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Self-reported race/ethnicity in the age of genomic
research: its potential impact on understanding
health disparities
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Abstract

This review explores the limitations of self-reported race, ethnicity, and genetic ancestry in biomedical research.
Various terminologies are used to classify human differences in genomic research including race, ethnicity, and
ancestry. Although race and ethnicity are related, race refers to a person’s physical appearance, such as skin color
and eye color. Ethnicity, on the other hand, refers to communality in cultural heritage, language, social practice,
traditions, and geopolitical factors. Genetic ancestry inferred using ancestry informative markers (AIMs) is based on
genetic/genomic data. Phenotype-based race/ethnicity information and data computed using AIMs often disagree.
For example, self-reporting African Americans can have drastically different levels of African or European ancestry.
Genetic analysis of individual ancestry shows that some self-identified African Americans have up to 99% of
European ancestry, whereas some self-identified European Americans have substantial admixture from African
ancestry. Similarly, African ancestry in the Latino population varies between 3% in Mexican Americans to 16% in
Puerto Ricans. The implication of this is that, in African American or Latino populations, self-reported ancestry may
not be as accurate as direct assessment of individual genomic information in predicting treatment outcomes. To
better understand human genetic variation in the context of health disparities, we suggest using “ancestry”
(or biogeographical ancestry) to describe actual genetic variation, “race” to describe health disparity in societies
characterized by racial categories, and “ethnicity” to describe traditions, lifestyle, diet, and values. We also suggest
using ancestry informative markers for precise characterization of individuals’ biological ancestry. Understanding the
sources of human genetic variation and the causes of health disparities could lead to interventions that would
improve the health of all individuals.
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Genetic variation in the human genome
The human genome is composed of over three billion
bases of DNA and contains between 25,000 and 30,000
protein-coding genes [1]. On average, any two randomly
selected humans have 99.9% identical DNA [2]. Yet,
these 0.1% differences spreading over the entire genome
contribute to genetic heterogeneity that uniquely distin-
guishes each person. Because the majority of the human
genome contains non-coding DNA, the bulk of this
genetic diversity is not visible at the phenotype level.
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Variable regions on the genome are broadly classified into
single nucleotide polymorphisms (SNPs) and structural
variations (SVs). SNPs are changes in single DNA bases
whereas SVs involve large genomic changes including
indels and genomic rearrangements (translocation, trans-
version). The International HapMap Project was the first
multi-institutional effort to catalog variations and develop
a haplotype map (HapMap) of the human genome. The
HapMap project had identified over 5 million SNPs in the
human genome including their distribution among people
in different parts of the world [3]. While successful, the
HapMap project had two major limitations: 1) it encom-
passed only SNPs, and 2) it only contained the most com-
mon genetic variants (those with frequencies >5%). Many
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genetic disorders are caused by rare SNPs (with fre-
quencies <5%) and by SVs. The 1000 Genomes Project
was formed in 2008 to sequence and generate a catalog of
human genetic variation and haplotypes from the ge-
nomes of at least 1,000 people around the world (hence
the name the 1000 Genome Project). The current phase 3
analysis of the project contains 2,535 individuals from 26
populations and identified a total of over 81 million vari-
ants, ranging from SNPs, indels, and other small variants to
insertions of mobile elements and large structural variants
spanning 100 s of kilobases (http://www.1000genomes.org/).
This haplotype resource at finer scales will facilitate the
understanding of genetic variation at genomic and geo-
graphic levels [4].
Because of their sheer number, SNPs are the major

sources of genetic and phenotypic diversity, accounting
for 95% of all known sequence variations [5]. Different
versions of the DNA bases present at a SNP locus are re-
ferred to as alleles. Alleles with a frequency greater than
5% are called common variants, those with a frequency
of 1%–5% are low frequent variants and those less than
1% are rare variants. Because rare variants might have
arisen after populations diverged or occurred in recent
human history, they are more likely to be population-
specific and, therefore, they may not be shared with
different populations. Thus, the overrepresentation of
rare causal variants in certain population could explain
the observed differences in disease prevalence, including
asthma [6].
There are two potential reasons why some variants

are relatively common in one population but absent (or
nearly so) in another: a) a recent emergence of a variant
that has not yet had time to spread to other populations
and b) natural selection in a specific local environment.
An example of the first scenario is a SNP that causes her-
editary hemochromatosis, which is common in Europe
but very rare elsewhere. Lactase persistence is an excellent
example of the influence of natural selection on allelic
frequency. Lactase persistence into adulthood is prevalent
in Somali camel herders from Ethiopia where milk con-
sumption continues beyond childhood [7]. Positive selec-
tion in a geographic-specific manner has also been seen in
genes that affect skin pigmentation [8] and resistance to
malaria [9].

Human ancestry
Anatomically, modern humans first appeared in Africa
some 150,000 to 200,000 years ago [10]. About 60,000 years
ago, humans left Africa in waves of migrations and,
through a sequential chain of colonies, spread to occupy
most of today’s land masses. During this journey, they en-
countered different environments and climates and came
in contact with novel pathogens and animals. They formed
local communities, separated by geographic, linguistic,
cultural, and social barriers. Mutation, genetic drift, and
natural selection operated in parallel with demographic
and historical events to weave the patterns of human vari-
ation in extant populations. The result of this interplay
was the imprint of genetic ancestry and population struc-
ture carried in the genome of each individual and groups
that lead to the development of the remarkable racial and
ethnic diversity that we see today.
Race and ethnicity are widely used interchangeably in

