSO3], 3-O-sulfation; [6OSO3], 6-O-sulfation; Gal,
Galactose; GlcNAc, N-acetylglucosamine; b-Sp0, b-CH2CH2NH2 spacer arm connecting glycan to glass slide; b-Sp8, b-CH2CH2CH2NH2 spacer arm connecting glycan to
glass slide; b1–4, b1–4 glycosidic bond.
doi:10.1371/journal.ppat.1000189.t001
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by both serotypes using CHO-pgsA-745 cells. As readout for Ad

infection we used CPE formation (defined as described in Material

and Methods; Figures 4C and 5C). As readout for Ad-induced cell

death we used a MTT assay (mitochondrial activity of cells;

Figures 4B and 5B). When compared to native CHO-K1 cells,

CHO-pgsA-745 cells were markedly more susceptible towards

Ad3 infection. In contrast, CHO-pgsA-745 cells were more

resistant towards Ad35 infection, when compared to native

CHO-K1 cells. Next we tested the effect of HSPG-sulfation

deficiency in infection by both serotypes in CHO-pgsE-606 cells.

For Ad35 a similar inhibitory effect on infection was observed as

seen in HSPG-expression deficiency. Interestingly, for Ad3 an

opposite effect of HSPG-sulfation deficiency was observed as

compared to HSPG-expression deficiency. In particular, CHO-

pgsE-606 cells were more resistant towards Ad3 infection as

compared to CHO-K1 cells.

We next tested whether the differences in CPE formation were

due to different efficacy of viral uptake or viral replication in these

CHO cell lines. First we investigated Ad3 and Ad35 viral particle

internalization (Figure S5). Ad3 showed highest internalization

levels in CHO-pgsA-745 cells and lowest internalization levels in

CHO- pgsE-606 cells. Ad35 showed highest internalization levels

in CHO-K1 cells and lower levels of internalization in both CHO-

pgsA-745 and CHO-pgsE-606 cells (Figure S5). These data

correlates with the CPE (Figures 4C and 5C), MTT (Figures 4B

and 5B) and viral attachment data (Figure 3E) and further

supports the finding that the susceptibility of CHO cells towards

Ad3 and Ad35 infection is directly influenced by the HSPG-

Figure 3. Effect of HSPG-expression and HSPG-sulfation on Ad3 and Ad35 virus particle attachment to cells. (A) Trypsin and EDTA
competition of Ad3 and Ad35 knob binding to HeLa cells. (B) Trypsin and EDTA competition of Ad3 and Ad35 virus particle binding to HeLa cells. (C)
Heparin competition of Ad3 and Ad35 virus particle binding to HeLa cells. (D) Heparinase competition of Ad3 and Ad35 virus particle binding to HeLa
and Y79 cells. (E) EDTA competition of Ad3 virus particle binding to CHO-K1, CHO-pgsA-745, and CHO-pgsE-606 cells. Bars represent the mean and
standard deviation of experiments performed in triplicate. All experiments were independently repeated at least once with a similar outcome.
doi:10.1371/journal.ppat.1000189.g003
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Figure 4. Effect of HSPG-expression and HSPG-sulfation on Ad3 infection of CHO cells. (A) Hexon staining. CHO-K1 cells were infected
with Ad3 (MOI 512 pfu/cell). Three days post-infection, cells were fixed and stained for adenovirus hexon protein (red), E-cadherin as a cell surface
marker (green), and nuclei (DAPI, blue). Magnification 406. (B) MTT assay. CHO-K1, CHO-pgsA-745, and CHO-pgsE-606 cells were infected with various
MOIs of Ad3 (0, 64, 128, 256, 512, 1024 pfu/cell). Seven days post-infection, mitochondrial activity of cells was determined via MTT assay. Data points
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expression and -sulfation status. We next analyzed viral replication

of Ad3 and Ad35 in CHO cells. In contrast to human A549 cells,

CHO cells did not support production of progeny viruses as

indicated by decreased numbers of Ad3 and Ad35 plaque forming

units 5 days after infection compared to input pfu (Figure S6).

However, we found that CHO cells supported replication of Ad3

and Ad35 viral genomes, although viral genome amplification was

at least one order of magnitude less efficient as compared to A549

cells (Figures 4D and 5D). Overall, levels of genomic replication

correlated with virus attachment and internalization efficacy

(Figures 3E and S5) and virus-induced CPE (Figures 4C and 5C)

and cell death (Figures 4B and 5B) in CHO cells: Specifically, for

Ad3 the highest levels of genomic replication were observed in

CHO-pgsA-745 cells (440% increase, P = 0.0017), whereas lower

replication levels were detected in CHO-K1 cells (153% increase,

P = 0.0082) and no increase of viral genomes was observed in

CHO-pgsE-606 cells (59% decrease, P = 0.0037). For Ad35 only

CHO-K1 cells showed viral genome amplification (115% increase,

P = 0.0091), whereas CHO-pgsA-745 cell (31% decrease,

P = 0.073) and CHO-pgsE-606 cell (67% decrease, P = 0.0018)

infection did not result in increased Ad35 genome levels.

