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Abstract

Neurons and synapses manifest pronounced variability in the amount of plasticity

induced by identical activity patterns. The mechanisms underlying such plasticity hetero-

geneity, which have been implicated in context-specific resource allocation during

encoding, have remained unexplored. Here, we employed a systematic physiologically

constrained parametric search to identify the cellular mechanisms behind plasticity het-

erogeneity in dentate gyrus granule cells. We used heterogeneous model populations to

ensure that our conclusions were not biased by parametric choices in a single hand-tuned

model. We found that each of intrinsic, synaptic, and structural heterogeneities indepen-

dently yielded heterogeneities in synaptic plasticity profiles obtained with two different

induction protocols. However, among the disparate forms of neural-circuit heterogene-

ities, our analyses demonstrated the dominance of neurogenesis-induced structural het-

erogeneities in driving plasticity heterogeneity in granule cells. We found that strong

relationships between neuronal intrinsic excitability and plasticity emerged only when

adult neurogenesis-induced heterogeneities in neural structure were accounted for.

Importantly, our analyses showed that it was not imperative that the manifestation of

neural-circuit heterogeneities must translate to heterogeneities in plasticity profiles. Spe-

cifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neu-

ronal properties, similar plasticity profiles were attainable across all models through

synergistic interactions among these heterogeneities. We assessed the parametric combi-

nations required for the manifestation of such degeneracy in the expression of plasticity

profiles. We found that immature cells showed physiological plasticity profiles despite

receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability

of immature granule cells was sufficient to counterbalance their low excitatory drive in

the expression of plasticity profile degeneracy. Together, our analyses demonstrate that

disparate forms of neural-circuit heterogeneities could mechanistically drive plasticity het-

erogeneity, but also caution against treating neural-circuit heterogeneities as proxies for

plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing

the relationship between neural-circuit and plasticity heterogeneities across brain regions.
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1 | INTRODUCTION

Neurons and synapses of the same subtype receiving identical

plasticity-inducing activity patterns do not manifest identical levels of

plasticity. Instead, they exhibit plasticity heterogeneity across synapses

and neurons, manifesting as pronounced variability in the observed

changes. There are several lines of evidence from in vitro and in vivo

electrophysiological experiments for such plasticity heterogeneity,

spanning different neuronal and synaptic subtypes (Beck et al., 2000;

Bliss & Lomo, 1973; Davis et al., 2004; Greenstein et al., 1988;

Kobayashi et al., 2013; Koranda et al., 2008; Larson & Munkacsy,

2015; Li et al., 2017; McHugh et al., 2007; Pavlides et al., 1988;

Rathour & Narayanan, 2019; Shors & Dryver, 1994; Sjostrom

et al., 2008; Wang et al., 1997). Although such plasticity heterogeneity

has typically been overlooked in analyzing the impact of plasticity pro-

tocols, a growing body of experimental evidence identifies crucial

roles for plasticity heterogeneity in neural encoding and storage. Spe-

cifically, the ability of neurons and synapses to undergo differential

plasticity is critical for context-specific recruitment/allocation of a subset

of neurons and synapses during encoding processes (Aimone

et al., 2014; Dieni et al., 2013; Ge et al., 2007; Huckleberry &

Shansky, 2021; Josselyn & Frankland, 2018; Josselyn &

Tonegawa, 2020; Lau et al., 2020; Lodge & Bischofberger, 2019; Park

et al., 2016; Pignatelli et al., 2019; Schmidt-Hieber et al., 2004; Yiu

et al., 2014). The lack of plasticity heterogeneity would result in a sce-

nario where all neurons and synapses undergo similar amount of plas-

ticity for any given context. Such a scenario would erase the

possibility of sparse and context-specific recruitment of neural

resources. Despite these well-recognized roles of plasticity heteroge-

neity in context-specific resource allocation, the mechanisms underly-

ing these heterogeneities have not been assessed. Furthermore, there

are postulates and lines of evidence for heterogeneities in intrinsic

excitability playing a role in determining selective resource allocation

(Aimone et al., 2014; Dieni et al., 2013; Ge et al., 2007; Huckleberry &

Shansky, 2021; Josselyn & Frankland, 2018; Josselyn &

Tonegawa, 2020; Lau et al., 2020; Lodge & Bischofberger, 2019; Park

et al., 2016; Pignatelli et al., 2019; Schmidt-Hieber et al., 2004; Yiu

et al., 2014). However, the quantitative link between such cellular-

scale heterogeneities and plasticity heterogeneity has not been sys-

tematically assessed.

Granule cells (GCs) in the dentate gyrus (DG) offer an efficient

system for addressing questions on the cellular mechanisms underly-

ing plasticity heterogeneity. First, the pronounced biophysical hetero-

geneities in these cell types have been electrophysiologically well-

characterized (Heigele et al., 2016; Mishra & Narayanan, 2020;

Overstreet-Wadiche, Bromberg, Bensen, & Westbrook, 2006b;

Pedroni et al., 2014; Schmidt-Hieber et al., 2004). Second, plasticity

experiments involving granule cells have revealed the manifestation

of heterogeneities in the amount of synaptic plasticity induced for the

same activity protocols (Beck et al., 2000; Bliss & Gardner-

Medwin, 1973; Bliss & Lomo, 1973; Davis et al., 2004; Greenstein

et al., 1988; Kobayashi et al., 2013; Koranda et al., 2008; Larson &

Munkacsy, 2015; McHugh et al., 2007; Pavlides et al., 1988; Shors &

Dryver, 1994; Wang et al., 1997). Third, these intrinsic and plasticity

heterogeneities are further amplified by the expression of adult neu-

rogenesis. Specifically, immature adult-born neurons manifest

increased excitability, reduced synaptic connectivity, lesser dendritic

arborization, and lower threshold for plasticity induction (Aimone

et al., 2014; Dieni et al., 2013; Ge et al., 2007; Huckleberry &

Shansky, 2021; Li et al., 2017; Lodge & Bischofberger, 2019; Schmidt-

Hieber et al., 2004). Finally, there are lines of evidence for a critical

role of plasticity heterogeneity in engram formation, response

decorrelation, and resource allocation in the DG. In the context of

engram formation, there are postulates about the role of intrinsic

excitability in governing plasticity rules and selective resource alloca-

tion (Aimone et al., 2014; Huckleberry & Shansky, 2021; Josselyn &

Frankland, 2018; Josselyn & Tonegawa, 2020; Lau et al., 2020;

Lodge & Bischofberger, 2019; Mishra & Narayanan, 2019; Park

et al., 2016; Pignatelli et al., 2019; Yiu et al., 2014). Thus, GCs allowed

us to place plasticity heterogeneity within a strong functionally rele-

vant context of engram formation and response decorrelation.

Together, GCs provided an efficient substrate for assessing the impact

of well-characterized biophysical and structural heterogeneities on

the emergence of plasticity heterogeneity.

In this study, we systematically explored the cellular-scale origins

of heterogeneities in the synaptic plasticity profiles of DG GCs

through an unbiased exploration of heterogeneities in their intrinsic,

synaptic, and structural properties. We ensured that our analyses

associated with each of these heterogeneities were constrained by

characteristic physiological properties of mature and immature GCs.

We assessed the impact of these forms of heterogeneities on plastic-

ity profiles obtained with two well-established protocols for inducing

synaptic plasticity in DG GCs: the 900-pulses protocol spanning a

range of induction frequencies (Kobayashi et al., 2013; Koranda

et al., 2008; Wang et al., 1997), and the theta-burst stimulation proto-

col (Beck et al., 2000; Davis et al., 2004; Greenstein et al., 1988;

Larson & Munkacsy, 2015; McHugh et al., 2007; Pavlides et al., 1988;

Shors & Dryver, 1994). We found that each form of intrinsic, synaptic,

and structural heterogeneity independently resulted in plasticity het-

erogeneities, with either protocol for plasticity induction. Importantly,

when immature and mature neuron populations were individually ana-

lyzed, we found that heterogeneities in intrinsic excitability were

insufficient to impose strong constraints on plasticity-related mea-

surements. However, when the entire population covering mature
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and immature cells were analyzed together, there were strong rela-

tionships between intrinsic excitability and measurements associated

with synaptic plasticity.

We show that the expression of heterogeneities in all of struc-

tural, synaptic, and intrinsic neuronal properties does not necessarily

have to translate to heterogeneities in synaptic plasticity profiles.

Specifically, we demonstrate that very similar plasticity profiles could

be achieved with disparate combinations of neuronal passive proper-

ties, ion-channel properties, calcium-handling mechanisms, synaptic

strength, and neural structure of DG GCs of different ages. When

observed independently, these properties manifested widespread het-

erogeneities with weak pairwise relationships. However, when seen

together, these heterogeneities synergistically interacted with each

other to achieve the functional goal of degeneracy in synaptic plastic-

ity profiles. These analyses extend degeneracy in DG GCs to the con-

comitant emergence of plasticity profiles and of several neural

intrinsic properties. Importantly, this form of degeneracy encompasses

cellular-scale intrinsic, synaptic, and structural heterogeneities span-

ning different age groups of GCs in a physiologically constrained man-

ner. These analyses also showed that synaptic plasticity in the useful

physiological range could be achieved in immature cells even with the

weak synaptic strengths that they are known to express, owing to

strong relationships with intrinsic excitability measurements.

Together, our analyses demonstrate that intrinsic, synaptic, and

structural heterogeneities could either individually or through syner-

gistic interactions among them, drive plasticity heterogeneity in DG

GCs. Importantly, our analyses demonstrate that similar plasticity pro-

files could be achieved despite the concomitant expression of all

forms of neural-circuit heterogeneities. These observations caution

against treating the manifestation of neural-circuit heterogeneities as

direct evidence for the expression of plasticity heterogeneities. Our

results also highlighted the dominance of structural heterogeneities,

introduced by adult neurogenesis, in introducing plasticity heteroge-

neity that is essential for context-specific resource allocation in the

DG. From a broader perspective, our analyses call for systematic char-

acterization and analyses of plasticity heterogeneities across different

brain regions. Such analyses should probe the mechanistic origins of

plasticity heterogeneities and assess their implications for context-

specific neural coding of learned behavior and memory storage.

2 | MATERIALS AND METHODS

Granule cells in the DG exhibit heterogeneities in neuronal properties

(intrinsic heterogeneity), in synaptic connections (synaptic heteroge-

neity), and structural properties including dendritic arborization and

surface area (structural heterogeneity). In this study, our goal is to

explore the impact of these heterogeneities on synaptic plasticity pro-

files, employing conductance-based models for DG GCs. Assessment

of plasticity profiles involve long-term simulations and the complexi-

ties associated with incorporating different forms of heterogeneities

in a population of conductance-based models (as opposed to a single

model with fixed structure and fixed synaptic strengths) implied large

computational costs. Thus, we employed single-compartmental

conductance-based models to assess the impact of different forms of

biophysical and structural heterogeneities on synaptic plasticity

induced through two extensively employed plasticity-induction

protocols.