population research and incorporate cultural, linguistic,
biological, and geopolitical factors [11]. Although its use
is primarily social, the term “race” is commonly defined
in the scientific literature to refer to biological dif-
ferences (such as skin color) between groups assumed
to have different biogeographical ancestries or genetic
makeup [11]. It is a “construct of human variability
based on perceived differences in biology, physical ap-
pearance, and behavior” [12]. To the contrary, ethnicity
is a complex multidimensional construct that reflects
biological factors, geographical origins, historical in-
fluences, as well as shared customs, beliefs, and tradi-
tions among populations that may or may not have a
common genetic origin [13]. For example, the Caucasian
race contains such ethnicities as German, Irish, Spanish,
and French each with their own culture, language, and
tradition. Self-reported race/ethnicity is frequently used
in epidemiological studies to assess an individual’s back-
ground origin. Often times, participants in the US are
asked to specify a single race/ethnic group based on six
categories: White, Black, Black Hispanic, White Hispanic,
Asian, or other. Most questionnaires do not offer an op-
portunity for participants to choose multiple responses on
their ancestral heritage. Most often, one family member
declares for the rest, thus preventing detailed analysis of
individuals with multiple (and differing) origins. A child of
mixed parents (one black and one white) is socially classi-
fied as black, even though genetically, the child could just
as easily be considered white (genotype 50/50). This
classification was based on historical mandate of the
“one-drop rule,” which stated that any individual with
African ancestry would be considered a member of
the Black race [14]. African and European ancestry in
self-identified African Americans can vary wildly with pro-
portions of European ancestry spanning the full range of
variation, which can have significant impact on how we
identify disease loci using genetics approach [13]. Parra
[15] presents data showing that the percentage of
European contribution to several African American com-
munities within the continental US varies tenfold, from
3.5% in the isolated Gullah-speaking Sea Islanders from
South Carolina to 35% in Seattle (Figure 1). Another
example with broad ranges variation in admixture is the
“Hispanic” or “Latino” population. The use of a single
Hispanic or Latino ethnic category is insufficient for
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Figure 1 Map showing estimates of the percentage of European contribution to several African American communities throughout
the US. The percentage of European contribution to several African American samples within the continental US varies tenfold, from 3.5% in the
isolated Gullah-speaking Sea Islanders from South Carolina to 35% in Seattle. Reproduced from Parra [15].
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characterizing genetic background associated with Hispanics
or Latinos because Hispanics have variable proportions of
European, Native American, and African ancestry [16], as
well as disease prevalence including asthma [17]. Mexican
Americans, on average, have a higher proportion of Native
American ancestry (ranging from 35% to 64%) but a lower
proportion of African ancestry (ranging from 3% to 5%)
than Puerto Ricans (Native American ancestry ranges bet-
ween 12% and 15% and African ancestry ranges between
18% and 25%) [18-20] (Figure 2). Such higher proportion
of African ancestry in Puerto Ricans could be the reason
why the prevalence of asthma is the highest among Puerto
Ricans (19.9%) and the lowest among Mexican Americans
(6.5%). This phenomenon is referred to as the “Hispanic
Paradox” [21].
Figure 2 Ancestry proportions of Mexicans vs. Puerto Ricans. Althoug
Mexicans, on average, have a higher proportion of Native American ancest
Puerto Ricans have lower proportion of Native American ancestry (12%–15
from Risch et al. [22].
Although on average, populations that are geogra-
phically close to one another show stronger correlation
and higher genetic similarity than geographically sepa-
rated populations and substantial differences in allele
frequencies are also observed within geographic regions
[23]. Several studies including ours showed that genetic
diversity in humans is higher between individuals of the
same race (~85%) than between races (~15%) [4,24]. A
good example is the wide variation observed in two African
populations. The prevalence of HLA-B*5701 variant in the
Masai group in Kenya is 13.6%; the frequency of the same
allele was zero among the Yoruba in Nigeria and 5.8%
among European ancestry. Another seminal study is the
complete sequence of two US scientists of European origin,
namely, James Watson and Craig Venter, and an Asian
h Mexicans and Puerto Ricans are both considered Latino or Hispanics,
ry (35%–64%) but a lower proportion of African ancestry (3%–5%).
%) and higher proportion of African ancestry (18%–25%). Reproduced
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scientist, Seong-Jin Kim. The two Europeans share fewer
SNPs (461,000) than they each share with Seong-Jin Kim
(569,000 and 481,000, respectively) [25-27]. On the basis of
the subjects’ physical appearance, one would consider
Venter’s DNA, and not Kim’s, a better approximation of
Watson’s DNA. These results reflect a well-known feature
of human diversity, that is, different genetic polymor-
phisms are distributed over the world in a discordant man-
ner [28,29]. These observations reveal characterization of
races simply as “White” or “Caucasian”, “Asian”, “African”,
or “Latino” which are poor predictors of human biological
diversity or similarity. Thus, although race/ethnicity cate-
gories are helpful to study socio-cultural and traditional
values within groups and can help cluster individuals com-
ing from geographically distant regions, they do not reveal
the extent of admixture in an individual with admixed an-
cestry (Table 1). This is because an admixed individual can
have multiple ancestries through intermixing (e.g., ‘Latino’)
[30]. Group identity (for example, Hispanic American vs.
African American) and genetic heritage are much more
complex than self-identity. Although skin colors are often
associated with race, individuals with light skin or dark
skin could have an appreciable number of black or white
ancestry genes, respectively. This is because visual classifi-
cation of skin color is interpreted differently by patients,
health care workers, and family doctors [31,32]. For ex-
ample, studies in Cuba showed that the same individual
can be classified into different color categories: family doc-
tors tend to classify them as darker, while health care
workers tend to classify them as lighter [31,32]. In addition,
two people with the same level of pigmentation (melanin
index) and skin color in two different parts of Cuba could
be classified into different color categories. In Villa Clara
Province, a person would be identified as mestizo, while in
Santiago de Cuba, where more of the population is darker-
skinned, a person with the same pigmentation could be
classified as white [33]. Using autosomal ancestry markers,
72% of Cuban genes have European descent, 20% African,
and 8% Native American [33,34]. Similarly, in Brazil, the
correlation between biogeographic ancestry and categories
of skin colors are region-dependent, relatively stronger
correlations in Salvador (r = 0.585, P < 0.001) than those
Table 1 Comparison between estimates of genetic ancestry a
populations from 1000 genomes project datasets

Self-reported race

Ancestral population gen

CEU (%)