Together, from these data we conclude that the HSPG status of

CHO cells influences their susceptibility to Ad3 and Ad35

attachment and internalization, which downstream causes quan-

titative differences in viral DNA replication, CPE formation and

virus induced cell death for both serotypes.

In summary, we show for Ad3 that HSPG expression deficiency

increased and lack of HSPG sulfation decreased infection by this

serotype. For Ad35 the data show that lack of HSPG expression

and lack of HSPG sulfation both inhibited infection.

Discussion

The aim of this study was to identify novel cellular receptors

that are used by species B Ads. For this purpose we employed

recombinant Ad3 and Ad35 knob. Screening assays (affinity

capture/mass spectrometry and glycan array) indicated that (i)

CD46 is a ligand of the Ad35 but not the Ad3 knob and (ii) cellular

heparan sulfate proteoglycans (HSPGs) are ligands of the Ad3 but

not the Ad35 knob. We subsequently confirmed that the Ad3 but

not the Ad35 knob interacted with HSPGs on cells in a cation-

independent, sulfation-dependent and low-affinity manner. In

contrast to the knob, Ad3 virus particles mainly attached to cells in

a cation-dependent, HSPG-independent and high-affinity man-

ner. Therefore our data clearly indicated that HSPGs were not

identical to the main Ad3 receptor X. An important conclusion

from our data is therefore that the Ad3 knob protein apparently

lacks a high-affinity receptor on cells and does not independently

interact with the major Ad3 primary attachment receptor. These

findings are surprising, since they are in contrast to other

adenovirus serotypes, such as Ad2, 5, and 35, for which the

knob-interacting proteins have been found by us and others to be

identical with the primary attachment receptors of the corre-

sponding viruses [12,33–35]. Since our data indicates that Ad3

knob is not independently responsible for interaction with the

main receptor of Ad3 virus, we currently attempt to identify this/

these receptor/s X using whole Ad3 viral particles for pull-down

assays and subsequent mass spectrometry analysis. We predict that

viral particles are more likely to reveal the full spectrum of Ad3

interacting cell surface molecules, as compared to recombinant

Ad3 knob.

Overall, for Ad3 our study provides strong evidence that

sulfated HSPGs act as co-receptors for this serotype: (i) High-

throughput screening on a glycan array revealed sulfated glycans

as the only significant Ad3 knob ligands; (ii) Removal of HSPGs

(via Heparinase I pre-treatment of cells) inhibited Ad3 knob

attachment to human cells; (iii) HSPG-expression deficiency

(CHO-pgsA-745) ablated Ad3 knob attachment; (iv) HSPG-

sulfation deficiency (CHO-pgsE-606) ablated Ad3 knob attach-

ment; (v) HSPG-sulfation deficiency (CHO-pgsE-606) inhibited

Ad3 virus attachment and infection as compared to native CHO-

K1 cells; (vi) Pre-incubation of human cells with Ad3 knob

reduced attachment of Ad3 virus (most likely because of

competitive inhibition for sulfated binding sites on cellular

HSPGs); (vii) The only human cell line (Ramos) that did not

express HSPGs was the only human cell line that did not bind any

Ad3 knob (all other human cell lines expressed HSPGs and bound

Ad3 knob); (viii) Pre-incubation of Ad3 knob with Heparin ablated

binding of Ad3 knob to cells; (ix) Pre-incubation of Ad3 virus with

Heparin partially inhibited Ad3 virus attachment to cells; and

finally (x) In a western blot assay high levels of Heparin (but no

soluble CD46) were bound by Ad3 knob. Together these data

indicated that Ad3 virus interacts via fiber knob with sulfated

HSPGs in order to increase cellular attachment and infection (Ad3

co-receptor function; summarized in Figure 6). Although HSPGs

apparently acted as Ad3 co-receptors, part of our data indicated

that HSPGs also functioned as a barrier for Ad3 attachment and

infection (Figure 6): (i) Removal of HSPGs (via Heparinase I pre-

treatment of cells) did not decrease but slightly increased Ad3 virus

particle attachment to human cells, and (ii) HSPG expression

deficiency (CHO-pgsA-745) markedly increased Ad3 infection as

compared to native CHO-K1 cells. In summary, we conclude that

our data points towards a dual role of HSPGs in Ad3 infection. We

propose that Ad3 evolved to interact with HSPGs via fiber knob

(in a sulfation-dependent and low-affinity manner) in order to

partially overcome the barrier function of these abundantly

expressed cell surface molecules and enhance access to the main

receptor/s X (Figure 6).