2.1 | Heterogeneities in intrinsic properties of a
physiologically constrained granule cell model
population

Granule cells in the DG manifest pronounced heterogeneities in their

intrinsic properties (Aradi & Holmes, 1999; Krueppel et al., 2011; Lubke

et al., 1998; Mishra & Narayanan, 2020; Santhakumar et al., 2005). The

physiologically constrained conductance-based heterogeneous popula-

tion of granule cell model was obtained from an earlier study (Mishra &

Narayanan, 2019). The details of building this population of models that

manifested characteristic electrophysiological properties of GCs,

employing a multiparametric multiobjective stochastic search (MPMOSS)

algorithm are identical to the previous study (Mishra &

Narayanan, 2019). Briefly, the dimensions of single cylindrical base

model were set to 63 μm diameter (diam) and 63 μm length (len) (Figure

1a). The resting membrane potential of model cell was set to �75 mV,

with specific membrane resistance (Rm) of 38 kΩ.cm2 and specific mem-

brane capacitance (Cm) of 1 μF.cm�2. The dimensions of the cylindrical

compartment were set toward achieving a passive input resistance of

305 MΩ (Rm/(π � diam � len) = 38 � 103 � 10�2 � 10�2/(π � 63 �
10�6 � 63 � 10�6) = 305 MΩ), matching the experimental value of 309

± 14 MΩ obtained with pharmacological blockers of HCN channels

(Chen, 2004). This passive input resistance was consequent to the leak

conductance (specified as Rm) and the surface area of the compartment,

and will be validated against the electrophysiological values of active

input resistance (i.e., in the presence of subthreshold ion channels).

These passive parameters also resulted in a charging time constant

(RmCm) of 38 ms (Schmidt-Hieber et al., 2007).

The GC model is comprised of nine different regenerative and

restorative conductances: fast sodium (NaF), hyperpolarization-

activated cyclic-nucleotide-gated (HCN), L-type calcium (CaL), N-type

calcium (CaN), T-type calcium (CaT), delayed rectifier potassium

(KDR), A-type potassium (KA), big conductance (BK), and small con-

ductance (SK) calcium activated potassium. Hodgkin–Huxley (HH) or

Goldman–Hodgkin–Katz (GHK) formulations (Goldman, 1943;

Hodgkin & Huxley, 1952; Hodgkin & Katz, 1949) were employed to

model these voltage- and/or calcium-gated ion channels (Mishra &

Narayanan, 2019). The GHK formulation was used to model calcium

conductances, with intracellular and extracellular calcium concentra-

tion set at 50 nM and 2 mM, respectively. The reversal potential

values for Na, K, and HCN channels were set as +55, �90, and �30

mV, respectively. Cytosolic calcium concentration and its evolution

with time was dependent on calcium current and its decay, and the

mechanism was adopted from the formulation (Carnevale & Hines,

2006; Destexhe et al., 1993; Narayanan & Johnston, 2010; Poirazi

et al., 2003):
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TABLE 1 The multiple parameters and their ranges for the stochastic search employed for finding the 126 valid granule cells (Mishra &
Narayanan, 2019).

Parameters Symbol Default Testing range

h channel properties

1 Maximal conductance (μS/cm2) h-g 5 2–2

2 Activation time constant of Ih (ms) h-τA 39 30–50

3 V1/2 activation of Ih (mV) h-VA –81 �70 to �90

A-type K+ channel properties

4 Maximal conductance (mS/cm2) KA-g 87 70–110

5 Activation time constant of KA (ms) KA-τA 0.454 0.42–0.7

6 Inactivation time constant of KA (ms) KA-τI 6.54 3–10

7 V1/2 activation of KA (mV) KA-VA �55 �50 to �62

8 V1/2 inactivation of KA (mV) KA-VI �73.1 �69 to �82

Delayed rectifier K+ channel properties

9 Maximal conductance (μS/cm2) KDR-g 500 320–1100

10 Activation time constant of KDR (ms) KDR-τA 6.4 5–10

11 V1/2 activation of KDR (mV) KDR-VA �44 �38 to �50

Fast Na+ channel properties

12 Maximal conductance (mS/cm2) Na-g 18 16–50

13 Activation time constant of Na (μs) Na-τA 50 42–56

14 Inactivation time constant of Na (ms) Na-τI 3 2–6

15 V1/2 activation of Na (mV) Na-VA �31 �30 to �40

16 V1/2 inactivation of Na (mV) Na-VI �49 �43 to �55

Small conductance Ca2+�dependent potassium (SK) channel properties

17 Maximal conductance (mS/cm2) SK-g 5 1–12

18 Ca1/2 activation of SK (μM) SK-CA 4 1–8

19 Activation time constant of SK (ms) SK-τA 214 195–250

20 Decay constant of calcium Ca-τdecay 160 95–206

Large conductance Ca2+�activated potassium (BK) channel properties

21 Maximal conductance (mS/cm2) BK-g 110 14–190

22 Ca1/2 activation of BK (μM) BK-CA 4 2–7

23 Activation time constant of BK (Ca2+ dependent) (ms) BK-CτA 10 5–15

24 Activation time constant of BK (voltage dependent) (μs) BK-τA 5 3–11

25 V1/2 activation of BK (mV) BK-VA �28 �18 to �36

L-type Ca2+ channel properties

26 Maximal conductance (μS/cm2) CaL-g 700 105–800

27 Activation time constant of L-type (μs) CaL-τA 3 1–12

28 V1/2 activation of L-type (mV) CaL-VA �1.3 �5 to 7

N-type Ca2+ channel properties

29 Maximal conductance (μS/cm2) CaN-g 0.5 0.1–5

30 Activation time constant of N-type (ms) CaN-τA 0.6 0.1–1

31 Inactivation time constant of N-type (ms) CaN-τI 1297 1050–1450

32 V1/2 activation of N-type (mV) CaN-VA �21 �30 to �10

33 V1/2 inactivation of N-type (mV) CaN-VI �40 �50 to �30

T-type Ca2+ channel properties

34 Maximal conductance (μS/cm2) CaT-g 0.7 0.5–10

35 Activation time constant of T-type (ms) CaT-τA 4 2–10

36 Inactivation time constant of T-type (ms) CaT-τI 7665 6800–8400

(Continues)
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d Ca½ �c
dt

¼�10000 � ICa
36 �dpt �F þ Ca½ �∞� Ca½ �c

τCa
ð1Þ

where F is the Faraday's constant, the calcium decay constant in GCs

was given by τCa with a default value of 160 ms, dpt represented the

depth of the shell into which calcium influx occurred and was taken as

0.1 μm, and Ca½ �∞ = 50 nM was considered as the steady-state value

of Ca½ �c.
We generated 20,000 models of GC through a stochastic search

from a parametric space comprised of 40 different parameters (Table

1): 38 parameters associated with nine active conductances along

with 2 passive neuronal parameters. The GC models were declared

valid once they fall within the range of nine physiologically con-

strained measurements (Table 2): input resistance (Rin), sag ratio, firing

rate at 50 pA (f50) and 150 pA (f150) current injection, spike frequency

adaptation, action potential (AP) amplitude, AP threshold, AP half

width, and fast afterhyperpolarization. The validation process resulted

in 126 valid models (126/20,000, implying a 6.3% population of valid

models) that manifested characteristic electrophysiological properties

of GCs but exhibited pronounced heterogeneities in channel composi-

tion and other biophysical parameters (Mishra & Narayanan, 2019).

This constitutes an instance of ion-channel degeneracy (Goaillard &

Marder, 2021; Mishra & Narayanan, 2019, 2021a; Rathour &

Narayanan, 2019) in the emergence of cellular-scale properties and

provided 126 GC models that were endowed with signature hetero-

geneities in their intrinsic properties. In our analyses, this population

of 126 GC models is identical to the models from Mishra and

Narayanan (2019) and was employed as the substrate for assessing

the impact of intrinsic heterogeneities on synaptic plasticity profiles.

2.2 | Properties and associated heterogeneities in
synapses impinging on granule cell models

We modeled a canonical synapse impinging on the postsynaptic GC

neuron as two co-localized excitatory synaptic receptors: α-amino-

TABLE 1 (Continued)

Parameters Symbol Default Testing range

37 V1/2 activation of T-type (mV) CaT-VA �36 �28 to �42

38 V1/2 inactivation of T-type (mV) CaT-VI �67 �75 to �58

Passive properties

39 Specific membrane resistivity (kΩ.cm2) Rm 38 30–42

40 Specific membrane capacitance (μF/cm2) Cm 1 0.8–1.2

TABLE 2 Electrophysiological
bounds for the multiple objectives,
defining characteristic granule cell
measurements, of the stochastic search
procedure that spanned 20,000
independent samples on the parameters
in Table 1 (Mishra & Narayanan, 2019).

Measurement, unit Symbol Lower Upper

1 Action potential amplitude, mV VAP 95 115

2 Action potential threshold, mV Vth �55 �40

3 Action potential half-width, ms TAPHW 0.53 1.6

4 Fast after hyperpolarization, mV VfAHP �25 �3.4

5 Sag ratio Sag ratio 0.9 1

6 Spike frequency adaptation SFA 0.1 0.8

7 Input resistance, MΩ Rin 107 228

8 Firing frequency at 50 pA, Hz f50 0 0

9 Firing frequency at 150 pA, Hz f150 10 15

10 Temporal summation ratio Sα 0.92 2.12

11 Maximum impedance amplitude, MΩ jZjmax 63.4 430.2

Note: The first nine measurements were employed to validate the 126 (of the 20,000 samples)

intrinsically heterogeneous model neurons (Mishra & Narayanan, 2019), whereas the last two

measurements were validated for the 126 models (Figure 1) with electrophysiological bounds derived

from Mishra and Narayanan (2020). These 126 models showed characteristic electrophysiological

properties and neuron-to-neuron heterogeneity that were comparable with electrophysiological

recordings (Mishra & Narayanan, 2019, 2020, 2021a). These 126 valid models were sufficient to

demonstrate that disparate combinations of ion channels could yield very similar characteristic properties

(Mishra & Narayanan, 2019, 2021b). Importantly, the parametric values of these 126 models spanned the

entire valid range of each parameter suggesting the absence of any parametric clustering (Mishra &

Narayanan, 2019), together demonstrating the expression of ion-channel degeneracy (Mishra &

Narayanan, 2021a).
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3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)

and N-methyl-D-aspartate (NMDA) receptor (NMDAR) with an

NMDA: AMPA ratio value of 1.5. The current through AMPAR and

NMDAR as a function of voltage and time are modeled using the

GHK formulation (Goldman, 1943; Hodgkin & Katz, 1949) as a sum of

current generated by sodium and potassium ions (Anirudhan &

Narayanan, 2015; Honnuraiah & Narayanan, 2013; Narayanan &

Johnston, 2010):

IAMPAR v,tð Þ¼ INa
AMPAR v,tð Þþ IKAMPAR v,tð Þ, ð2Þ

where

INa
AMPAR v,tð Þ¼PAMPARwPNa s tð Þ vF

2

RT

Na½ �i� Na½ �oexp � vF
RT

� �

1�exp � vF
RT

� �
 !

, ð3Þ

IKAMPAR v,tð Þ¼PAMPARwPK s tð Þ vF
2

RT

K½ �i� K½ �oexp � vF
RT

� �

1�exp � vF
RT

� �
 !

: ð4Þ

Here, PAMPAR represents the maximum permeability of the recep-

tor, also used as a synaptic parameter to incorporate synaptic hetero-

geneity. w represents the synaptic weight parameter that would be

updated and monitored as a function of time to quantify positive and

negative weight changes based on the plasticity protocol (see below).

The default value of initial weight, winit was set to 0.25. The sodium

(PNa) and potassium (PK) permeability values were set to be equal (PNa:

PK = 1:1) based on experimental observations. The default values for

intracellular and extracellular concentration (mM) of specific ions were

Na½ �i = 18, Na½ �o = 140, K½ �i = 140, K½ �o = 5, which led to equilibrium

potential of +55 mV and �90 mV for Na and K, respectively. s tð Þ
guides the kinetics of AMPA current as represented using the two-

exponential formulation:

s tð Þ¼ a exp � t
τd

� �
�exp � t

τr

� �� �
ð5Þ

where a represents normalization constant so that 0 < s(t) < 1. τr and

τd denote the rise and decay time constants associated with AMPA

receptor with values of 2 and 10 ms, respectively. Synaptic heteroge-

neities were introduced into the population of models by altering the

permeability value of PAMPAR.