Mean ± SD

European ancestry (CEU) (n = 87) 0.976 ± 0.022

African ancestry (YRI) (n = 88) 0.013 ± 0.009

African American (AA) (n = 61) 0.108 ± 0.152

CEU European ancestry, YRI African ancestry from Nigeria, AA African American.
in Fortaleza (r = 0.236, P < 0.001) [35]. Thus, skin color
cannot reflect the actual genetic ancestry of individuals. Dr.
Beatriz Marcheco had described this eloquently as “The
classic mirror reflects skin color; but the DNA mirror re-
flects our common ancestors” [33].
Empirically speaking, ancestry is estimated using an-

cestry informative markers (AIMs), which are a set of
genetic variations for a particular DNA sequence that
appear in different frequencies in populations from dif-
ferent regions of the world. The use of AIMs compares
an individual’s polymorphisms at these markers with
previously analyzed genomic reference sets from people
whose ancestral history is fairly well known. AIMs are
used to estimate the geographical origins of an indi-
vidual’s ancestors, typically expressed as proportions of
one’s ancestry that comes from different continental re-
gions [36].
Availability of genetic markers that are ancestry-

informative and newly developed statistical methods may
overcome concerns regarding race/ethnicity categorization
[37]. There is evidence that measures of genetic ancestry
can improve clinical care for people of mixed race. For
example, physicians assessing lung disease can make
more accurate diagnoses when they use a reference stan-
dard from the patients’ actual genetic ancestry than
self-reported race or ethnicity [38]. A large proportion of
Native American ancestry is associated with a greater risk
of childhood acute lymphoblastic leukemia. Children with
more than 10% Native American ancestry need an addi-
tional round of chemotherapy to respond to the treatment
[39]. Differences in ancestry proportion in admixed popu-
lation could introduce variation among individuals of the
same race and potentially alter genetic association and the
therapeutic efficacy of commonly used asthma therapies,
such as β2-adrenergic receptor agonists (β-agonists)
[40,41]. So far, pharmacogenetic studies of admixed ethnic
groups have been limited to small candidate gene asso-
ciation studies. Large consortium-based whole genome
sequencing studies are required to provide a reference
“genome map” for population without precise matching
reference panel including admixed populations for future
genetic/genomic and pharmacogenetic studies.
nd self-reported race in African and European American

etic ancestry

AA (%)

Min–max Mean ± SD Min–max

0.887–0.994 0.024 ± 0.022 0.006–0.113

0.006–0.073 0.987 ± 0.009 0.927–0.994

0.006–0.990 0.892 ± 0.152 0.010–0.980
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Genetic markers used to infer ancestry: autosomal
SNPs, Y-SNPs, mitochondrial SNPs, and X-SNPs
Although autosomal SNPs are commonly used as gene-
tic markers to infer ancestry or race/ethnicity member-
ship, haploid such as mitochondria, Y-DNA, and X-lined
markers are also important to provide separate stories of
ancestry of individuals from paternal and maternal sides
[42,43]. Therefore, genetic structure created due to auto-
somal markers could be different from those of lineage
markers (often influenced by political, social, and migra-
tion history of individuals/populations).

a) Autosomal DNA (testing both sexes) markers:
autosomal DNA tests utilize DNA from the 22 pairs
of autosomal chromosomes. Autosomal DNA is
inherited from both parents. Autosomal testing
provides percentages of ethnicity using autosomal
DNA SNP test (i.e., ancestry informative markers),
and it is the most commonly used test to infer
ancestry across diploid genome.

b) Y-DNA or Y-SNPs (paternal line testing) markers:
a haploid Y-DNA is the paternally inherited
non-recombining portion of the Y chromosome, and
it tests only for males. The Y-DNA testing tests the
Y chromosome which is passed intact from father to
son with no DNA from the mother. Y-DNA testing
can then be used to trace direct paternal line.
Y-DNA remains the same in each generation,
allowing us to compare surname from different
regions to see if we are from the same family. Y-line
testing does not indicate anything about the
contributions of the other ancestors in a family tree.
In other words, you could be 3/4th Native
American, with only the direct paternal line being
European, and this test would tell you nothing at all
about those other three Native lines. When testing
the Y-chromosome, there are two types of tests,
short tandem repeat (STR) and SNP markers. STR
tests are best for recent ancestry while SNP tests tell
about more ancient ancestry.

c) Mitochondrial DNA (maternal line testing) markers:
mitochondrial DNA or mtDNA haploid is the
maternally inherited mitochondrial genome
(mtDNA) [44]. All children inherit mtDNA from
their mother, with no admixture from the father.
Like Y-line DNA, mtDNA is passed intact from one
generation to the next but through maternal line.
Mitochondrial DNA does not follow any surname.
In fact, the surname changes in every generation
when women marry. Polymorphisms of mtDNA
have been used to understand human population
distribution around the world. Before modern
human traveled across the world, mitochondrial
haplogroups were largely restricted to the
geographic regions of their origin [45]. For this
reason, they are often superimposed on maps of the
globe as representative of the human populations
derived from those regions of the planet. The
mitochondrial genome is a critical target for
inherited disparity due to ethnic-based diversity,
which is greatest within Africa. Because of the
clear associations of mitochondrial haplogroups and
ethnic categories with geography, one might naively
expect a simple correlation between the two
classifications. While, for instance, there is broad
correspondence between the L haplogroups and
African ethnicity assignments, African ethnicity
assignments are present to varying degrees in
virtually every haplogroup analyzed and almost every
haplogroup contains members of each of the four
ethnicities. This is not particularly surprising due to
the fact that mitochondrial DNA represents only a
very small segment of the complex mosaic of a
human’s genetic ancestry, and it suggests that the
ability to infer coarse ethnic identity from
mitochondrial sequence would be very limited. In
fact, studies found that mitochondrial DNA can be
used to infer the probable assignment of coarse
ethnicity with almost 90% accuracy [46]. This level
of accuracy in predicting investigator-assigned
ethnicity could be very useful in forensic
investigations [47].

d) X chromosome (X-DNA testing) markers: an
X chromosome DNA test looks at markers on
X chromosome(s). Males have one X chromosome
that they inherit exclusively from their mother, and
females have two X chromosomes that they inherit
from both parents, one from their father and one
from their mother. This creates a unique inheritance
pattern that may provide many insights into one’s
maternal heritage. STR markers on the
X chromosome have been used in population
genetic studies and forensics.