Several candidate attachment receptors for Ad3 have been

recently suggested, including CD46 [8,11], CD80 and CD86

[9,10]. However, the data of this study and other previous studies

strongly argue against these molecules being identical with the

main Ad3 receptor X. Some of these data include: (i) Ramos cells

expressed CD46 and CD86 and bound Ad35 knob and virus

particles but did not bind Ad3 knob or virus particles at all (this

study); (ii) CHO cells did not express CD46, CD80 or CD86 but

did bind Ad3 knob and virus particles (this study); (iii) Ad35 knob,

but not Ad3 knob, bound to soluble and membrane localized

CD46 (this study); (iv) Ad3 virus particles efficiently attached to

and infected multiple human cancer cells that did not express

CD80 and CD86 and received CD46 blockade [3,4]; (v) CD46

siRNA reduced Ad35, but not Ad3 attachment to cells [3]; (vi)

Soluble CD46 inhibited Ad35 but not Ad3 virus particle

represent the mean and standard deviation of experiments performed in triplicate. (C) CPE assay. CHO-K1, CHO-pgsA-745, and CHO-pgsE-606 cells
were infected with Ad3 in a range of 0–2048 pfu/cell and monitored for CPE as described in Materials and Methods. Five days post-infection, cells
were fixed and stained with crystal violet. Representative pictures are shown. Upper row: Photographs of crystal violet stained wells. Lower row:
Photographs (Magnification 406) of crystal violet stained wells. Presence of CPE is indicated with black borderlines. (D) Ad3 viral replication assay.
Fold increase of Ad3 viral genomes 5 days post-infection of CHO-K1, CHO-pgsA-745, CHO-pgsE-606, and A549 cells is shown. Bars represent the mean
and standard deviation of experiments performed in duplicate. (B–D) These experiments were independently repeated twice with similar outcomes.
doi:10.1371/journal.ppat.1000189.g004
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Figure 5. Effect of HSPG-expression and HSPG-sulfation on Ad35 infection of CHO cells. (A) Hexon staining. CHO-K1 cells were infected
with Ad35 (MOI 2560 pfu/cell). Three days post-infection, cells were fixed and stained for adenovirus hexon protein (red), E-cadherin as a cell surface
marker (green), and nuclei (DAPI, blue). Magnification 406. (B) MTT assay. CHO-K1, CHO-pgsA-745, and CHO-pgsE-606 cells were infected with an
increasing MOI of Ad35 (0, 640, 1280, 2560, 5120, 10240 pfu/cell). Seven days post-infection, mitochondrial activity of cells was determined via MTT
assay. Data points represent the mean and standard deviation of experiments performed in triplicate. (C) CPE assay. CHO-K1, CHO-pgsA-745, and
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attachment to cells [3,4]. (vii) CD80 and CD86 are co-stimulatory

ligands for CD28-mediated T cell activation and are expressed in

immune cells (in particular professional antigen-presenting cells

upon activation) [36] or certain leukemia cells (e.g. Ramos and

K562 cells) but not by epithelial cells that are the natural target of

Ad3 infection (this study).

There are, however, several possibilities that could reconcile the

findings from other groups that CD46, CD80 and CD86 are

utilized as attachment receptors by Ad3 with the contrary data

from us and others: (i) One possibility would be that Ad3 indeed

interacts with CD46, CD86 and/or CD80 but only with a very

low affinity, so that only when very high ectopic receptor

expression levels are used in re-expression models (like BHK-

CD46, CHO-CD86, CHO-CD80 cells) a measurable increase of

Ad3 interaction with the cell occurs. Indeed, in the studies on

CD46 by Fleischli et al. and on CD80/86 by Short et al., very high

(and arguable non-physiologic) expression levels of these molecules

were used on CHO/BHK cells [8,9]. Notably, while Short et al.,

reported significant CD80 and CD86 expression on HeLa cells, we

were unable to detect these molecules on HeLa cells using flow

cytometry. Furthermore, in the study by Fleischli et al. it was

reported that a 100-fold higher concentration of soluble CD46 was

required to achieve detectable interaction of Ad3 and Ad7 viral

particles with this molecule (when compared to Ad11 viral

particles) [8]. This indicated that although Ad3 might interact

with CD46, the affinity of this interaction might be several orders

of magnitude lower as compared to that of Ad11 to CD46.

Importantly, we previously found that Ad3 viral particles have a

similar (and not a several logs reduced) affinity as compared to

Ad11 and Ad35 viral particles to human cells (Ad3 VP Ka: 3.6e9

Figure 6. Model of HSPG-function in Ad3 and Ad35 infection of CHO cells. Ad3 and Ad35 infection of CHO cells expressing (i) sulfated
HSPGs (CHO-K1), (ii) no HSPGs (CHO-pgsA-745), or (iii) non-sulfated HSPGs (CHO-pgsE-606). (A) Ad3 interacts via fiber knob with sulfated HSPGs (a),
which facilitates infection via receptor X (co-receptor function of HSPGs) (b). Ad3 also directly interacts with receptor X (independent of HSPGs) (c).
HSPGs that do not co-localize with receptor X also bind Ad3, which does not increase Ad3 infection (barrier function of sulfated HSPGs due to Ad3
binding) (d). (B) Absence of HSPG expression overall increases Ad3 infection. Ad3 directly interacts with receptor X. (C) Ad3 knob does not interact
with non-sulfated HSPGs. This blocks Ad3 interaction with HSPGs. Non-sulfated HSPGs do not act as an Ad3 co-receptor. Non-sulfated HSPGs inhibit
access of Ad3 to receptor X (physical barrier function of non-sulfated HSPGs). Consequently, Ad3 infection is decreased in CHO-pgsE-606 cells. (D)
Ad35 utilizes sulfated HSPGs as alternative low-affinity receptors in the absence of the high-affinity receptor CD46. This mediates infection of CD46-
negative CHO cells (receptor function of HSPGs). Absence of HSPG expression (E) and absence of HSPG sulfation (F) strongly decreases Ad35 infection
(loss of HSPG receptor function).
doi:10.1371/journal.ppat.1000189.g006