The current through NMDA receptor depended on sodium,

potassium, and calcium ions and was modeled as follows using the

GHK formulation:

INMDAR v,tð Þ¼ INa
NMDAR v,tð Þþ IKNMDAR v,tð Þþ ICaNMDAR v,tð Þ ð6Þ

where

INa
NMDAR v,tð Þ¼PNMDAR PNa s tð ÞMgB vð Þ vF

2

RT

Na½ �i� Na½ �oexp � vF
RT

� �

1�exp � vF
RT

� �
 !

ð7Þ

IKNMDAR v,tð Þ¼PNMDAR PK s tð ÞMgB vð Þ vF
2

RT

K½ �i� K½ �oexp � vF
RT

� �

1�exp � vF
RT

� �
 !

, ð8Þ

ICaNMDAR v,tð Þ¼PNMDAR PCa s tð ÞMgB vð Þ 4vF
2

RT

Ca½ �i� Ca½ �oexp �2vF
RT

� �

1�exp �2vF
RT

� �
 !

:

ð9Þ

PNMDAR denotes the maximum permeability of the NMDA receptor

and was defined as the product of PAMPAR, winit, and the value of

NMDA:AMPA ratio. The permeability ratios of three ions for NMDAR

are set as PCa : PNa : PK = 10.6:1:1 (Canavier, 1999; Mayer &

Westbrook, 1987). The s tð Þ function was same as for AMPAR with

τr = 5 ms and τd = 50 ms. The concentration values in mM are Na½ �i =
18, Na½ �o = 140, K½ �i = 140, K½ �o = 5 Ca½ �i = 100 � 10�6, and Ca½ �o =
2. MgB vð Þ refers to the sigmoidal ( 1þ Mg½ �oexp –0:062 vð Þ=3:57� ��1

)

dependence of NMDAR currents on extracellular magnesium concen-

tration ( Mg½ �o) and voltage (Jahr & Stevens, 1990). The current

through NMDAR did not undergo plasticity.

2.3 | Heterogeneities in structural properties of
the granule cell population

Structural heterogeneities, mediated by the expression of adult neuro-

genesis in the DG, were incorporated into the GC model population

by subjecting the mature set of 126 valid models to structural plastic-

ity. Specifically, the reduction in dendritic arborization and in the over-

all number of channels expressed in immature neurons (Aimone et al.,

2014) was approximated by a reduction in the diameter of the model

neuron, using Rin as the measurement to match with experimental

counterparts (Mishra & Narayanan, 2019). Electrophysiologically, Rin

of mature and immature cells have been measured to be in the �100–

300 MΩ and �3–6 GΩ ranges, respectively (Heigele et al., 2016;

Mishra & Narayanan, 2020, 2021a; Overstreet-Wadiche, Bromberg,

et al., 2006; Pedroni et al., 2014; Schmidt-Hieber et al., 2004). Reduc-

ing the diameter of the models in neural population increased neuro-

nal excitability, reflecting as increased Rin and increased firing rate. To

assess the impact of structural heterogeneities on synaptic plasticity

profiles, we varied the diameter of the 126 neurons in the model pop-

ulation from 1 to 63 μm. A diameter range of 2–9 μm was chosen

because this yielded Rin values that matched the experimental 3–6

GΩ range for immature neurons and was considered representative of

the immature neuronal models (Mishra & Narayanan, 2019).

2.4 | Intrinsic measurements

The 126 GC models were selected based on the nine physiological

measurements employed to characterize the valid GC population

(Table 2; Mishra & Narayanan, 2019). In addition to these, we intro-

duced two more sub-threshold measurements (impedance amplitude

and temporal summation ratio) to test the robustness of these intrinsi-

cally heterogeneous models (Figure 1c,d) and to compare their role
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in regulating plasticity profiles. Specifically, we employed input

resistance (Rin), firing frequency to pulse current injections, sag

ratio, impedance amplitude, and temporal summation as intrinsic

measurements towards relating them to plasticity profiles. Rin was

measured as the slope of a linear fit to the I-V plot. The I-V plot

was obtained by plotting the steady state value of voltage

response as a function of 11 different current pulses where the

amplitude varied from �50 to +50 pA in steps of 10 pA (Figure

1b). As GC models with lower diameters manifested high excitabil-

ity, Rin was computed in response to hyperpolarizing current pulses

ranging from �50 to 0 pA in steps of 10 pA, to avoid spike gener-

ation. To characterize the impedance amplitude profiles of these

F IGURE 1 Model components of dentate gyrus granule cells and illustration of intrinsic heterogeneities across different physiological
measurements. (a) Conductance-based single compartmental model of granule cell expressing different inward and outward voltage-dependent
ion-channel currents, receiving excitatory inputs modeled as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-
aspartate (NMDA) receptor currents. (b–f) Different intrinsic physiological measurements are employed to define the valid population of granule
cells (GC) models (NGC = 126). (b) Left, voltage traces in response to current pulses of amplitude �50pA to +50pA, in steps of 10pA. Right, input
resistance (Rin), calculated as the slope of the V–I curve obtained by plotting the steady-state voltage responses against injected current
amplitudes. (c) Top, a chirp current stimulus of 50pA peak-to-peak amplitude with linearly increasing frequency from 0 to 15Hz in 15 s depicted
along with the respective voltage response. Bottom, the impedance amplitude profile obtained from the chirp current and voltage response
shown above. (d) Left, voltage response of a GC model to current input comprised five α-EPSCs arriving at 20Hz, to compute temporal
summation ratio (Sα). Sα is the ratio of the voltage amplitude in response to the fifth α-EPSC to that of the first α-EPSC. (e) Left, membrane
potential in response to 50 pA hyperpolarizing current pulse to calculate sag ratio. Sag ratio is the ratio between the steady-state voltage
response and the peak voltage response. (f) Left, firing pattern and firing rate in response to the 150 pA depolarizing current pulse of 1 s duration.

Across all panels in (b–f), the right panels show beeswarm plots depicting heterogeneities in the respective measurement across all 126 models.
The heterogeneous population of 126 GC models employed here is from Mishra and Narayanan (2019), with additional characterization involving
new intrinsic measurements added to the validation process.
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models, we injected chirp stimulus, a frequency-dependent current

input with linearly increasing frequency from 0 to 15 Hz in 15 s of

constant amplitude (Mishra & Narayanan, 2020). The impedance

profile Z fð Þ was computed as the ratio of the Fourier transform of

voltage response to the Fourier transform of chirp current as a func-

tion of frequency (Figure 1c). The impedance amplitude profile was

calculated as follows:

Z fð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Z fð Þð Þð Þ2þ Im Z fð Þð Þð Þ2

q
, ð10Þ

where Re Z fð Þð Þ and Im Z fð Þð Þ refer to the real and imaginary parts of

the impedance Z fð Þ, respectively, as functions of the frequency f. The

maximum value of impedance across all frequencies was measured as

the maximum impedance amplitude (jZjmax).

Temporal summation ratio (Sα) was computed by injecting cur-

rent pattern following the Iα tð Þ¼ Imax texp �αtð Þ formulation, where α

= 0.1 ms�1. Five such current pulses were injected into the neuron

with 50 ms interval between them, together resulting in a response

consisting of five α excitatory postsynaptic potentials (α–EPSPs). The

ratio of amplitude of last to first EPSP (Elast=Efirst) was defined as the

temporal summation ratio, Sα (Figure 1d). Sag ratio was computed as

the ratio between the steady-state voltage deflection to the peak

voltage deflection from VRMP in response to hyperpolarizing current

pulse of 50 pA injected for a period of 1 s (Figure 1e). The firing prop-

erty of GC models was characterized by computing the firing rate in

response to a current pulse of 100 pA (f100) or 150 pA (f150) for 1 s

(Figure 1f).

2.5 | Synaptic plasticity protocols and weight
evolution

The synaptic weight parameter w governing current through AMPAR

depended on the intracellular calcium concentration as follows, based

on the calcium control hypothesis (Shouval et al., 2002):

dw
dt

¼ η Ca½ �i
� �

Ω Ca½ �i
� �

–w
� �

, ð11Þ

where η Ca½ �i
� �

represents learning rate dependent on calcium concen-

tration, which is inversely related to learning time constant τ Ca½ �i
� �

as

follows:

η Ca½ �i
� �¼ 1

τ Ca½ �i
� � , ð12Þ

τ Ca½ �i
� �¼P1þ P2

P3þ Ca½ �P4i
, ð13Þ

where P1 = 1 s, P2 = 0.1 s, P3 = P2 � 10�4, and P4 = 3. These values

when substituted in Equation (12) sets the learning time constant to

�3 h when Ca½ �i is �0. Ω Ca½ �i
� �

, the function that governed the

calcium-dependent weight update mechanism, was defined as

(Shouval et al., 2002):

Ω Ca½ �i
� �¼0:25þ 1

1þexp �β2 Ca½ �i�α2
� �� �

�0:25
1

1þexp �β1 Ca½ �i�α1
� �� �

 !
ð14Þ

where α1 = 0.35, α2 = 0.55, β1 = β2 = 80. For all the weight update

equations, Ca½ �i were set as the deflection from the resting value

of Ca½ �i.
Using this framework, we analyzed the direction and strength of

plasticity in w using two well-established synaptic plasticity protocols in

DG neurons: the 900-pulses protocol with varying induction frequencies

(Kobayashi et al., 2013; Koranda et al., 2008; Wang et al., 1997) and the

theta burst stimulation (TBS) protocol (Beck et al., 2000; Davis et al.,

2004; Greenstein et al., 1988; Larson & Munkacsy, 2015; McHugh et al.,

2007; Pavlides et al., 1988; Shors & Dryver, 1994). The 900-pulses pro-

tocol involved synaptic stimulation made up of 900 pulses at various

induction frequencies (fi spanning 0.5–25 Hz), an experimentally and

computationally well-established Bienenstock–Cooper–Munro (BCM)-

like (Bienenstock et al., 1982) plasticity protocol across different neurons

including DG GCs (Anirudhan & Narayanan, 2015; Ashhad & Narayanan,

2013; Cooper & Bear, 2012; Dudek & Bear, 1992; Honnuraiah &

Narayanan, 2013; Johnston et al., 2003; Kobayashi et al., 2013; Koranda

et al., 2008; Narayanan & Johnston, 2010; Shouval et al., 2002; Wang

et al., 1997). The evolution of synaptic weight (Equation 11) was moni-

tored and the final weight at the end of the induction protocol was plot-

ted as a function of the induction frequency (Figure 2b). The percentage

difference between this final weight and the initial weight (0.25) was

plotted against the induction frequency of the stimulus pulses to obtain

the synaptic plasticity profile (Figure 2c) as a function of induction fre-

quency (Anirudhan & Narayanan, 2015; Honnuraiah & Narayanan, 2013;

Narayanan & Johnston, 2010; Shouval et al., 2002). The induction fre-

quency at which this plasticity profile transitioned from depression to

potentiation was defined as the modification threshold (Figure 2c), θm

(Ashhad & Narayanan, 2013; Cooper & Bear, 2012; Dudek & Bear,

1992; Honnuraiah & Narayanan, 2013; Johnston et al., 2003;

Narayanan & Johnston, 2010; Shouval et al., 2002).

We also employed percentage changes in w with fi = 1 Hz (Δw1)

and fi = 10 Hz (Δw10) for quantifying synaptic plasticity profiles

(Figure 2c). The computational complexity of this process was enor-

mous, especially in the face of three different forms of heterogene-

ities, and given that the construction of each profile required

stimulating the synapses with 900 pulses for each of the 50 induction

frequencies (fi spanning 0.5–25 Hz; 0.5 Hz increment) for each of the

126 models, across several synaptic permeability and diameter values.