There are two main benefits in using haploid (Y-DNA
and mitDNA) markers over diploid (autosomal) markers:
1) they lack recombination. This allows for more easily
recoverable phylogenies than is possible for the auto-
somal markers, allowing for the easier identification of
geographically restricted clades, which could be indica-
tive of past historical migration. The second benefit in
using the sex-specific systems is their 2) much small
effective population size related to autosomal markers
due to their haploid mode of inheritance through one
sex only. Genetic diversity of present-day American pop-
ulations is very complex due to the demographic events
that resulted in extremely admixed populations [48].
Through the analysis of lineage markers such as mtDNA
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andY-DNA, it is possible to isolate the original Native
American lineages without the confounding effects of
admixture due to the absence of recombination. The Native
American share was conserved through the maternal line.
Since only the egg, not the sperm, contains cytoplasm, we
can use this to distinguish the original mother. Studies have
shown that the “Eve” for Cuban population is about 38.8%
African, 34.5% Native Americans, and 26.7% Europeans.
Conversely, by using the Y chromosome, studies have
shown that 82% of Cubans are descendants of European
fathers, 17% of African fathers, and 1% of indigenous
fathers [33,34].

Multi-locus ancestral haplotype as
ancestry-informative regions (AIRs)
Although variation in humans reflect genetic differences
at single allele as well as haplotype level, most local
ancestry estimators use allele frequency data (locus-by-
locus) between parental contributions along the chromo-
some, ignoring molecular information that is available in
haplotype block structure. Individual mutations carry
only weak signals about population ancestry. By adding
information across the whole genome at haplotype level,
we can reconstruct these admixture events more accur-
ately. It has been described that less than 50% of admixture
is hard to detect from single locus (or non-recombining
genome) data. The power of detecting ancestry switch
points between European and African ancestry per person
becomes feasible as more and more loci are identified [49].
This approach is referred to as haplotype sharing [50] and
involves sharing several markers to identify regions of
interest [51] rather than relying on differences in allele
frequencies at individual markers. However, previous me-
thods do not take into account multiple loci as provided by
haplotype structure in ancestral populations. Potential
advantages of multipoint ancestral haplotypes include:
(1) their use of more information in the data when a sus-
ceptibility variant in the region is untyped or partially typed
and (2) the fact that likelihoods at nearby variants are
based on the same data, so they are formally comparable
for the purposes of localization. As a result, multipoint
ancestral haplotype methods have the potential to vastly
improve and provide high-resolution localization of vari-
ants over single-point methods [52]. By considering the ge-
nealogy of ancestral haplotype rather than pairs of variants,
this approach may allow the joint estimation of other inter-
esting parameters in the admixture model, such as admix-
ture time, divergence time, population size, and mutation
rate as described by Wang [53].
In a founder population, patients with a genetic disease

are likely to share predisposing genes from a common
ancestor. Depending on the distance of the relationship,
patients are expected to share extended segments of DNA
around the disease gene, thus the extent of linkage
disequilibrium (LD) between the disease and the sur-
rounding marker (about 1 cM) is small enough to be
meaningful and large enough to be observed. Because of
the size of the shared segment, a genomic search with
DNA markers for such regions can efficiently locate the
map position of genes using identity by descent (IBD)
mapping [50]. IBD mapping is a haplotype sharing statistic
(HSS) approach, which uses (hidden) co-ancestry between
affected individuals from a founder population. Recently,
IBD mapping has been proposed as a useful approach to
map genes in a founder population [50]. IBD mapping
uses haplotype sharing at several markers rather than dif-
ferences in allele frequencies at individual markers to
identify regions of interest [51]. Devlin et al. [54] described
the possibility of mapping disease genes by analyzing ex-
cess haplotype sharing. Using this idea, one could inte-
grate information on LD structure of genotype data and
interrogating various SNP densities of the current SNP
chips, under various disease models and various levels of
informativeness among markers between the ancestral
populations to better optimize the power of LD admixture
mapping procedures and make them more efficient and
powerful to identify and localize liability genes for com-
plex diseases including asthma [36].
Limitations related to ancestry markers include the

reference sets, which are comprised of the genomes of
relatively few sampled individuals who are themselves
from a relatively few, geographically restricted regions.
Thus, to what extent is a panel derived by contrasting a
“Yoruban” sample with “Europeans” appropriate for use
in African-American samples? How much is the Yoruban
population represents Africa and hence African Americans
are debatable [37]. However, the same can be said to the
CEU population where recent high-density SNP studies
showed population gradient including linkage disequi-
librium discrepancies across the North–south and even
within Finland (East–west) [55]. Therefore, it is prudent to
recognize the limitations of ancestry informative markers
in genetic/genomic studies of admixed population.

Genetic ancestry and clinical predictive variables
Clinical asthma outcome variables such as pulmonary
function tests (PFTs) include forced vital capacity (FVC,
a measure of lung size), forced expiratory volume in 1 s
(FEV1, a standard measure of lung function), and FEV1/
FVC ratios. The variation in ancestry in relation to these
clinical predictive variables may help to explain diffe-
rences in disease phenotypes among ethnic subgroups.
Recent study showed that in Mexican Americans, European
ancestry was associated with more severe asthma, as mea-
sured by FEV1, a quantitative measure of lung function. A
decrease of 1.7% baseline FEV1 was observed per 10%
increase in European ancestry [56]. FEV1 is a measure of
airway caliber and a standard measure of lung function,



Table 2 Studies considering the relationship between degrees of ancestry proportion and asthma and asthma-related
outcomes

Study
population

Specific phenotype Study
subjects (n)

Ancestry
type

Markers (n) Main findings Reference

AA Lung function 2,169 Structure Variable Increasing Af ancestry associated
with lower FEV1 and lower FVC

Kumar et al. [38]

AA Asthma, exacerbation 392 Structure 59 Increasing Af ancestry associated
with increasingly severe asthma
exacerbation in males but not
females

Rumpel et al. [64]

AA Smoking/lung function interaction 1,281 Structure 1,332 Increasing Af ancestry associated
with lower FEV1 per pack-year of
smoking

Aldrich et al. [63]

LA Asthma severity 362 IBGA 44 Increasing NA ancestry associated
with less severe asthma

Salari et al. [56]

Puerto Ricans Lung function 416 LAMP 85,059 Increasing Af ancestry associated
with decreased FEV1 and FVC
pre- and post-bronchodilator

Brehm et al. [19]

Modified from Goetz et al. [62]. The structure is model-based clustering method; IBGA is a maximum likelihood-based clustering method, and LAMP is a local
ancestry in admixed population inference method.
Af African, Am Amerindian, As Asian, E European, NA Native American, AA African American, LA Latino American, FEV1 forced expiratory volume in 1 s, FVC forced
vital capacity.