CHO-pgsE-606 cells were infected with Ad35 in a range of 0–20480 pfu/cell and monitored for CPE as described in Materials and Methods. Five days
post-infection, cells were fixed and stained with crystal violet. Representative pictures are shown. Upper row: Photographs of crystal violet stained
wells. Lower row: Photographs (Magnification 406) of crystal violet stained wells. Presence of CPE is indicated with black borderlines. (D) Ad35 viral
replication assay. Fold increase of Ad35 viral genomes 5 days post-infection of CHO-K1, CHO-pgsA-745, CHO-pgsE-606, and A549 cells is shown. Bars
represent the mean and standard deviation of experiments performed in duplicate. (B–D) These experiments were independently repeated twice
with similar outcomes.
doi:10.1371/journal.ppat.1000189.g005
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M21; Ad11 VP Ka: 4.3e9 M21; Ad35 VP Ka: 6.5e9 M21) [3]. In

recent studies from us and others the interactions of purified Ad11

and Ad35 knobs with CD46 were found to be of high affinity

(Ad11 knob KD: 2 nM; Ad35 knob KD: 15.5 nM) [35,37]. We also

tried to determine the Ad3 knob affinity to CD46 in the same

study [35] and found that it was (if existent) below the sensitivity of

the SPR assay (data not shown). The apparently low (if existent)

affinity of Ad3 to CD46 together with the general absence of

CD80 and CD86 expression on human epithelial cells therefore

provide further evidence that a yet-unknown attachment receptor

X, and not CD46, CD80 and/or CD86, mainly mediates cellular

attachment and infection of Ad3. (ii) A second possibility would be

that forced over-expression of CD46, CD80 or CD86 on non-

human cells could indirectly increase HSPG and/or receptor X

levels (e.g. due to formation of stable complexes or, in case of HS-

chains, direct linking); and finally (iii) a third possibility could be

that CD46, CD80 and/or CD86 might not be independent

attachment receptors but co-receptors for Ad3.

For Ad35 we identified a novel CD46-independent infection

mechanism, which is dependent on sulfated HSPGs (Ad35

receptor function of HSPGs; summarized in Figure 6). The

following findings for Ad35 supported this conclusion: (i) Pre-

incubation of Ad35 virus particles with Heparin markedly

reduced Ad35 virus particle attachment to cells; (ii) HSPG-

expression deficiency (CHO-pgsA-745) reduced attachment and

infection of Ad35 as compared to native CHO-K1 cells; and (iii)

Lack of HSPG-sulfation (CHO-pgsE-606) reduced attachment

and infection of Ad35 as compared to native CHO-K1 cells.

Intriguingly, recombinant Ad35 knob exclusively interacted with

CD46 and not with cellular HSPGs, which indicated that the

observed Ad35-HSPG interaction is not mediated by the Ad35

fiber knob but via other viral proteins. This conclusion is

supported by the following findings for the Ad35 knob: (i) Pre-

incubation of Ad35 fiber knob with Heparin reduced only

minimally Ad35 knob attachment to cells; (ii) Ad35 knob did not

bind to CD46-negative cells that express HSPGs; (iii) Ad35 knob

showed only low binding to sulfated glycans in a glycan array;

and (iv) Ad35 knob bound strongly to soluble CD46 but only

minimally to Heparin in a western blot assay. Altogether, the

cell-based assays clearly showed the absence of an Ad35 knob

interaction with cellular HSPGs. Our results also showed that,

similar to Ad3, HSPGs can act as a physical barrier for Ad35

attachment to cells, in particular pre-incubation of HeLa cells

with Heparinase I strongly increased Ad35 knob and Ad35 virus

particle attachment. In contrast, on CD46-negative CHO cells

sulfated HSPGs acted as alternative receptors (Figure 6). In

summary our data indicated that HSPG-dependent (and CD46-

independent) Ad35 infection has in general a lower efficacy. In

our experiments, the CD46-Ad35 interaction was the dominant

mechanism as compared to HSPG-Ad35 interaction (when both

CD46 and HSPGs were expressed on the cell). The HSPG-Ad35

interaction therefore had apparently a lower affinity as compared

to the CD46-Ad35 interaction. Ramos cells (which expressed

CD46, but not HSPGs) bound very efficiently Ad35 knob and

viral particles, which showed that HSPGs are not required for

Ad35 attachment to CD46 expressing cells. In summary, the

data support a dual role of HSPGs in Ad35 infection: They act

as alternative low-affinity receptors for CD46-independent

infection (in the absence of CD46 expression; summarized in

Figure 6) but they also represent a physical barrier between Ad35

and CD46 (in the presence of CD46 expression). Since sulfated

HSPGs can act as Ad35 receptors, the barrier function of

HSPGs towards CD46 is unlikely to be due to electrostatic

repulsion of the Ad35 capsid and we therefore speculate that

HSPGs are more likely to physically block access of Ad35 to

CD46.