This complexity was essential in assessing the mechanistic origins of

plasticity heterogeneity through a systematic and unbiased methodol-

ogy, incorporating different forms of neural-circuit heterogeneities in

a physiologically constrained manner, rather than employing a single

hand-tuned model with predetermined assumptions about the role of

individual components.
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For TBS, the synapse was stimulated with a burst of five action

potentials at 100 Hz, and this burst was repeated 150 times at 200

ms interval (theta frequency) each (Figure 5a). This was done to

achieve steady-state values for Ca½ �i and w (Ashhad & Narayanan,

2013). The percentage change in w at the end of this protocol in com-

parison to its initial value (winit ¼0:25) was employed to quantify plas-

ticity induced with TBS. For both plasticity induction protocols, we

employed a spike train generator as an input source to mimic presyn-

aptic activity.

These synaptic plasticity protocols and the rules for updating

synapses were chosen from the perspective of their relevance to

synapses in the DG GCs. Specifically, the two protocols employed

here are well-established routes to induce synaptic plasticity in DG

GCs (Beck et al., 2000; Davis et al., 2004; Greenstein et al., 1988;

Kobayashi et al., 2013; Koranda et al., 2008; Larson & Munkacsy,

2015; McHugh et al., 2007; Pavlides et al., 1988; Shors & Dryver,

1994; Wang et al., 1997). The calcium-dependent plasticity rule

employed here is a BCM-like plasticity rule that has been

F IGURE 2 Intrinsic heterogeneities in the granule cell population translates to heterogeneities in their BCM-like synaptic plasticity profiles,
when synaptic properties were fixed across models. (a) Plot of the Ω-function based on the calcium control hypothesis that regulates level of
plasticity as a function of intracellular Ca2+ concentration (Equation 11). (b) Evolution of synaptic weight as a function of time, obtained by
employing 900-pulses protocol of different induction frequencies in a granule cell (GC) model. Note that all plots initialize at winit ¼0:25 and
evolve to reach their respective steady-state value. The duration of each plot spans 900 pulses at the specified induction frequency f i . (c) BCM-
like synaptic plasticity profile obtained by plotting the percentage change in synaptic weight parameter after stimulation with 900-pulses of
different induction frequencies ranging from 0.5 to 25Hz. The color-coded points correspond to the different induction frequencies shown in
panel b. Arrows point to θm, Δw1 and Δw10. Δw1 and Δw10 represent the change in synaptic weight value for induction frequencies of 1 and
10Hz, respectively; θm, the modification threshold, is the induction frequency at which the plasticity profile switches from inducing LTD to
inducing LTP. (d–e) Same as (c), for all the 126 GC models for two different values of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR) permeability: 1000nm/s (d) and 1400nm/s (e). (f) Beeswarm plots of modification threshold for all GC models, for different
values of AMPAR permeability. Note that with specific values of AMPAR permeability, there were models that did not manifest a θm in the tested
range of frequencies, thus resulting in lesser number of models for each AMPAR permeability values (N = 100, 121, 121, 120, 112, 94, 63, 39 left
to right).

496 SHRIDHAR ET AL.



effectively used across different cell types to assess physiological

plasticity (Anirudhan & Narayanan, 2015; Ashhad & Narayanan,

2013; Bienenstock et al., 1982; Castellani et al., 2001; Castellani

et al., 2005; Cooper & Bear, 2012; Dudek & Bear, 1992;

Honnuraiah & Narayanan, 2013; Magee & Grienberger, 2020;

Narayanan & Johnston, 2010; Philpot et al., 2001; Shah et al.,

2006; Shouval et al., 2002; Yeung et al., 2004; Yu et al., 2008).

The rationale behind our choice of the calcium-control hypothesis

is the match between the plasticity profile obtained with the

900-pulses protocol in DG GCs (Kobayashi et al., 2013; Koranda

et al., 2008; Wang et al., 1997) and the calcium-dependent plastic-

ity profile explained by the BCM rule (Bienenstock et al., 1982;

Cooper & Bear, 2012; Shouval et al., 2002).

2.6 | Computer simulations and analysis

We employed NEURON as the simulation environment (Carnevale &

Hines, 2006) for executing all the simulation at VRMP (�75 mV)

with fixed temperature set at 34�C. We used the integration

time step of 25 μs except for simulations involving 900-pulses

protocol, where a variable time step method was employed

to efficiently solve the associated differential equations with lower

computational time. All data analyses were performed using custom-

built software under the Igor-Pro programming environment

(Wavemetrics Inc., USA). To avoid ambiguities arising from

reporting merely the summary statistics (Marder & Taylor, 2011;

Rathour & Narayanan, 2019), we have reported all the data points

with their respective ranges to represent the heterogeneities associ-

ated with our analysis and results. As we have employed Pearson cor-

relation coefficient for pairwise scatter plots, qualitative descriptions

on the strength of correlation coefficient values (weak vs. strong)

were adopted from the definitions provided in the study by Evans

(1996).

3 | RESULTS

We employed a physiologically realistic conductance-based popula-

tion of GC models (NGC=126), endowed with intrinsic heterogeneities

and expressing ion-channel degeneracy at the cellular-scale (Mishra &

Narayanan, 2019), to assess the impact of neural heterogeneities on

synaptic plasticity profiles. In this population, we introduced synaptic

heterogeneities by altering afferent synaptic strength, and structural

heterogeneities by changing the surface area of the model population.

We employed two well-established synaptic plasticity protocols,

namely the BCM-like 900-pulses protocol with different induction fre-

quencies and the TBS protocol, to examine the impact of these three

forms of neural heterogeneities in the regulation of synaptic plasticity

rules in DG GCs. We present results obtained through systematic

incorporation of these different forms of heterogeneities, both inde-

pendently and synergistically, into a physiologically validated GC

model population.

3.1 | GC models showed robustness for
nonvalidated measurements and manifested
heterogeneities in intrinsic measurements

The 126 GC models employed in this study were derived from an

unbiased stochastic search spanning 40 parameters (Table 1), sampling

20,000 randomized models (Mishra & Narayanan, 2019). Of the

20,000 models, these 126 models were previously validated based on

nine different characteristic electrophysiological signatures (Table 2)

of DG GCs (Mishra & Narayanan, 2019). Prominent among these mea-

surements are input resistance (Rin, range 140–225 MΩ; Figure 1b),

sag ratio (range 0.9–1; Figure 1e) and firing rate at 150 pA (range 10–

15 Hz; Figure 1f), which manifested heterogeneities. In addition to

these, here we characterized two more experimentally obtained sub-

threshold measurements of excitability to assess their relationship to

the induction of synaptic plasticity: impedance amplitude and tempo-

ral summation ratio (Figure 1c,d). Whereas temporal summation of

postsynaptic potentials constitutes an important measurement that

governs calcium influx and thereby synaptic plasticity (Narayanan &

Johnston, 2010; Nolan et al., 2004), impedance is a measure of excit-

ability for time-varying signals (Narayanan & Johnston, 2008).

Although the 126 GC models were initially not validated against these

two measurements, here we found that these measurements in the

models were within the range of their electrophysiological counter-

parts (Mishra & Narayanan, 2020). Specifically, maximum impedance

amplitude (jZjmax) in the model population ranged from 149.1 to 230.8

MΩ (mean ± SEM: 194.2 ± 1.6; NGC = 126; Figure 1c), which was

within the measured electrophysiological range (Mishra & Narayanan,

2020) of 63.4–430.2 MΩ (mean ± SEM: 176.9 ± 5.3; N = 172). The

temporal summation ratio in the model population ranged from 1.04

to 1.37 (mean ± SEM: 1.19 ± 0.006; NGC = 126; Figure 1d), which

was within the measured electrophysiological range (Mishra &

Narayanan, 2020) of 0.92–2.12 (mean ± SEM: 1.33 ± 0.015; N =

133). Apart from providing validation against two additional intrinsic

measurements, our analyses showed that these intrinsic properties

manifested heterogeneities in the model population (Figure 1c,d) and

provided further evidence for the robustness of our models in

matching characteristic signatures of GCs. In addition, the parameters

(spanning active and passive neural properties; Table 1) underlying

these 126 models manifested considerable heterogeneities, thus pro-

viding a layer of biophysical heterogeneities in the GC population.

3.2 | Intrinsic heterogeneity resulted in
heterogeneities in BCM-like plasticity profiles when
models received identical synaptic inputs

To understand the impact of intrinsic heterogeneities on emergence

of plasticity profiles, we first employed the well-established BCM-like

900 pulses protocol and constructed the synaptic plasticity profile,

spanning different induction frequencies (fi), for each GC model. The

stimuli comprised 900 synaptic stimulations impinging on a synapse

on each model neuron, at different induction frequencies ranging from
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0.5 to 25 Hz. The synaptic stimulation was allowed to activate a syn-

apse endowed with co-localized AMPAR and NMDAR, with identical

values for receptors' densities and properties across all GC models.

Activation of these receptors resulted in influx of calcium into the

cytosol, through NMDARs and voltage-gated calcium channels

(VGCC) expressed in the models, with the strength and the dynamics

of calcium evolution depending upon the induction frequency and the

specific model under consideration. Although the synaptic properties

and stimulation protocols were identical across models, the cytosolic

calcium influx would be model-dependent because of the differential

parametric configurations across models. The influx of calcium, in turn,

affected the weight parameter (w) associated with the AMPARs

(Narayanan & Johnston, 2010; Shouval et al., 2002), following the cal-

cium control hypothesis (Figure 2a; Equation 11). We monitored the

temporal evolution of the weight parameter and recorded the final

value at the end of protocol (after 900 pulses) for each induction fre-

quency (Figure 2b). To obtain the synaptic plasticity profile, the per-

centage weight change in w was computed from its final value for

each fi with respect to the initial value (winit = 0.25) and was plotted

as a function of fi (Figure 2c). Consistent with experimental results

from DG GCs (Kobayashi et al., 2013; Koranda et al., 2008; Wang

et al., 1997) and with the Ω-function that governs synaptic plasticity

(Figure 2a), we found that lower and higher values of fi yielded

depression and potentiation, of AMPAR weight, respectively (Figure

2c). The induction frequency at which the synaptic plasticity profile

transitioned from depression to potentiation was termed the modifi-

cation threshold θm (Anirudhan & Narayanan, 2015; Bienenstock

et al., 1982; Honnuraiah & Narayanan, 2013; Narayanan & Johnston,

2010; Shouval et al., 2002). The winit value along with the definition of

the Ω-function implies that the percentage plasticity varies from

�100% to +300%, with negative sign representing depression and

the positive sign representing potentiation (Narayanan & Johnston,

2010; Shouval et al., 2002).

To understand how and to what extent intrinsic heterogeneities

impact the evolution of synaptic profiles and modification threshold,

we obtained plasticity profiles for all the 126 GC models with identical

structural and synaptic properties. We found that heterogeneities in

intrinsic properties of these models resulted in heterogeneities in the

BCM-like plasticity profiles (Figure 2d,e) as well as in the associated

modification thresholds (Figure 2f). We repeated these analyses for

different values of baseline synaptic strength (defined as receptor per-

meability, PAMPAR, within the GHK formulation for AMPARs) to

explore the association of the fixed synaptic parameter to intrinsic

heterogeneities in altering the plasticity profiles (Figure 2d–f). We

observed a graded reduction in the modification threshold (Figure 2f),

implying a leftward shift in the BCM-like plasticity profile, with

increase in the baseline synaptic strength. This is to be expected

because with increased synaptic strength, the postsynaptic depolari-

zation and consequently the cytosolic calcium influx are higher, thus

allowing the plasticity profile to transition to synaptic potentiation at

lower induction frequencies (Narayanan & Johnston, 2010; Shouval

et al., 2002). As a consequence of intrinsic heterogeneities across

models and such leftward shifts in plasticity profile, there was also an

increase in the number of models that manifested no synaptic depres-

sion (within the tested range of fi) with increases in baseline synaptic

strength. Together, these results demonstrated that the expression of

intrinsic heterogeneities led to heterogeneities in synaptic plasticity

profiles, when structural and synaptic properties across models were

identical.