Figure 3 Relationship of African ancestry proportions with lung
function in African-American male subjects using ancestry
informative markers. An inverse relationship between the
percentage of global African ancestry and baseline FEV1 (Forced
Expiratory Volume, measured in liters) are shown. Reproduced from
Kumar et al. [38].
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and FEV1/FVC ratio is a commonly used outcome to
assess airway obstruction [57]. Age-, race-, and ethnic-
appropriate reference equations will be used for PFT
results [57-59]. A recent study by the NHBLI-SARP case-
only cohort indicated the predictive role of PFT in asthma
severity [60,61].
Several studies have associated genetic ancestry with nu-

merous clinical endpoints. African ancestry was inversely
related to FEV1 (p = 0.007), FVC (p = 0.0003), and FEV1/
FVC (p = 0.035) (Table 2, Figure 3) [38,62]. Higher vs.
lower proportion of African ancestry, categorized based on
median value, has also been shown to be associated with
greater decline in the lung function per pack-year of smo-
king (−5.7 vs. –4.6 ml FEV1 per pack-year) in contrast to
the −3.9 ml FEV1 per pack-year smoked observed among
European Americans [63]. Additionally, African Americans
with higher proportions of African ancestry have a greater
risk of losing lung function while smoking. Studies have
shown that each percentage increase in African ancestry
was associated with an 8.9-ml decrease in FEV1 (p = 0.001)
and an 11.8-ml decrease in FVC (p = 0.0001). Higher
African ancestry was associated with a greater likelihood
for an asthma-related physician visit (p = 0.004) and greater
frequency of urgent or ED visits among asthmatics treated
with an inhaled glucocorticoid (p = 0.01). In African
Americans with more severe asthma, the magnitude of
decreased lung function associated with African ancestry
was twice that observed in the general population (−8.9 ml
vs. −4 ml for FEV1 per percentage African ancestry [38]).
These investigators found that adding genetically measured
ancestry to the standard lung function prediction equa-
tions, rather than relying on self-identified race, reduced
misclassification and resulted in the reclassification of
asthma severity by 5%. It is important to note that although
ancestry is associated with asthma clinical phenotypes, SES
and related environmental exposure risk factors were not
considered in this study and it is not clear whether race is
a confounder for existing socio-environmental differences
(i.e., may not be directly causal) between races or inde-
pendent risk factors (serving as surrogate for genetic
differences) for asthma risk. Many factors other than an-
cestry are influencing the development of asthma. A more
careful assessment of the degree of ancestry and asthma
in larger cohorts while controlling for environmental



Figure 4 Schematic representation of genomic mosaicism as a
result of ancestral admixture. An admixed individual derived
from two founders in several generations of recombination. The
chromosomes of the two founders (shown in different colors) are
combined by several generations of random mating to produce
present day admixed individual. A DNA sequence of any admixed
individual is a mosaic of its founders’ DNA segments. A classic
example in humans is the African-American population. The two
ancestral populations, European and African ancestry, are represented
by dark blue and red chromosomes, respectively. Individuals in the
subsequent generation may or may not receive an intact chromosome
of their ancestor. As generations continue, mosaics develop for
chromosomes 1 and 2 as a result of recombination during meiosis.
Chromosomal block sizes are expected to decay with the number of
generations of admixture. Only those meiotic crossovers that occur at
loci where the paired homologous chromosomes have different
ancestries will cause ancestry blocks to decay in size and can be
detected using ancestry informative markers (AIMs).
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exposure and other social determinants of health will fur-
ther our understanding.

Consortia- and self-reported race/ethnicity
information
To increase sample sizes and power, several research
groups are implementing meta-analysis to combine mul-
tiple consortia projects. The recently established Public
Population Project in Genomics (P3G) (http://www.p3g.
org/secretariat) promotes collaboration between resear-
chers in the field of population genomics to ensure public
access to population genomic data. These resources typi-
cally include biological samples (i.e., serum, plasma, and
DNA) linked to structured clinical databases (i.e., compre-
hensive electronic medical records (EMR) data) [65,66] in
a consortium setting. Considerable data is often collected
with each sample such as age, gender, place of residence,
state of health, specific diseases, lifestyle (such as how
much exercise, smoking, consume alcohol), and socio-
economic background. However, most EMRs collect only
limited historical information on the ancestry of the do-
nors. Most often, race/ethnicity ancestry data are missing
from the EMRs. In some cases, race/ethnicity is assigned
by other party such as study coordinator’s visual inspection
at time of enrollment and in others; study participants or
their guardians are asked to report a single race/ethnicity
that they feel best identifies them or their guardian. Hence,
there is “missing ancestry” in most EMR resources [13].
As the world populations increasingly do not fall into con-
ventional homogeneous ethnic categories (and becoming
highly admixed), the reliability of self-reported race/
ethnicity becomes more challenging in the current massive
worldwide efforts of integrating multiple consortia pro-
jects. In a recent study, Ritchie et al. [67] analyzed 9,483
samples in the Vanderbilt DNA Databank (BioVU) and
found missing ancestry information in 9.2% of the records.
They showed that most individuals with missing ancestry
cluster are in the European American group. However, for
individuals with mixed ancestry, such grouping only
predicts “major” ancestral clusters but do not reveal the
individual’s number of ancestries and/or admixture pro-
portion. In admixed individuals, where each chromosome
is likely to be a mosaic of blocks of DNA from ancestral
populations, ancestry varies across different loci or dif-
ferent genomic segments (Figure 4). Inferences of ad-
mixture proportions by combining information across
multiple loci or blocks provide valuable information in es-
timating and inferring ancestry. This is necessary since
grouping obtained using single locus ancestry will vary
between loci in an individual. For instance, we may ob-
serve the FY*0 (rs2814778) allele at a locus and conclude
African ancestry for an individual, but if we observe the
MID 575 (rs140864) insertion polymorphism, which is also
on the same chromosome as FY*0, then we would have to
conclude European ancestry for the same individual at that
locus. As a result, samples with missing ancestry could be
potentially a source of false positive and false negative
results. The availability of millions of genetic markers
at unprecedented levels from next-generation sequencing
technologies and multi-locus ancestry-based dataset ana-
lysis approach provide greater power than ever to assign
individuals with missing ancestries with great accuracy [36].
Thus, although a sample in a biobank with no information
on race/ethnicity were thought valueless (or remain as a
storage facility with limited practical application in disease
genetics), it is now possible to have a good idea of the an-
cestry of a given sample with missing ancestry information
and can be biologically categorized for specific studies. It
should be noted that EMRs data are uniquely suited for
studies that quantify the impact of ancestry in hetero-
geneous population and play a role in the development
of personalized medicine in which treatments will no