Because CD46 is expressed on all nucleated cells in humans, the

question about the relevance of Ad35 binding studies on cells that

lack CD46 arises. Considering our conclusion that HSPGs are a

barrier to Ad35-CD46 interaction as well as our recent finding

that, in primary polarized epithelial cells, CD46 is trapped in tight

junctions (Robert Strauss, et al., in preparation), one could

speculate that CD46 is not accessible on epithelial tissue in vivo.

This scenario is not new for adenoviruses. On lung epithelial

tissue, CAR, the receptor for most adenoviruses including Ad2

and Ad5, is expressed only on the basolateral surface and access to

CAR is blocked by the glycocalix [38,39]. Interestingly, Ad2 and

Ad5 also interact with HSPG with low affinity [26]. We therefore

hypothesize that adenoviruses, in general, have evolved to interact

with the ubiquitinously present HSPGs to gain access to a high

affinity receptor. Another focus of our future studies is therefore to

study cellular signaling upon Ad-HSPG interaction in vitro and in

vivo.

Materials and Methods

Cell lines
293 (Microbix, Toronto, Ontario, Canada), A549, K562 and

HeLa (American Type Culture Collection, ATCC) were cultured

in Dulbecco modified Eagle medium (DMEM) supplemented with

10% fetal bovine serum (FBS). Y79 and Ramos (ATCC) cells were

maintained in RPMI 1640 medium supplemented with 20% FBS,

1 mM sodium pyruvate, and 10 mM HEPES. CHO-K1, CHO-

pgsA-745, CHO-pgsE-606 (ATCC) and CHO-C2 cells (provided

by John Atkinson, Washington University, St. Louis, MO) were

cultured in minimal essential medium (MEM) supplemented with

10% FBS, 200 mM asparagine, and 200 mM proline. All of the

media described above were additionally supplemented with

2 mM L-glutamine, 100 U penicillin/ml, and 100 mg streptomy-

cin/ml (Pen-Strep).

Viruses
Ad3 (GB strain) and Ad35 (Holden strain) were obtained from

the ATCC. Ad3 was also generously provided by Dr. Silvio

Hemmi (Institute of Molecular Biology, University of Zürich,

Switzerland) and found to be identical with the GB strain from the

ATCC as determined by sequencing of the viral genomes. Ads

were propagated in 293 cells, methyl-3H thymidine-labeled,

purified, dialyzed and stored in aliquots as described elsewhere

[40,41]. Wild-type Ad particle (viral particle, VP) concentrations

were determined spectrophotometrically by measuring the optical

density at 260 nm (OD260) and plaque titering (plaque forming

units, pfu) was performed using 293 cells as described elsewhere

[40]. The pfu:VP ratios for Ad3 and Ad35 were both 1:15.

Multiplicities of infection (MOIs) are stated as pfu per cell for CPE

and MTT assays and as VP per cell for internalization and

attachment assays.

Antibodies, recombinant fiber knobs, soluble CD46, and
wheat germ agglutinin

Monoclonal antibodies (mAbs) directed against CD46 (clone

MEM-258; Serotec), CD80 (L307.4; PE-labeled; BD Pharmingen,

San Jose, CA), CD86 (clone 2331; PE-labeled; BD Pharmingen),

and HSPG (clone F58-10E4; Seikagu) were used for flow

cytometry. The knob domains of Ad3 and Ad35 fibers were

produced in E. coli with N-terminal tags of six consecutive histidine

residues (6-HIS), using the pQE30 expression vector (Qiagen,

Valencia, CA) and purified by Ni-NTA agarose chromatography
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as described elsewhere [35]. The fiber knob proteins were dialyzed

against 5 mM KCl, 17% glycerol, and 10 mM MgCl2. Soluble

CD46 was produced in 293 cells stably transfected with soluble

CD46 expression plasmid as described elsewhere [35]. FITC-

labeled wheat germ agglutinin was purchased from Vector

Laboratories (Burlingame, CA).

Western blot
Recombinant Ad3 and Ad35 knobs (1 mg respectively) were

separated by polyacrylamide gel electrophoresis and then

transferred onto nitrocellulose membranes. Protein samples were

loaded in loading buffer (50 mM Tris-HCl, pH6.8, 100 mM

dithiothreitol, 2% sodium dodecyl sulfate, 10% glycerol, 0.2%

bromophenol blue) without boiling. To detect whether recombi-

nant Ad3 and Ad35 knobs bind to CD46, the blot was incubated

with sCD46 in TBS (10 mM Tris-HCl, pH 7.5, 150 mM NaCl)

and 3% blotting grade milk (BIO-RAD, Hercules, CA) for 1 h at

room temperature (RT) and then washed three times for 10 min in

TBS-0.05% Tween20 (TBS-T) buffer. The blot was then

incubated with anti-CD46 antibody (clone J4.48; Fitzgerald,

Concord, MA) (1:50) in TBS and 3% milk for 1 h at RT and

then washed three times for 10 min in TBS-T buffer. To visualize

binding, the blot was incubated with goat anti-mouse immuno-

globulin G (IgG)-horseradish peroxidase (HRP) (BD Pharmingen)

(1:1000) in TBS and 3% blotting grade milk for 1 h at RT. To

detect whether recombinant Ad3 and Ad35 knobs bind to

Heparin, the blots were incubated with Heparin-biotin (Sigma)

(1:1000) in TBS for 1 h at RT and then washed three times for

10 min in TBS-T. The blot was then incubated with Streptavidin-

HRP (eBioscience, San Diego, CA) (1:250) in TBS and 3% milk

for 1 h at RT and then washed three times for 10 min in TBS-T

buffer. Finally, blots were subjected to enhanced chemilumines-

cence substrate (Pierce, Rockford, IL).