3.3 | Weak pairwise correlations between intrinsic
and plasticity-profile measurements

How are the different intrinsic measurements defining the 126 GC

models related to the measurements employed to quantify the synap-

tic plasticity profiles? Does a specific range of physiological sub- or

suprathreshold properties determine the synaptic plasticity measure-

ments or are they independent of each other? Does the synaptic per-

meability parameter play any role in defining the relationship between

these intrinsic and synaptic plasticity measurements? To address

these questions, we plotted intrinsic measurements against measure-

ments related to the synaptic plasticity profiles for all the 126 GC

models, for two different values of baseline synaptic strength

(Figure 3). We employed five intrinsic measurements (Figure 1),

namely input resistance (Rin), temporal summation (Sα), sag ratio,

F IGURE 3 Weak pairwise correlations between measurements of synaptic plasticity and intrinsic properties in the heterogeneous granule
cells (GC) model population. (a,b) Pairwise scatter plot matrices between three plasticity measurements: Percentage weight change at 1 Hz (Δw1),
10Hz (Δw10) and the modification threshold (θm) along the vertical axes, and five intrinsic measurements: Rin, Sα, f150, jZjmax, and sag on the
horizontal axes. Synaptic plasticity measurements were obtained for baseline AMPAR permeability values of 1000nm/s (a) and 1400nm/s (b).
The scatter plot matrices are overlaid on the respective color-coded values of correlation coefficients (R).
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maximum impedance amplitude (jZjmax), and firing rate at 150 pA

(f150). Three measurements related to the synaptic plasticity profile

were employed, namely percentage weight changes at fi = 1 Hz (Δw1)

and 10 Hz (Δw10), modification threshold (θm). We first plotted the

pairwise scatter plots between the intrinsic and the synaptic plasticity

measurements spanning all 126 GC models and calculated the

Pearson's correlation coefficient for these pairwise scatter plots

(Figure 3). We found weak pairwise correlation coefficients (�0.4 < R

< 0.4) across all the pairs, for synaptic plasticity measurements com-

puted with two different values of baseline synaptic strength (Figure

3a,b). These results suggest that intrinsic excitability and temporal

summation are not sufficiently strong to impose specific plasticity pro-

files on model synapses across the heterogeneous population of

models, and that several other mechanisms govern the emergence of

these plasticity profiles.

3.4 | Plasticity degeneracy: Synergistic interactions
between neuronal intrinsic properties and synaptic
strength result in the emergence of similar synaptic
plasticity profiles

The analyses thus far assumed the baseline synaptic strength (defined by

receptor densities prior to plasticity induction) to be uniform across all

valid GC models. Could synapses across these neuronal models manifest

similar plasticity profiles despite the expression of pronounced heteroge-

neities in their intrinsic properties? As baseline synaptic strength is a

known modulator of plasticity profiles (Anirudhan & Narayanan, 2015;

Narayanan & Johnston, 2010; Shouval et al., 2002) could a model-

dependent baseline synaptic strength allow for the emergence of similar

plasticity profiles across all models?

To address these questions, we first executed an algorithm, inde-

pendently for each of the 126 models, that identified the value of base-

line synaptic strength (PAMPAR) that yielded a synaptic plasticity profile

with the modification threshold around 10 Hz (9:75≤ θm ≤10:25).

Despite the considerable heterogeneities in intrinsic properties, we

found that altering PAMPAR was sufficient to achieve similar synaptic

plasticity profiles across all 126 models (Figure 4a) with θm falling

within the tight bound (Figure 4b). The considerable heterogeneities

in intrinsic properties, however, manifested as heterogeneity in the

PAMPAR value required to achieve similar plasticity profiles. The value

of PAMPAR required to achieve similar plasticity profiles (referred to as

threshold PAMPAR) spanned a wide range (Figure 4c), with the hetero-

geneity almost spanning an order of magnitude across models (450–

3100 nm/s). Thus, although changes in PAMPAR resulted in changes to

the plasticity profile across models (Figure 2f), specific co-expression of

heterogeneities in synaptic (Figure 4c) and intrinsic (Figure 1) proper-

ties could result in similar plasticity profiles (Figure 4a,b).

Did the emergence of similar plasticity profiles require strong

constraints on the relationship between synaptic strength and intrinsic

excitability of the models? Were there strong relationships between

synaptic strength and any of the biophysical parameters that defined

the models that yielded similar synaptic plasticity profiles? To address

these, we first computed pairwise correlation coefficients between

the PAMPAR value that was required to obtain similar plasticity profiles

(from Figure 4c) and five intrinsic measurements of the respective

models (from Figure 1) and found them to be weakly correlated

(Figure 4d; �0.03 < R < 0.02). We next plotted pair wise scatter plot

matrix between these PAMPAR values (from Figure 4c) and the 40 dif-

ferent intrinsic parameters that defined these 126 models to explore

possible parametric dependencies (Figure 4e). We found these

pairwise correlation coefficients to be weak (�0.5 < R < 0.5; Figure

4f), with the relatively high correlation values ( Rj j≈0:5) spanning the

relationships between PAMPAR values and parameters governing cyto-

solic calcium dynamics (conductances of L-type calcium and BK chan-

nels; parameters governing calcium-dependent activation of BK and

SK channels, the decay time constant of cytosolic calcium). Together,

these results demonstrate that neither the intrinsic properties (span-

ning sub- and supra-threshold intrinsic excitability and temporal sum-

mation) nor biophysical parameters (spanning passive and active

properties) were sufficient to impose strong constraints on the synap-

tic strength required for obtaining similar plasticity profiles. These

results also imply that heterogeneity-induced variation in any parame-

ter is compensated by synergistic interactions spanning several other

parameters (rather than recruiting strong pairwise compensations)

toward achieving plasticity profile homeostasis. Importantly, these

observations clearly demonstrate that disparate parametric combina-

tions could yield similar plasticity profiles, pointing to the expression

of degeneracy in the emergence of BCM-like synaptic plasticity pro-

files in DG GCs.

3.5 | Heterogeneities and degeneracy in synaptic
plasticity induced by TBS in the heterogeneous
granule cell population

The results thus far demonstrated that while heterogeneities in intrin-

sic and synaptic properties could independently translate to plasticity

profile heterogeneity, they could also synergistically interact to elicit

similar plasticity profiles despite widespread heterogeneities in each

underlying parameter. However, these observations were limited to

the BCM-like synaptic plasticity profile. To understand the depen-

dence and robustness of these conclusions on the type of induction

protocol, we turned to a more physiologically relevant and well-

established synaptic plasticity induction protocol: TBS (Figure 5a).

Synapses were provided TBS, and the consequent change in synaptic

weight following the calcium-dependent dynamics (Equation 11) was

computed as the difference of steady-state weight value from its ini-

tial weight (winit = 0.25). The temporal evolution of synaptic weight in

response to TBS (in a representative model) shows synaptic potentia-

tion when steady-state weight value was achieved (Figure 5b). We

measured plasticity induction consequent to TBS with different values

of baseline synaptic strength (PAMPAR) across each of the 126 intrinsi-

cally heterogeneous models (Figure 5d).

First, for any value of PAMPAR, we observed pronounced heteroge-

neity in the magnitude and strength of TBS-induced synaptic plasticity

SHRIDHAR ET AL. 499



(Figure 5c,d). While synapses on certain models manifested potentia-

tion, others showed depression for identical synapses receiving identi-

cal patterns of stimulation across models. Second, for lower values of

PAMPAR several models showed synaptic depression, whereas with

higher PAMPAR, a majority manifested potentiation (Figure 5c,d).

Finally, there were no strong pairwise correlations between TBS-

induced synaptic plasticity and any of the several intrinsic properties

of the model neurons (Figure 5e). These results demonstrate that syn-

aptic and intrinsic heterogeneities could independently alter the direc-

tion and the strength of TBS-induced synaptic plasticity, without

strong pairwise correlations between synaptic plasticity and neuronal

intrinsic properties.

We next asked whether we could tune each of these intrinsically

heterogeneous populations of GC models to elicit similar amount of

TBS-induced synaptic potentiation, despite the expression of hetero-

geneities. To do this, for each model, we independently executed an

algorithm that searched for a PAMPAR value that resulted in �150%

TBS-induced change in synaptic strength. We found that similar

amount of LTP could be obtained across all 126 intrinsically heteroge-

neous models (Figure 6a). The PAMPAR value required for yielding simi-

lar LTP, however, was heterogeneous and spanned a wide range

across the 126 models (Figure 6b). Thus, the specific expression of

intrinsic and synaptic heterogeneities could yield similar TBS-induced

LTP (Figure 6a,b), despite them being independently capable of alter-

ing TBS-induced synaptic plasticity (Figure 5). Across models, none of

the five intrinsic measurements (Figure 6c) or the 40 intrinsic parame-

ters that governed the models (Figure 6d,e) manifested strong

pairwise correlations with the PAMPAR required for eliciting similar

TBS-induced LTP. There were some parameters, especially those

governing calcium dynamics, that manifested relatively high values of

correlation coefficients with the PAMPAR values ( Rj j≈0:5), but none of

them showed strong correlations. Together, these results demon-

strated the expression of degeneracy in achieving similar TBS-induced

synaptic plasticity and emphasized that intrinsic properties do not

F IGURE 4 Degeneracy in the emergence of BCM-like synaptic plasticity profile resultant from synergistic interactions between
heterogeneities in intrinsic and synaptic properties. (a) Similar plasticity profiles with their modification thresholds at �10 Hz (9.75–10.25 Hz)
were obtained for all 126 granule cells (GC) models by adjusting the synaptic strength PAMPAR for each model. (b) Beeswarm plot shows the
distribution of modification threshold around 10Hz obtained for all the GC models. (c) Beeswarm plot representing distribution of α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) permeability (PAMPAR) values (range: 450–3100nm/s) required to obtain similar
plasticity profile (panels a,b) across the 126 GC models. (d) Pairwise scatter plots between AMPAR permeabilities shown in panel c and five
intrinsic measurements, overlaid on respective color-coded correlation values showing weak pairwise correlations, plotted for the 126 GC models.
(e) Pairwise scatter plots between AMPA permeability values shown in panel c and 40 different intrinsic channel parameters, overlaid on
corresponding color-coded correlation values representing weak pairwise correlations, plotted for the 126 GC models. (f) Histogram representing
the distribution of correlation coefficient values depicted in panel e.
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impose strong constraints on synaptic parameters toward induction of

similar synaptic plasticity.