http://www.p3g.org/secretariat
http://www.p3g.org/secretariat
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longer be one-size-fits-all, instead tailored to the molecu-
lar and genetic profiles of each patient based on genomic
predictors.

Limitations of self-reported race/ethnicity and
genetic ancestry in disease genetics studies
Recent advance in high-resolution genome-wide geno-
typing allow the inference of genetic or “biogeographical”
ancestry using empirical description of individuals and
populations [46]. In determining and quantifying genetic
background, this technology can augment or supersede
the use of proxy methods, such as self-identified race/
ethnicity, physical appearance, language-spoken, or geo-
graphical origin, to stratify research participants and
maximize their relative genetic homogeneity. As described
above, the major problem in performing association stu-
dies of admixed populations that are assessed solely by
self-reported race/ethnicity as a proxy for genetic ancestry
is the possibility of spurious association with false-positive
or false-negative results. Self-reported and investigator-
assigned ethnicity typically relies on the subjective inter-
pretation of a complex combination of both genetic and
non-genetic information including behavior, cultural, and
societal norms, skin color, and other influences. It is rarely
the case that a study participant will report their ethnicity
without errors. Self-reported ethnicity errors may occur
for various reasons; some people may not be fully aware
of their true ethnicity or only know recent ancestry (or
their geographic origin) while others may identify with
one ethnic group despite their admixed background. The
imposition of racial categories on human populations has
been one of the most enduring historical forces that shape
our life trajectory [68]. To illustrate, in a recent study, 9 of
the 1,247 self-reported African Americans were found to
have 100% European ancestry [69]. Similarly, some self-
identified European Americans have substantial admixture
from African ancestry [70]. Both examples illustrate that
researchers should be aware of the limitation of self-
identified race and ethnic categories as proxies for genetic
ancestry [71,72]. Similarly, although ancestry could play a
central role in disease etiology, association studies, and
variable drug response, it provides less information in
identifying societal construct such as health and income
disparities. Furthermore, although disease susceptibility
loci can differ in frequency across populations, using gene-
tics as the only basis of explaining for health disparities
could reinforce racial stereotypes [73]. Moving forward,
the potential of both genetics and race/ethnicity to shed
light on health disparities must be considered.
Studies showed that extrapolation of genomics data

from genetically homogeneous to genetically structured
populations could generate large numbers of false positive
and false negative results [13]. Population stratification (or
structure) is the existence of groups of individuals within
a population that have some degree of reproductive isola-
tion from the rest of the population and for which allele
frequencies are likely to be different from the population
as a whole. Several approaches have been used to adjust
population structure in case–control studies. The most
commonly used clustering algorithms is structure [74].
Using ancestry informative markers, a) local ancestry
tracked from each individual can be compared with the
genome-wide average ancestry, and b) individuals whose
ancestry is not typical of the population under study can
then be excluded [2]. To investigate the genetic relation-
ships among ancestral groups, one could also compare
patterns of population divergence using Wright’s FST
measure [75]. From the FST analysis, one could reliably
identify subpopulations within major geographic regions
(i.e., Europe, Africa, Asia, and the Native Americans) that
exhibit lower or higher pairwise FST (and, therefore, lower
or higher genetic similarities). For populations of com-
plicated admixture or unknown origins, a large number of
loci with high resolution need to be genotyped, followed
by principal component analysis (PCA) to individual-level
genetic data. PCA can detect the presence of population
mixture and admixture in a sample and thus can be used
to determine the axis of variation in different dimensions
based on biogeographical ancestry. Adjustment made
using PCA approach increases investigator confidence
that genetic association findings are not spurious due to
stratification. Finally, characterization of culture, socioeco-
nomic status, and environment should be made in disease
genetic study, otherwise any or all “racial/ethnic” diffe-
rences in disease risk factors can erroneously be attributed
to presumed population genetic differences. Methods
such as mixed model regression could help investigate the
genetic and non-genetic risk factors. The failure to
account ancestral background can thus prevent proper
characterization of the genetic structure of a given study
population, leading to inaccurate prediction of outcome as
well as incorrect inferences about the evolutionary factors
driving patterns of diversity [76].

Race/ethnicity in biomedical research
There are two major questions to answer before ap-
plying race/ethnicity category in biomedical research.
First, is race/ethnicity a valid and reliable approach to
ascertain individual ancestry? If so, should race be
considered by those who study diseases and patient re-
sponses to treatment? Second, how do we define (or is it
at all possible) race/ethnicity in the context of bio-
medical research? In general, people self-report their
population origin correctly in terms of major popula-
tion descriptors (such as Caucasian, African-American,
Hispanics, Asian, etc.). However, these descriptions are
not good indicators of the genetic composition of indi-
viduals, since genetic makeup of individuals are highly
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heterogeneous, and can be captured only with large di-
mensional genomic data. Genetic ancestry estimation at
the individual level is bringing us closer to more per-
sonalized or individualized genetic-based medicine [77].
Genomic researchers in medicine should focus on how
genetic association results can be used to understand
disease process in a way that can inform the clinical care
of racial disparities rather than focusing merely on
explaining health differences [78].
Advances in genomic research provide novel insights