Flow cytometry
Adherent cells were detached by treatment with Versene

(Gibco). After being washed, cells were resuspended in 120 ml of

wash buffer (WB; phosphate-buffered saline-1% fetal bovine

serum) and incubated for 45 min at 4uC with mAbs (final

concentration, 1 mg/ml). Subsequently, cells were washed with

WB twice. For CD46 and HSPG staining cells were subsequently

incubated with Alexa Fluor 488 goat anti-mouse antibody

(Molecular Probes, Invitrogen Corporation, Carlsbad, CA) for

30 min at 4uC. After incubation with the secondary antibody, cells

were washed two times with WB. Control samples for CD46 and

HSPG staining were incubated with the isotype control as a

primary antibody (final concentration, 1 mg/ml) and Alexa Fluor

488 goat anti-mouse as a secondary antibody. Control samples for

CD80 and CD86 staining were incubated with PE-labeled isotype

control (final concentration, 1 mg/ml). Geometric mean fluores-

cence intensities were determined via flow cytometry using

104 cells per sample and a FACS scan machine (BD).

Fiber knob and virus attachment assays
All knob and virus attachment assays were carried out in a final

volume of 100 ml in ice-cold adhesion buffer (DMEM supple-

mented with 2 mM MgCl2, 1% FBS, and 20 mM HEPES)

containing 105 cells.
Ad fiber knob attachment assay. Cells were grown to

approximately 60–80% confluency, harvested with Versene,

washed twice with PBS. Portions of 105 cells were incubated

with Ad3 knob and Ad35 knob or without Ad knob in attachment

buffer for 1 h at 4uC. 1000 ng knob/105 cells ( = 9.416106 knob

trimers per cell) was used unless indicated otherwise. Cells were

then washed twice in ice-cold (4uC) attachment buffer. Cells were

next incubated with anti-Penta-His antibody (Qiagen), in washing

buffer (WB, PBS-1%FBS) for 1 h at 4uC, washed twice in WB and

incubated with AlexaFuor488 goat anti-mouse IgG antibody

(Molecular Probes, Eugene, OR), in WB for 1 h at 4uC. Cells were

washed twice in cold WB. Control samples were incubated without

knob and with anti-Penta-His primary antibody and

AlexaFuor488 goat anti-mouse IgG secondary antibody.

Background fluorescence of control samples was subtracted from

fluorescence of knob-incubated samples. Geometric mean

fluorescence intensities were determined via flow cytometry

using 104 cells per sample and a FACS Scan machine (BD).

Ad virus attachment assay. Cells were detached from

culture dishes by incubation with Versene and washed with PBS.

A total of 105 cells/tube were resuspended in 100 ml of ice-cold

adhesion buffer containing 3H-labeled Ad at a multiplicity of

infection (MOI) of 8000 VP per cell. After 1 h of incubation at

4uC, cells were pelleted and washed twice with 0.5 ml of ice-cold

WB. After the last wash, the supernatant was removed and the

cell-associated radioactivity was determined with a scintillation

counter. The number of VP bound per cell was calculated by using

the virion specific radioactivity and the number of cells.

Background scintillation was determined using cells that were

not incubated with 3H-labeled Ad. Background scintillation was

subtracted from scintillation of 3H-labeled Ad incubated samples.

Competition assays. The following modifications from the

attachment protocols described above were included in order to

compete Ad and/or Ad fiber knob binding: (i) For knob

competition of virus binding, various concentrations (0.01 to

20 mg/ml) of fiber knob were allowed to attach for 45 min at 4uC
in attachment buffer. Non-bound knob was removed by washing

cells twice with WB before cells were resuspended in attachment

buffer containing 3H-labeled Ad; (ii) For Heparin competition 3H-

labeled Ad or fiber knob was incubated in 50 ml attachment buffer

supplemented with 50 ml Heparin-Sodium solution (stock

concentration 1000USP Units/ml; American Pharmaceutical

Partners Inc., Schaumburg, IL) in a total of 100 ml for 1 h at

RT and 5 min on ice before adding to cells; (iii) For EDTA

competition cells were pretreated with 10 mM final concentration

of EDTA for 15 min at RT in attachment buffer and incubated at

5 min on ice before 3H-labeled Ad or fiber knob was added; (iv)

For Trypsin competition cells were pretreated with Trypsin-

0.1%EDTA (Gibco) solution for 15 min at 37uC and washed twice

with ice-cold WB before 3H-labeled Ad or fiber knob was added;

(v) For Heparinase I competition cells were preincubated with 1 U

Heparinase I (Sigma, St. Louis, MO) in 100 ml PBS for 1 h at

37uC and 5 min on ice and washed twice with ice-cold PBS before
3H-labeled Ad or fiber knob was added; (vi) For Neuraminidase

competition cells were pre-incubated with 20 mU Neuraminidase

(Sigma) in 100 ml PBS for 1 h at 37uC and 5 min on ice and

washed twice with ice-cold WB before 3H-labeled Ad or fiber knob

was added.