3.6 | Neurogenesis-induced age-dependent
structural heterogeneity regulates the heterogeneity
in plasticity profiles across intrinsically variable GC
models

The DG is endowed with adult-neurogenesis, where it takes them

4–8 weeks to fully mature and become physiologically and morpho-

logically similar to the developmentally born neurons. Immature

adult-born GCs have reduced dendritic arborization and are highly

excitable in nature with lower threshold for induction of synaptic plas-

ticity (Aimone et al., 2014; Dieni et al., 2013; Ge et al., 2007;

Huckleberry & Shansky, 2021; Schmidt-Hieber et al., 2004). To incor-

porate the structural heterogeneity introduced by adult neurogenesis,

we independently changed the diameter (range from 1 to 65 μm) of

126 valid mature GCs to reflect the maturation process: 2–9 μm diam-

eter for the immature neuronal population matching the high input

resistance found from electrophysiological studies (Heigele et al.,

2016; Li et al., 2017; Lodge & Bischofberger, 2019; Overstreet-

Wadiche, Bensen, & Westbrook, 2006a; Overstreet-Wadiche,

Bromberg, et al., 2006; Pedroni et al., 2014; Schmidt-Hieber et al.,

F IGURE 5 Intrinsic heterogeneities in the granule cell (GC) population translates to heterogeneities in plasticity induced by the theta burst
stimulation (TBS) protocol, when synaptic properties were fixed across models. (a) Top, schematic of TBS protocol to induce synaptic plasticity.
The protocol consists of bursts of stimuli with the inter burst interval set at 200 ms and each burst comprised five events separated by 10 ms
interval (expanded view). Bottom, typical voltage response of an example GC model to TBS. (b) Plot representing evolution of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor weight reaching an average steady-state value of 0.62 from initial weight value set to 0.25
as a function of time in response to TBS. Inset, plot showing the initial portion of the weight evolution in response to five bursts of the TBS
protocol. (c,d) Cumulative histogram (c) and beeswarm plots (d) showing the amount of LTP across all models with different AMPAR
permeabilities, ranging from 340 to 660 nm/s. It may be noted that number of GC models undergoing LTP increases as a function of AMPAR
permeability values. (e) Pairwise scatter plots between TBS-induced change in synaptic strength and five different intrinsic properties of all GC

models, plotted for different values of baseline AMPAR permeabilities. The plots are overlaid on the respective color-coded correlation
coefficients values, which show weak correlations across all plots.
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2004); diameters in the 60–65 μm range formed a fully mature popu-

lation, based on the diameter of the base model population set at 63

μm; and intermediate diameters range 10–60 μm resulted in an age-

dependent population at different maturation phases. To understand

and quantify the dependence of plasticity profile on neurogenesis

induced age-dependent structural heterogeneity, we first employed

BCM-like 900 pulses protocol of different frequency range (0.5–25

Hz) to induce synaptic plasticity in these models. Specifically, the

impact of plasticity induction was assessed in the 126 intrinsically het-

erogeneous models, with the diameter changes spanning 3–65 μm,

which incorporated an additional layer of structural heterogeneity into

each of these models. A third layer of synaptic heterogeneity was intro-

duced by varying the baseline AMPAR permeability PAMPAR value,

together providing us an experimental design that allowed us to

assess the impact of all the three prominent neural-circuit heteroge-

neities on the synaptic plasticity profile (Figure 7a–e).

Considering an example of a single granule cell model, we found

that altering the diameter of the neuron had a dramatic impact on the

synaptic plasticity profile even when PAMPAR was set at a fixed value

(Figure 7a,b). Thus, in the absence of synaptic or intrinsic heterogene-

ities, structural changes were independently capable of altering synap-

tic plasticity profiles, introducing a leftward shift in the plasticity

profile with reduction in the diameter (Figure 7a–d). In assessing the

impact of synaptic heterogeneities, we plotted modification threshold

as a function of diameter for different values of PAMPAR and found the

diameter-dependent changes were observed across PAMPAR values

irrespective of whether the diameter was varied over immature

(Figure 7c) or mature (Figure 7d) ranges. As a consequence of leftward

shifts in the plasticity profile induced by reductions in diameter, the

PAMPAR value required for achieving similar modification thresholds

was lower in immature neurons (Figure 7c) compared to their devel-

oping/mature counterparts (Figure 7d). However, irrespective of the

F IGURE 6 Degeneracy in eliciting the same amount of theta burst stimulation (TBS)-induced LTP emerges from synergistic interactions
between heterogeneities in intrinsic and synaptic properties. (a) Plot showing that the same amount of LTP (�150%) is obtained in different
granule cell (GC) models by adjusting the baseline α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) permeability value.
(b) Beeswarm plot representing the range of AMPAR permeabilities required to obtain �150% LTP shown in (a). (c) Pairwise scatter plots
between permeability parameter in (b) and five intrinsic measurements of the respective models, overlaid on the respective color-coded
correlation coefficients. Weak correlation values (�0.05 < R < 0.06) indicate the absence of pairwise dependency between the synaptic
parameter and intrinsic measurements in the emergence of degeneracy. (d) Pairwise scatter plots between permeability parameter in (b) and
intrinsic parameters spanning all GC models. Overlaid are respective color-coded correlation values. (e) Histogram of correlation coefficients
represented in (d). Weak correlation values (�0.4 < R < 0.5) indicate lack of pairwise dependency between intrinsic and synaptic parameters in
the emergence of plasticity degeneracy.
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ranges of diameters, increase in PAMPAR values resulted in an expected

leftward shift in the plasticity profiles (Figure 7c,d).

To address the impact of intrinsic heterogeneity on the modifica-

tion threshold in the context of structural heterogeneity, we chose a

specific value of PAMPAR (475 nm/s; Figure 7e) such that there were at

least some models with modification threshold value within the tested

range of induction frequencies (0.5–25 Hz) across different range of

diameter (between 10 and 63 μm). This was essential because reduc-

tion in diameter led to large leftward shifts in the plasticity profile.

Such large shifts yielded a scenario where none of the tested induc-

tion frequencies resulted in depression thereby rendering the modifi-

cation threshold to be indeterminate (e.g., diameters 3–10 μm in

F IGURE 7 Age-dependent structural heterogeneity in granule cell (GC) models manifests as heterogeneity in the plasticity profiles obtained
from the 900 pulses protocol. (a,b) Plasticity profiles obtained with the 900-pulses protocols with different induction frequencies, corresponding
to a single GC model with different diameters for two different values of baseline α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR) permeability: PAMPAR =400 nm/s (a) and PAMPAR=600nm/s (b). (c,d) Plots of modification threshold as functions of diameter
for different values of PAMPAR in a single GC model. Shown are plots for immature (c; 2–10 μm) and mature (d; 40–65 μm) ranges of diameters.
The leftward shifts in plasticity profile observed with decreases in diameter or increases in permeability signifies lower threshold for LTP
induction in the same GC model with lower diameter or higher permeability. Immature GC models undergo LTP at lower PAMPAR values (compare
permeability ranges in panel c vs. panel d) due to their highly excitable nature. (e) Beeswarm plots showing the distribution of modification
threshold as a function of diameters across all GC models for a fixed PAMPAR value of 475nm/s. Note that the modification threshold did not fall
within the tested range of induction frequencies for different models at different diameter values, thus resulting in different number of points for
each diameter value (N = 3, 117, 121, 93, 47, and 21 from the left to right). (f) Pairwise scatter plots between different plasticity measurements:
Modification threshold (θm), percentage weight change at 1Hz (Δw1) and 10Hz (Δw10) and measurements of intrinsic excitability: Rin, f100, and
f150 for two AMPAR permeability values: PAMPAR = 400 nm/s (f) and 600nm/s (g), across six diameters values (3, 9, 30, 40, 50, and 63 μm). The
scatter plots are overlaid to corresponding color-coded pairwise correlation coefficients representing weak pairwise correlations across diameters
and permeability values. Note that θm did not fall within the tested range of induction frequencies for different models with different diameter
values, thus resulting in lesser points for certain diameter values. The axes ranges for each measurement span the entire range of the respective
measurements and are different across different plots.
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Figure 7a). For a fixed value of PAMPAR, we found that the modification

threshold increased as a function of diameter, albeit manifesting con-

siderable heterogeneity in the modification threshold for a given

diameter value across different models (Figure 7e). For several models

with diameters of 10, 40, 50, and 63 μm, the modification threshold

(with PAMPAR = 475 nm/s) was not within the tested range of induc-

tion frequencies (0.5–25 Hz), thus resulting in lesser number of

models for those diameters (Figure 7e).

Were there strong relationships between intrinsic and synaptic

plasticity measurements across these models across different diame-

ters and different values of PAMPAR? To answer this, we employed

three intrinsic measurements (Rin, f100 and f150) and three measure-

ments of synaptic plasticity (θm, Δw1, and Δw10), each measured for

six diameter values (3, 9, 30, 40, 50, and 63 μm) and two PAMPAR

values (Figure 7f,g). We computed Pearson's correlation coefficients

between the intrinsic and synaptic plasticity measurements and found

weak pair wise correlations between intrinsic and plasticity measure-

ments across different diameter and permeability values. Together,

these analyses demonstrated that immature cells with relatively

smaller surface areas showed a lower threshold value for LTP induc-

tion, in terms of the induction frequency (Figure 7a,b,e) and the base-

line synaptic strength (immature, Figure 7c vs. mature, Figure 7d). We

noted that these observations matched their electrophysiological

counterparts showing that immature neurons have lower threshold

for plasticity induction compared to mature neurons (Aimone et al.,

2014; Dieni et al., 2013; Ge et al., 2007; Schmidt-Hieber et al., 2004).

3.7 | Synergistic interactions between different
forms of heterogeneities resulted in the emergence of
plasticity degeneracy with BCM-like plasticity profiles

At any given time-point, the granule cell population in the DG network

comprises neurons in distinct age groups, spanning the entire range of

just-born to fully mature neurons. Thus, based on our analyses so far,

the consequent structural and intrinsic heterogeneities could result in

distinct plasticity profiles with different ranges of modification thresh-

olds. However, we had demonstrated earlier that similar plasticity pro-

files could be achieved across different intrinsically heterogeneous GC

neurons, if the baseline synaptic strength was adjusted appropriately

(Figure 4). Although intrinsic neural properties and synaptic strength

manifested considerable heterogeneities when viewed independently,

together they were able to yield very similar plasticity profiles (Figure

4). Could such plasticity degeneracy manifest even in presence of

neurogenesis-induced structural heterogeneity? Could similar plasticity

profiles be achieved despite the concomitant expression of intrinsic,

synaptic, and structural heterogeneities in the DG neuronal population?

To assess these questions, we first selected six intrinsically dis-

tinct GC models (from the population of 126 models) and assigned dif-

ferent values of diameters to each of these six models. We then

employed an algorithm to find a synaptic permeability value (PAMPAR)

that yielded plasticity profiles endowed with their modification

threshold at �10 Hz with the 900-pulse protocol (Figure 8a). We

found the synaptic plasticity profiles for each of these six models,

endowed with their respective PAMPAR provided by the algorithm, to

be similar across the entire range of induction frequencies (0.5–25

Hz) (Figure 8a). We then plotted each of the 42 parameters underlying

these six models (40 intrinsic parameters in Table 1, diameter as the

structural parameter, and PAMPAR governing the synapse) and found

each of them to span their respective ranges (Figure 8b). These ana-

lyses illustrate that models built with very different structural, intrin-

sic, and synaptic properties (Figure 8b) could together yield very

similar synaptic plasticity profile (Figure 8a), thus demonstrating the

emergence of plasticity degeneracy despite widespread variability in

all underlying parameters.

We expanded the scope of our analyses to span all 126 intrinsically

heterogeneous models, each spanning six diameter values (3, 9, 30, 40,

50, and 63 μm) and employed our algorithm to find a PAMPAR that would

yield a modification threshold of �10 Hz (9:75≤ θm ≤10:25) in each of

these (126�6¼756) models (Figure 9a). We were able to find PAMPAR

values that yielded similar modification thresholds, with the required

PAMPAR increasing with increase in diameter (Figure 9b). We did not

find strong correlations between the PAMPAR value required for achiev-

ing similar plasticity profiles and the respective intrinsic measurements

(Figure 9c). These observations rule out the requirement of strong coun-

terbalances between intrinsic and synaptic properties, within each of the

six assessed diameters. Similarly, there were no strong correlations

between the threshold PAMPAR value and each of the 40 intrinsic param-

eters (Table 1), for models with each of the six diameter values (Figure

9d). Together, these results demonstrated that degeneracy in the

emergence of plasticity profiles is not dependent on strong pairwise

compensations between synaptic properties and individual intrinsic

measurements (Figure 9c) or parameters (Figure 9d). These analyses

suggest a role for synergistic interactions among structural, intrinsic,

and synaptic parameters in yielding similar plasticity profiles.