into individual variation in disease susceptibility and ad-
verse reactions to drugs. However, because of unequal ap-
plications of genomics and associated technologies among
human populations, the information collected so far does
not entirely address disparities at multiple levels. Almost
all genetic studies, including many of the identified vari-
ants (e.g., asthma) and pharmacogenetic studies have been
primarily performed in cohorts of European descent [79].
In European ancestry, genome-wide association study
(GWAS) projects that genotype ~1 million tagSNPs in
several thousand cases and controls to test for association
with disease can capture most of the common variation
with minor allele frequencies >5%. However, very dense
marker sets must be typed to capture similar variation in
African ancestry population. Because of shorter linkage
disequilibrium, it has been estimated that a genome-wide
association study of an African population would require
approximately 1.5 million SNPs to achieve the same
resolution as a study of a European population using
0.6 million SNPs [80]. For minority population, few genetic
data have been systematically analyzed and the interplay
between genetic and various socio-environmental factors
Figure 5 Minor allele frequency (MAF) distribution. Asthma-related GW
and African (YRI) populations from the NHGRI GWAS catalog (http://www.g
SNP trait associations including asthma from published GWAS studies.
remain to be investigated [81,82]. Recent exome study
revealed that exomes from individuals of predominantly
African ancestry were very different from European ances-
try exomes. This is in agreement with the reported genetic
diversity between African and European ancestry genomes
[83]. Hence, genomic data collection should be extended
to as many diverse populations as possible. To illustrate this
further, we assess the allele frequency variations at asthma-
associated GWAS variants deposited at the NHGRI GWAS
catalog (http://www.genome.gov/gwastudies/). Since most
GWAS studies are done in populations of European ances-
try, we examined the allele frequency patterns of 78 GWAS
SNPs associated with asthma and deposited at the GWAS
Catalog site. We used 1000 Genomes Project (http://
www.1000genomes.org) and AncestrySNPminer (https://re-
search.cchmc.org/mershalab/AncestrySNPminer/login.php)
to explore these variants among African American (ASW),
African (YRI), and European American (CEU) populations.
Although further studies are required to determine the ex-
tent to which this variation is responsible for differences in
asthma prevalence, the admixed AA population (ASW) ex-
hibited allele frequencies that appear intermediate in rela-
tion to the ancestral CEU and YRI populations (Figure 5).
Large consortium-based next-generation sequencing

studies such as the NIH/HLBI GO Exome Sequencing
Project, the Consortium on Asthma among African ances-
try Populations in the Americas (CAAPA), and the 1000
Genomes Project are currently using next-generation whole
exome and whole genome sequencing studies to provide
diverse genomic information from different admixed popu-
lations [84]. These large-scale sequencing projects have
revealed that admixed ethnic groups demonstrate a
AS SNP’s across African American (ASW), European American (CEU),
enome.gov/gwastudies). The GWAS catalog is an online catalog of

http://www.genome.gov/gwastudies/
http://www.1000genomes.org
http://www.1000genomes.org
https://research.cchmc.org/mershalab/AncestrySNPminer/login.php
https://research.cchmc.org/mershalab/AncestrySNPminer/login.php
http://www.fda.gov/Drugs/DrugSafety/ucm123927.htm


Figure 6 Nicotine metabolisms in ancestral and admixed
population. Nicotine metabolism was estimated by salivary 3-HC:
COT ratio. The X-axis shows population groups with sample size in
brackets, and the Y-axis labels the nicotine metabolism. These data
provide evidence that a) Maori smokers have significantly (p = 0.001)
slower nicotine metabolic rates compared to Caucasian smokers and
b) there is a significant linear correlation between nicotine metabolic
rate and the degree of Maori ancestry. The admixed population has
intermediate nicotine metabolism compared with parental nicotine
metabolisms. Reproduced from Lea et al. [93].
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remarkable degree of genetic diversity related to an ancient
African ancestry. Such genetic diversity has resulted in
shorter regions of shared chromosomal segments (i.e., link-
age disequilibrium) and a greater frequency of rare variants
in ethnic groups with an African ancestry compared with
European ancestral populations. In addition to increased
genome and exome sequencing efforts, it is also critical to
assess non-genetic factors such as poverty, education,
access to health care, cultural practices, and environmental
exposure such as traffic, smoke, and mold, which vary
substantially among populations and may interact with
genetic risk factors.

Which factors contribute more to health disparity:
race/ethnicity or ancestry?
Unlike self-reported race-based health disparity studies,
which represent a combination of both genetic and
environmental background [85], ancestry-based health
disparity studies provide a new way to unravel the
contribution of genetics to health disparities from non-
genetic factors (such as socio-environmental factors). If
a greater African ancestry is observed across the genome
in asthmatic patients relative to controls, but no signifi-
cant rise in local ancestry at a particular locus, this may
point to a stronger role for socio-environmental factors
(e.g., income, education, exposures to traffic, home, ciga-
rettes) independent of ancestry [81,86,87]. Associations
found between genetic ancestry and disease could be
explained by unmeasured environmental factors that are
associated with genetic ancestry and contribute to health
disparities, such as socioeconomic status (SES), neighbor-
hood environment, and psychosocial factors including
perceived stress or discrimination [88-90]. Therefore, to
avoid unwarranted inferences about the magnitude of gen-
etic influences on health disparities, it is critical to include
appropriate socio-environmental variables in the analysis
of ancestry and disease risk. A good example that illustrates
this phenomenon is the recent studies that showed educa-
tion and socioeconomic factors, but not genetic ancestry,
were associated with blood pressure and cancer among
African Americans in the US, respectively [91,92]. Further-
more, analysis showed that education was significantly
associated with blood pressure in African Americans, but
not in European American, suggesting that improved
access to education in African American communities
may help to reduce racial inequalities in health. An im-
portant next step is to explore the mechanisms by which
higher education is associated with reduced hypertension
and, in particular, why the association is stronger among
African Americans than among European Americans.
Further studies are also needed to determine whether
education is causally related to blood pressure or if it only
serves as a marker for other aspects of the social environ-
ment. The role of genetic ancestry is also evident from the
correlation of nicotine metabolism with admixed ancestry
in smokers. Maori smokers on average are slow nicotine
metabolizers (~35%) compared to Caucasians (Figure 6).
This is mainly because of the significantly higher frequency
of slow nicotine-metabolizing variants of the CYP2A6 gene
in Maori compared to that in Caucasians [93]. An admixed
individual from Caucasian and Maori showed an inter-
mediate nicotine-metabolism in relation to his or her an-
cestries. These findings are critical to develop appropriate
intervention policies to reduce disease burden due to gen-
etic and non-genetic factors [90].