Virus internalization assay
56104 CHO cells per well were seeded in 24 well plates and

24 h later 3H-labeled Ad was added at multiplicities of infection

(MOIs) of 15,360 VP/cell (Ad3) or 153,600 VP/cell (Ad35). Five

days post-infection cells were detached and surface bound viral

particles were removed using incubation with Trypsin-0.1%EDTA

(Gibco) for 10 min. Cells were washed twice with 0.5 ml of ice-

cold WB. After the last wash, the supernatant was removed and

the cell-associated radioactivity was determined with a scintillation

counter. The number of VP internalized per cell was calculated by

using the virion specific radioactivity and the number of cells.
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Background scintillation was determined using cells that were not

incubated with 3H-labeled Ad. Background scintillation was

subtracted from scintillation of 3H-labeled Ad incubated samples.

Virus replication assays
56104 CHO or A549 cells were seeded in one ml medium per

well in 24 well plates and 24 h later infected with multiplicities of

infection (MOIs) of 100 pfu/cell (Ad3 and Ad35, A549 cells),

1024 pfu/cell (Ad3, CHO cells), and 10240 pfu/cell (Ad35, CHO

cells). Cells (adherent and floating) and supernatants were collected

at time points 0 h and 5 days post-infection for quantification of

Ad3 and Ad35 genomes and plaque forming units in order to test

for viral replication.

Viral genomes. Ad3 and Ad35 genomes (genomes per ml) were

quantified 0 h and 5 days post-infection. Total DNA from individual

samples (supernatant and cells) was extracted using the Blood & Cell

Culture DNA Mini Kit (Qiagen). Before DNA extraction each

sample was supplemented with 26106 non-infected CHO-K1 cells to

provide carrier DNA. Ad3 and Ad35 viral genomes were

subsequently quantified via real-time PCR using a LightCycler

(Roche) and a QuantiTect Sybr Green PCR Kit (Qiagen). The

following primer pairs located within the fiber encoding regions were

used: Ad3-F, 59-AGCTCGGCTAAGCACTTCCT-39; Ad3-R, 59–

GGAGCCGCTTGCAGTGGTAA -39 (168 bp amplicon, PubMed

accession# AY599834); Ad35-F, 59- TCTTCTACAGCGAC-

CAGTGA -39; Ad35-R, 59- ATGGCATAGGCAACATTGGA -

39 (211 bp amplicon, PubMed accession# AC_000019). Samples

were equalized for DNA input using control primers against the

hamster 16S ribosomal RNA gene: HA-16S-F: 59-

CGAAACCAAACGAGCTACCTA-39; HA-16S-R: 59-

TGGGTAACCAGCTATCACCA -39 (121 bp amplicon, PubMed

accession# AY011148). Dilution series of purified Ad DNA and

cellular DNA were used as standard curves. Specificity of

amplification products was confirmed using melting curve analysis

and agarose gel electrophoresis. PCR conditions were 15 min at

95uC followed by 45 amplification cycles (20 sec at 60uC, 20 sec at

72uC and 15 sec at 95uC).

Plaque forming units. Ad3 and Ad35 plaque forming units

(pfu per ml) were quantified 0 h and 5 days post-infection.

Samples (supernatant and cells) were incubated in liquid nitrogen

and at 37uC four consecutive times to release viral particles from

cells. Subsequently, pfu titering was performed as described above

(see Viruses).

Immunohistochemistry
1.256104 CHO-K1 cells were seeded per well in Lab-Tek 8-

well chamber glass slides (Nalge Nunc International, Rochester,

NY). 24 h later cells were infected with various MOIs of Ad3 (0,

64, 128, 256, 512, 1024 pfu/cell) or Ad35 (0, 640, 1280, 2560,

5120, 10240 pfu/cell). Three days post-infection, cells were fixed

with Acetone/Methanol and washed twice with PBS. Slides were

blocked for 20 min at RT using PBS-5% blotting grade milk (BIO-

RAD, Hercules, CA) followed by incubation with Cy3-labeled

mouse anti-hexon antibody (concentration 1:100; clone 20/11;

Chemicon International) and FITC-labeled mouse anti-E-cad-

herin antibody (concentration 1:100; clone 36/E-Cadherin, BD

Pharmingen) in PBS for 1 h at RT. Slides were washed twice with

PBS, mounted with Mounting Medium for Fluorescence (with

DAPI; Vector Laboratories) and then analyzed using a fluores-

cence microscope.

CPE assay
Human cells. 16105 HeLa or A549 cells were seeded per

well in 24 well plates and incubated 24 h later with 4 U/ml

Heparinase I (Sigma) for 6 h followed by infection with Ad3 and

Ad35 using multiplicities of infection (MOIs) ranging from 2–

100 pfu/cell.

CHO cells. 1.256104 CHO-K1, CHO-pgsA-745 or CHO-

pgsE-606 cells were seeded per well in 96 well plates and 24 h later

infected with MOIs ranging from 64–2048 pfu/cell (Ad3) or 640–

20480 pfu/cell (Ad35).