3.8 | Synergistic interactions between synaptic,
intrinsic, and structural heterogeneities governed
TBS-induced synaptic plasticity

We repeated our analyses on the impact of the three forms of hetero-

geneities with the TBS protocol. First, we found that heterogeneities

in structural properties could alter the amount of synaptic plasticity

achieved with TBS across the intrinsically heterogeneous model popu-

lation, when structural heterogeneity was introduced by altering diam-

eters to six different values representative of immature and mature

granule cell populations. For these analyses, we fixed the PAMPAR value

and found that the amount of plasticity obtained reduced with

increasing value of diameter (Figure 10a, left), thus demonstrating a

lower threshold on PAMPAR for inducing LTP in immature neurons. We

also found that there was no correlation between the amount of plas-

ticity achieved and the respective intrinsic properties, for each value

of diameter assessed (Figure 10a, right). Second, to explore plasticity

degeneracy with the TBS protocol, we next found PAMPAR values that

yielded similar levels of synaptic plasticity of �150% (148%–152%)
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for each of the 126 intrinsically heterogeneous models, with six differ-

ent values of diameters (Figure 10b,c). The PAMPAR value required for

achieving similar plasticity increased with increase in diameter and did

not manifest strong correlations with either the respective intrinsic

measurements (Figure 10d) or the intrinsic parameters (Figure 10e)

for each value of the diameter.

Together, our analyses demonstrated that each of intrinsic (Figures

2d–f, 5d, 7e, and 10a), synaptic (Figures 2d–f, 5c,d, and 7c,d), and struc-

tural (Figures 7e and 10a) heterogeneities could independently intro-

duce heterogeneities in the plasticity profiles, irrespective of the

protocol employed. However, when they coexpress, these disparate

forms of heterogeneities could synergistically interact with each other

to yield very similar plasticity profiles (Figures 4a–c, 6a,b, 8, 9a,b and

10b,c), irrespective of the induction protocol employed. Across our ana-

lyses spanning different plasticity protocols, assessing heterogeneities

or degeneracy in plasticity profiles, we did not find strong correlations

between synaptic properties plotted against intrinsic measurements

(Figures 3, 4d, 5e, 6c, 7f,g, 9c, and 10d) or intrinsic parameters (Figures

4e, 6d, 9d, and 10e) of the model populations. These results suggested

that the measurements of intrinsic excitability and temporal summation

are not sufficiently strong to impose specific synaptic plasticity profiles.

3.9 | Importance of adult neurogenesis-induced
structural heterogeneities in lowering plasticity
induction threshold and recruiting engram cells based
on intrinsic excitability

In our analyses thus far, we noted that intrinsic excitability parameters

were not strong enough to constrain synaptic plasticity induction,

F IGURE 8 Illustration of degeneracy in the emergence of plasticity profiles spanning biophysical, structural, and synaptic parameters using six
models. (a) Frequency-dependent plasticity profiles plotted for six intrinsically disparate models with different diameters and PAMPAR values yield
similar plasticity profile with modification threshold at �10Hz. (b) Plots, for each of the six models shown in panel a, of the 40 intrinsic passive
and active properties (listed in Table 1 with units), the diameter (in μm) and the PAMPAR (in nm/s) values required to get the modification threshold
to be �10Hz. The plots for each of the 40 intrinsic parameters (Table 1) and diameter (1–63 μm) span their entire search range. Note that the
ranges of each parameter across the six models are highly variable (b), spanning a large portion of the parameter's search range, despite the
similarity of the plasticity profiles (a)
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with a consistent lack of strong correlations between synaptic plastic-

ity measurements and intrinsic excitability (Figures 4–7, 9, and 10).

This is in contrast with the literature where a critical role for intrinsic

excitability has been postulated in reducing the threshold for plasticity

induction and in individual neurons being recruited as engram cells for

a new context (Ge et al., 2007; Huckleberry & Shansky, 2021;

Josselyn & Frankland, 2018; Josselyn & Tonegawa, 2020; Lau et al.,

2020; Lodge & Bischofberger, 2019; Park et al., 2016; Pignatelli et al.,

2019; Schmidt-Hieber et al., 2004; Yiu et al., 2014). How do we rec-

oncile these observations? Thus far in our correlation analyses, we

have focused independently on mature versus immature populations,

treating analyses within each diameter to be independent of others

(Figures 7, 9, and 10). However, in physiological scenarios where there

is coexistence of cells of different ages, it is important to ask whether

immature cells have an advantage over their mature counterparts in

manifesting lower threshold for plasticity and thereby being recruited

by afferent inputs. It is therefore essential that the analyses span all

ages of cells rather than treating them as independent populations.

Therefore, we plotted the amount of plasticity induced by the

900-pulses protocol at fi = 1 Hz (Δw1; Figure 11a,b) and the modifica-

tion threshold obtained with the 900-pulses protocol (θm; Figure 11c,

d), computed with a fixed value of PAMPAR, against respective intrinsic

excitability measurements (Rin and f100) spanning all diameter values

across all neurons in the intrinsically heterogeneous population. We

found strong relationships of synaptic plasticity measurements with

measurements of intrinsic excitability (Figure 11a–d). Specifically, our

analyses showed that the amount of induced plasticity was higher in

neurons with high excitability (Figure 11a,b) and that the plasticity

F IGURE 9 Emergence of plasticity degeneracy due to synergistic interactions between age-dependent structural, synaptic, and intrinsic
heterogeneities with weak pairwise correlations. (a) Plot representing the distribution of modification threshold for all GC models across different
diameters to obtain modification threshold of �10 Hz by adjusting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
permeability for each model. (b) Plot depicting the distribution of AMPAR permeability values required to obtain plasticity profiles with
modification threshold of �10 Hz (shown in panel a), across different diameter values. (c) Pairwise scatter plots between AMPA permeability
values depicted in B and intrinsic excitability measurements (Rin, f100, and f150) across different diameters, overlaid on respective color-coded
correlation coefficient values. (d) Pairwise scatter plots showing distribution of intrinsic parameters across AMPA permeabilities that yielded
�10 Hz modification threshold across different diameters. The scatter plots are overlaid on color-coded pairwise correlation coefficient values
showing weak pairwise correlations.
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profile manifested a strong leftward shift with increased excitability

(Figure 11c,d). Thus, while intrinsic excitability was insufficient to

impose strong correlations on synaptic plasticity measurements in the

absence of structural heterogeneities in the neural population (Figures

7, 9, and 10), quantitative introduction of structural heterogeneities

allows the consequent intrinsic excitability changes to impose strong

constraints on the synaptic plasticity profiles. In other words, although

DG GCs are endowed with considerable baseline heterogeneities, the

introduction of an immature population through adult neurogenesis is

essential for these neurons to be specifically recruited in a new con-

text during engram formation (Huckleberry & Shansky, 2021;

Josselyn & Frankland, 2018; Josselyn & Tonegawa, 2020; Lau et al.,

2020; Lodge & Bischofberger, 2019; Park et al., 2016; Pignatelli et al.,

2019; Schmidt-Hieber et al., 2004; Yiu et al., 2014).

There are lines of evidence that the synaptic strength of inputs to

immature DG GCs is lower compared to their mature counterparts

F IGURE 10 Heterogeneities and degeneracy in synaptic plasticity achieved with theta burst stimulation (TBS) protocol in models endowed
with age-dependent structural, synaptic, and intrinsic heterogeneities. (a) Left, age-dependent structural heterogeneity in the population of GC
models translated to heterogeneity in the amount of plasticity achieved with tTBS protocol when baseline synaptic strength was fixed to 81 nm/
s. Shown is the amount of plasticity achieved for models in the intrinsically heterogeneous model population, with the diameter altered to assess
the impact of structural heterogeneities. Right, pairwise scatter plots between different plasticity measurements associated with TBS versus
measurements of intrinsic excitability: Rin, f100, and f150 for a fixed value of baseline synaptic strength, PAMPAR = 81nm/s, across six diameter
values (3, 9, 30, 40, 50, and 63 μm). The scatter plots are overlaid to corresponding color-coded pairwise correlation coefficients representing
weak pairwise correlations across diameters and permeability values. The axes ranges for each measurement span the entire range of the
respective measurements and are different across different plots. (b–e) Degeneracy in eliciting the same amount of TBS-induced LTP emerges

from synergistic interactions between heterogeneities in structural, intrinsic, and synaptic properties. (b) Plot showing that the same amount of
LTP (�150%) is obtained in different GC models, across six different diameter values to assess the impact of structural heterogeneities, by
adjusting PAMPAR. (c) Beeswarm plot representing the range of AMPAR permeabilities required to obtain �150% LTP shown in b, for each of the
six diameter values. (d) Pairwise scatter plots between permeability parameter in c and three intrinsic measurements of the respective models,
overlaid on the corresponding color-coded correlation coefficients. Plots are shown for each of the six diameter values. (e) Pairwise scatter plots
between permeability parameter in b and intrinsic parameters spanning all GC models. Overlaid are respective color-coded correlation values.
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(Dieni et al., 2016; Li et al., 2017; Mongiat et al., 2009). Are immature

neurons with such low baseline synaptic strengths capable of effectu-

ating synaptic plasticity comparable to their mature counterparts? To

address this, we first plotted the threshold PAMPAR required to elicit

the same modification threshold (of �10 Hz) with the 900-pulses pro-

tocol as functions of intrinsic excitability measurements, spanning all

diameter values across all neurons in the intrinsically heterogeneous

population (Figure 11e,f). We found that in immature neurons with

high excitability, even small values of PAMPAR were sufficient to

achieve synaptic plasticity profiles comparable with their mature

counterparts (Figure 11e). Importantly, although threshold PAMPAR

values from individual neuronal populations of different diameters did

not manifest strong correlations with intrinsic measurements (Figure

9c), there was a strong inverse relationship between threshold PAMPAR

values and Rin (Figure 11e) as well as f100 (Figure 11f) when neurons

with all diameters were considered together. Finally, with reference to

the TBS protocol, we found that small values of PAMPAR were suffi-

cient to achieve synaptic plasticity of �150% in immature neurons

(Figure 11g). Strong inverse relationships manifested between thresh-

old PAMPAR and measurements of intrinsic excitability with the TBS

protocol as well (Figure 11g,h). Together, these analyses demon-

strated the essential requirement of structural heterogeneity compris-

ing immature neuronal populations in specifically recruiting high-

excitability neuronal populations to induce synaptic plasticity, and in

ensuring that sufficient plasticity is induced despite low density of

synaptic receptors in immature neurons.