Moving beyond race/ethnicity to guide
personalized medicine
As the world becomes multiethnic, and intermarriage
between different racial/ethnic groups gets more and
more common [94], it is increasingly difficult to assign a
single ethnicity to an individual. There is a need of clear
distinction between personalized medicine and guide-
lines for the application of personalized medicine in the
context of homogeneous and an admixed population.
Personalized medicine is a dynamic and broad term used
to describe the incorporation of patients’ genomic profiles,
family history, and social and other health details into
clinical decision-making. Personalized medicine is easier to
implement in a more uniform population using the genetic
variation present in an individual. In admixed populations,
it is much more complex to have a “public health” person-
alized medicine guideline as the context of the variants
may be ancestry-sensitive and on an individual basis. For
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example, one person may have susceptibility variants that
are common in one of their ancestral populations, but not
the other (and the other way around for another individual
from the same admixed population). In order for the per-
sonalized medicine to be meaningful and applicable to the
global populations, we will need to know how genetic vari-
ants found in different parts of the world influence health
and drug response. Thus, the application of personalized
medicine should not be limited to patients with well-
understood genotypes.
Although knowledge gained in genomics has advanced

our understanding of biology, the promise of perso-
nalized medicine continues to appear far off for minority
and admixed populations. For example, recently, phar-
macogenomic information has been added to over 70
drug labels [95], but the studies on which label infor-
mation are based have mostly focused on European
populations. Meanwhile, African populations, who have
the greatest genetic variation resulting in more haplotypes,
lower levels of linkage disequilibrium, more divergent
patterns of linkage disequilibrium, and more complex pat-
terns of population substructure, are grossly underrepre-
sented in the genomic studies that inform pharmaceutical
guidance [95]. The result is that clinicians may rely too
heavily on data obtained from Europeans to make clinical
decisions for Africans and other non-European popula-
tions. In addition, this inadequate representation of global
populations in the cataloging of genetic variation is hinder-
ing the need to move away from the use of group labels
such as race, which is often a poor proxy for genetic ances-
try. This concern extends to the momentous debate about
the development of ‘race-targeted’ drugs, such as BiDil
(approved by the US Food and Drug Administration
(FDA) to treat heart failure in admixed African Americans),
based on subgroup analyses without any adjustment for
potential confounders in samples [94]. Intra-ethnic diver-
sity adds complexity to the scientific appraisal, regulatory
decisions, and, eventually, prescription of race-targeted
drugs. Ignoring admixture or stratification within ethnic
groups will complicate the promise of personalized medi-
cine [96-99]. A study by Lee [100] showed that warfarin
dosing algorithms that are based on ‘race’ terms for well-
defined ethnic groups are not applicable to the heteroge-
neous admixed population. In April 2011, the American
Congress of Obstetricians and Gynecologists (ACOG)
adopted a policy to screen all patients for cystic fibrosis
because of the difficulty in assigning ethnicity to indi-
viduals [101]. The US FDA recommends screening all
groups, regardless of race or ethnicity, for the presence
of the HLA-B*5701 allele before starting or restarting
therapy with Abacavir or Abacavir-containing medica-
tions (http://www.fda.gov/Drugs/DrugSafety/ucm123927.
htm). Abacavir is used to treat human immunodeficiency
virus (HIV) infection. Patients with the HLA-B*5701 allele
have a higher risk of developing a hypersensitivity reac-
tion. Furthermore, several medication dosing algorithms
around the world are now being developed using the
patient’s own genotype data [79,102,103].

Conclusion
Although conceptual distinction between race/ethnicity
and ancestry is widely recognized [104-106], it has not
been translated into measurements of how well each
accounts for health disparities. Thus, the continued use of
race in genetic research obscures the fundamental causes
of racial differences in health. Although race and/or
ethnicity could serve as good markers to predict socio-
economic differentials like housing, income, and/or edu-
cation, they are poor predictor of genetic ancestry [90].
Increasingly, the world’s populations do not fall into con-
ventional homogeneous ethnic categories, and ancestry in-
formative markers with appropriate statistical methods
must be used for quantitative measurement of the genetic
ancestry of individuals. Quantifying the contributions of
ancestry, environment (such as socio-economic status, life
style), and their interactions to disease outcome in the
genetically heterogeneous population will be critical to
applying genomic-based biomarkers to the practice of
medicine. The path to personalized medicine for all ethnic
groups requires improvements to our ability to decipher
genotype and sequence data using different analysis
methods that integrate race/ethnicity information and ac-
count for ancestral genetic structure, complex haplotypes,
and gene-gene and gene-environment interactions. It is
crucial to recognize that disease and health disparities are
the products of complex interactions that are not solely
limited to genes but also involve environmental factors,
socioeconomic status, lifestyle factors, and the biases of
health care providers. Thus, it is important to place gene-
tic ancestry factors in context with social, environmental,
and economic factors for the purpose of resolving health
disparities between populations.
Given higher genetic diversity within races than between

races, the use of race/ethnicity as a dissimilarity marker is
misleading [107,108]. Genetic ancestry can describe gen-
etic relatedness accurately than race and ethnicity, but it
could still exacerbate disparities since it sidesteps the
interaction of biological and social factors that contribute
to health. The current inference of ancestry based on
computer programs with built-in assumptions about how
the data should be grouped can sometimes reify racial
distinctions by presenting genetic clusters or racial
boundaries that do not exist in human population spe-
cially in admixed population. In addition, current ances-
try inferences are based on reference samples with limited
representation of the entire population (e.g., West African
ancestry sample for the entire African Americans and
Northern European sample for the entire European
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Americans). Understanding the sources of human genetic
variation (using genetic markers) and the causes of health
disparities (using race/ethnicity information) could lead to
interventions that would improve the public health and
bring personalized medicine to all.
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