Cells were continuously monitored for CPE as a sign for viral

infection. CPE was defined as the presence of both a discontinuous

cellular monolayer (‘‘gaps’’) and detached (‘‘round’’) cells at the

same time. Cells were photographed via microscopy (magnifica-

tion 406) after crystal violet staining. For crystal violet staining

CHO cells were fixed 5 days after infection with 4% paraformal-

dehyde for 10 min at room temperature. Fixed cells were

incubated for 10 min in 1% crystal violet in 70% ethanol,

followed by three rinses with water.

MTT assay
1.256104 CHO-K1, CHO-pgsA-745 or CHO-pgsE-606 cells

were seeded per well in 100 ml medium in 96 well plates and 24 h

later infected with MOIs ranging from 64–1024 pfu/cell (Ad3) or

640–10240 pfu/cell (Ad35). 7 days post-infection 20 ml of MTT

stock solution (stock concentration 5 mg/ml in PBS) was added in

each well and cells were incubated for 2 h at 37uC. Medium was

removed and cells were washed twice with PBS and then air-dried.

100 ml of DMSO/well was added and incubated for 30 min at RT

in order to dissolve crystals. Absorbance was measured in plate

reader at 546 nm.

Glycan array
We used a high-throughput glycan array developed by cores D

and H of the Consortium for Functional Glycomics (CFG; an NIH

National Institute of General Medical Sciences initiative) for

identifying specific carbohydrate binding partners for proteins.

The glycan binding specificities of Ad3 and Ad35 recombinant

fiber knob were screened. The printed array (Version 3.0)

contained 320 different natural and synthetic glycans (including

sialylated sugars with different linkages and modifications, for

example, sulfation, but not heparin sulfate; http://www.

functionalglycomics.org/glycomics/publicdata/microarray.jsp).

The method used for generating the printed array is detailed in a

publication by Blixt et al. [42]. Briefly, the array is created using a

robotic printing technology that uses amine coupling to covalently

link amine-functionalized glycans or glycanconjugates to amine-

reactive N-hydroxysuccinimide-activated glass slides. The slides

contain six addresses per glycan or glycoconjugate. A printed slide

was incubated with Ad3 or Ad35 knob (100 mg/ml), and then an

anti-Penta-His monoclonal antibody (Qiagen) (1 mg/ml) was

overlaid on the bound knobs followed by a goat anti-mouse

AlexaFluor488-labeled secondary antibody (Molecular Probes)

(1 mg/ml). The fluorescence intensity was detected using a

ScanArray 5000 (Perkin-Elmer Inc.) confocal scanner. The image

was analyzed using the IMAGENE image analysis software

(BioDiscovery, El Segundo, CA). The data were plotted using the

Microsoft EXCEL software.

Statistical analysis
Statistical significance was calculated by two-sided Student’s t-

test. P-values ,0.05 were considered statistically significant.

Supporting Information

Figure S1 Competition of Ad3 and Ad35 virus particle

attachment to 293 cells using pre-incubation of cells with
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increasing concentrations of the corresponding knob proteins.

Data points represent the mean and standard deviation of

experiments performed in triplicate. This experiment was

independently repeated once with a similar outcome.

Found at: doi:10.1371/journal.ppat.1000189.s001 (1.26 MB TIF)

Figure S2 Detection of Ad3 and Ad35 fiber knob binding to

HeLa cells. Overlays of representative flow cytometry charts are

shown. 16105 HeLa cells were incubated with increasing amounts

of Ad3 and Ad35 knob (0–2000 ng per 16105 cells) as indicated

by different colors. For mean fluorescence intensities and standard

deviations, see Figure 1B.

Found at: doi:10.1371/journal.ppat.1000189.s002 (1.70 MB TIF)

Figure S3 Competition of Ad3 knob, Ad35 knob, and wheat

germ agglutinin attachment to HeLa cells using Neuraminidase

pre-incubation of cells. Bars represent the mean and standard

deviation of experiments performed in duplicate.

Found at: doi:10.1371/journal.ppat.1000189.s003 (1.19 MB TIF)

Figure S4 Detection of CD46, HSPG, CD80, and CD86 surface

expression on HeLa, A549, K562, and Ramos cells. Overlays of

representative flow cytometry charts are shown.

Found at: doi:10.1371/journal.ppat.1000189.s004 (1.80 MB TIF)

Figure S5 Ad3 and Ad35 internalization assay in CHO-K1,

CHO-pgsA-745, and CHO-pgsE-606 cells. 3H-labeled Ad3 and

Ad35 viral particles internalized per cell 5 days post-infection are

shown. Bars represent the mean and standard deviation of

experiments performed in duplicate.

Found at: doi:10.1371/journal.ppat.1000189.s005 (1.27 MB TIF)

Figure S6 Ad3 and Ad35 viral replication assay. Fold increase of

plaque-forming units 5 days post-infection of CHO-K1, CHO-

pgs-745, CHO-pgsE-606, and A549 cells is shown. Bars represent

the mean and standard deviation of experiments performed in

duplicate.

Found at: doi:10.1371/journal.ppat.1000189.s006 (1.33 MB TIF)
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