F IGURE 11 The dominant
role of structural heterogeneities
in regulating plasticity profiles
with the BCM-like and theta
burst stimulation (TBS) plasticity
protocols. (a,b) Percentage weight
change at 1 Hz (Δw1) with the
900-pulses protocol plotted
against input resistance (a) and

firing rate for 100pA current
injection (b) for models in the
intrinsically heterogeneous
population, with each model
assessed at six different diameter
values (3, 9, 30, 40, 50, and
63 μm). (c,d) Same as (a,b), plotted
for modification threshold (θm) on
the y axis. For panels (a–d), the
data from Figure 7g
(PAMPAR = 600nm/s) are plotted
together for all diameters. (e,f)
Same as (a,b), plotted for the
AMPAR permeabilities required
to achieve a modification
threshold of �10Hz (with the
900-pulses protocol), referred to
as threshold PAMPAR, on the y axis.
For panels (e,f), the data from
Figure 9c are plotted together for
all diameters. The insets in panels
(e) and (f) depict the inverse of
threshold PAMPAR plotted against
Rin or f100, respectively, to
illustrate the 1/x relationship
between threshold PAMPAR versus
Rin and threshold PAMPAR versus
f100. (g,h) Same as (e,f), but
plotted threshold PAMPAR was
computed to achieve �150%
synaptic plasticity with the TBS
protocol. For panels (g,h), the data
from Figure 10d are plotted
together for all diameters.
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4 | DISCUSSION

The principal goal of this study was to assess the mechanistic basis for

the expression of plasticity heterogeneities. Plasticity heterogeneity is

defined as the variability observed in the amount of plasticity induced

by identical activity patterns across cells and synapses of the same

subtype. We demonstrate that disparate forms of neural-circuit het-

erogeneities, spanning intrinsic, synaptic, and structural properties,

could provide a mechanistic substrate for the expression of plasticity

heterogeneities. These neural-circuit heterogeneities could either act

individually or in unison in mediating plasticity heterogeneities. Our

analyses demonstrate that structural heterogeneities, introduced by

the expression of adult neurogenesis in the DG, are the dominant

form of heterogeneity that drives plasticity heterogeneities. However,

our analyses caution against construing the manifestation of neural-

circuit heterogeneities to be direct evidence for the expression of

plasticity heterogeneities. This note of caution emanates from our

demonstration of plasticity profile degeneracy, whereby similar plas-

ticity profiles were attained across a population of models, despite

pronounced heterogeneities in their synaptic, intrinsic, and structural

properties.

4.1 | Heterogeneities spawn heterogeneities:
Disparate forms of biophysical and structural
heterogeneities could independently drive
physiologically crucial heterogeneities in plasticity
profiles

We constructed multiple populations of DG granule cell models to

reflect heterogeneities in neuronal passive properties, ion-channel

properties, calcium-handling mechanisms, synaptic strength, and neu-

ral structure of DG GCs of different ages. Each of these heterogene-

ities was incorporated into our model populations with strong

physiological constraints on multiple intrinsic properties (Table 2), thus

ensuring the physiological relevance of our conclusions. We employed

two well-established synaptic plasticity protocols to demonstrate that

each of intrinsic, synaptic, and structural heterogeneities indepen-

dently result in heterogeneities in the amount of plasticity induced.

These observations held for both plasticity protocols, one involving

900 pulses of different induction frequencies and another employing

TBS. In electrophysiological experiments assessing synaptic plasticity,

there is pronounced heterogeneity in the amount of plasticity induced

with any induction protocol. Specifically, whereas the same protocol

might elicit 300% LTP in certain neurons, in other neurons of the

same subtype in the same brain region, the protocol results in 10%

LTP. Such neuron-to-neuron and animal-to-animal variability in the

amount of plasticity induced is typically not analyzed quantitatively,

with the data typically represented using summary statistics and inter-

pretations drawn from the average plasticity across different cells

from different animals. However, given the role of such differential

plasticity across different neurons in resource allocation and in

engram formation, it is essential to not just report these

heterogeneities but also examine the mechanisms underlying such

cell-to-cell differences.

To emphasize the critical roles played by these plasticity hetero-

geneities across different cells and different synapses, let us consider

an extreme scenario where these heterogeneities were absent. This

would translate to all synapses across all cells undergoing the same

amount of plasticity for any given context, together resulting in the

absence of context-dependent recruitment/allocation of synapses or

cells that are critical for engram cell formation and decorrelation. From

the engram cell formation perspective, there are several lines of evi-

dence to suggest context-dependent plasticity in a subset of cells that

are recruited to encode a new context (Josselyn & Frankland, 2018;

Josselyn & Tonegawa, 2020; Lau et al., 2020; Lodge & Bischofberger,

2019; Park et al., 2016; Pignatelli et al., 2019; Schmidt-Hieber et al.,

2004; Yiu et al., 2014). In addition, afferent connectivity has been

demonstrated to be a dominant mediator of neural decorrelation

(Mishra & Narayanan, 2019), with strong lines of evidence suggesting

that afferent connectivity is actively driven by differences in plasticity

profiles across different GCs (Aimone et al., 2006, 2009; Aimone

et al., 2014; Ge et al., 2007; Li et al., 2017; Lodge & Bischofberger,

2019; Luna et al., 2019; Schmidt-Hieber et al., 2004). Thus, in the

absence of plasticity heterogeneities, the critical role of differential

plasticity in mediating differential connectivity to neurons in the DG

during encoding and storage process would be hampered. Our study

explores the mechanistic basis for such heterogeneity and traces the

potential origins to the pronounced heterogeneities in intrinsic, synap-

tic, and structural properties of DG GCs. These analyses emphasize

the need for studies that assess neural plasticity to quantitatively

report plasticity heterogeneities and to trace their origins, under phys-

iological or pathological conditions.

4.2 | Heterogeneities underlying degeneracy:
Synergistic interactions among different forms of
biophysical and structural heterogeneities could yield
similar plasticity profiles

We demonstrated that even the expression of heterogeneities in all of

structural, synaptic, and intrinsic neuronal properties does not neces-

sarily have to translate to heterogeneities in synaptic plasticity pro-

files. Specifically, we showed that very similar plasticity profiles could

be achieved with disparate combinations of neuronal passive proper-

ties, ion-channel properties, calcium-handling mechanisms, synaptic

strength, and neural structure of DG GCs of different ages (Figures 4,

6, and 8–10). Independently observed, these properties manifested

widespread heterogeneities with no pairwise relationships (Figures 4,

6, 9, and 10). But when seen together, these heterogeneities synergis-

tically interacted with each other to achieve degeneracy in the emer-

gence of synaptic plasticity profiles. There are computational (Beining,

Mongiat, et al., 2017; Mishra & Narayanan, 2019, 2021b) and electro-

physiological (Mishra & Narayanan, 2021a) lines of evidence for DG

GCs to manifest ion-channel degeneracy in the expression of their

characteristic intrinsic properties. However, similarity in baseline
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electrophysiological properties of different neurons does not neces-

sarily translate to similarity in terms of how these neurons react to

plasticity-inducing stimuli (Anirudhan & Narayanan, 2015; Rathour &

Narayanan, 2019; Srikanth & Narayanan, 2015).

Here, we have demonstrated and expanded the scope for the

expression of degeneracy in DG GCs beyond ion-channel degeneracy

and beyond achieving characteristic intrinsic properties. Specifically,

we have demonstrated the manifestation of degeneracy in the emer-

gence of plasticity profiles, independently for two different induction

protocols, with the analyses concomitantly incorporating structural

heterogeneities driven by adult-neurogenesis, heterogeneities in

intrinsic neuronal properties, and heterogeneities in synaptic strength

(Figures 8–10). Importantly, this form of degeneracy was demon-

strated in a heterogeneous population of neurons that manifested

physiologically constrained (Table 2) neural properties, including

those, which were not initially assessed (Figure 1). This population

included immature cells whose excitability measurements were mat-

ched by altering their surface area. Thus, this population of neurons

manifested degeneracy in the expression of physiologically matched

neural intrinsic properties and showed plasticity degeneracy with the

concomitant expression of all forms of neural heterogeneities. In com-

paring with previous studies on degeneracy, we note that these stud-

ies accounted for degeneracy either in characteristic neuronal intrinsic

properties (Mishra & Narayanan, 2019, 2021a, 2021b) or in plasticity

profiles (Anirudhan & Narayanan, 2015), but not together. Our study

demonstrates the expression of degeneracy in the concomitant emer-

gence of characteristic neuronal intrinsic properties and of character-

istic plasticity profiles, while considering a superset of model

parameters and measurements that span all ages of GCs in the DG.

The predominant implication for the expression of degeneracy

in the concomitant emergence of intrinsic properties and plasticity

profiles is the explosion in the degrees of freedom available for the

neurons to achieve these characteristic features, thereby providing

multiple routes to achieving functional robustness (Edelman & Gally,

2001; Goaillard & Marder, 2021; Rathour & Narayanan, 2019).

In addition, given the expression of such degeneracy, it is essential

that the theoretical and experimental analyses recognize that the

mappings between structural components and functional outcomes

are many-to-many and avoid reductionist oversimplifications of

structure–function relationships (Goaillard & Marder, 2021;

Mishra & Narayanan, 2021a, 2021b; Rathour & Narayanan, 2019). It

is therefore critical that experimental and computational analyses

explicitly account for heterogeneities in neural circuit properties and

for the expression of degeneracy in the emergence of baseline neu-

ral properties and plasticity profiles. It is important to independently

and systematically assess the strong interactions among different

forms of heterogeneities. There could be scenarios where plasticity

heterogeneities manifest in the absence of cellular-scale heterogene-

ities, owing to heterogeneities in biochemical signaling cascades

across cells. In addition, as shown here, there could be scenarios

where heterogeneities in one property are counterbalanced by het-

erogeneities in others, together yielding plasticity degeneracy

(Figures 4, 6 and 8–10).

4.3 | Dominant role of structural heterogeneities
in introducing plasticity heterogeneities across
neurons: Selective recruitment and resource allocation
during engram cell formation

A role for intrinsic excitability has been postulated in reducing the

threshold for plasticity induction and in individual neurons being rec-

ruited as engram cells, toward encoding a new context (Ge et al.,

2007; Josselyn & Frankland, 2018; Josselyn & Tonegawa, 2020; Lau

et al., 2020; Lodge & Bischofberger, 2019; Park et al., 2016; Pignatelli

et al., 2019; Schmidt-Hieber et al., 2004; Yiu et al., 2014). However,

in the individual population of mature or immature cells, we

demonstrated that intrinsic excitability and temporal summation het-

erogeneities were insufficient to impose strong constraints on

plasticity-related measurements (Figures 3, 4d, 5e, 6c, 7f,g, 9c, and

10d). However, when the entire population covering mature and

immature cells were considered together, it was clear that there were

strong relationships between intrinsic excitability and measurements

associated with synaptic plasticity (Figure 11). These results

highlighted the dominance of structural heterogeneities, introduced

through adult neurogenesis, in introducing heterogeneities in plastic-

ity profiles that are essential for effective execution of encoding and

storage roles of the DG.

We explored a range of AMPAR strengths across neurons with

different diameters and demonstrated that similar levels of synaptic

plasticity could be achieved despite the low synaptic strength (Figure

11e–h) that is observed onto these immature neurons (Dieni et al.,

2016; Li et al., 2017; Mongiat et al., 2009). The lower ranges of

AMPAR strengths may indeed be an essential requirement for keeping

the plasticity in a useful physiological range, because higher AMPAR

strengths in immature neurons might result in large magnitude and

unstable plasticity dynamics. Together, the expression of adult neuro-

genesis amplifies heterogeneities in intrinsic excitability properties

and in synaptic strengths. Our study demonstrates that these ampli-

fied heterogeneities could be critical in defining plasticity heterogene-

ity across different neurons, and in defining a role for intrinsic

excitability in recruitment/allocation of engram cells. Specifically, the

heterogeneities typically seen in mature cells (with input resistance in

the range of 100–300 MΩ) are not sufficient to enforce strong corre-

lations of neural excitability measurements with the expression of

synaptic plasticity. Higher input resistance values (in the GΩ range)

that distinguish the immature neurons from their mature counterparts

are essential to significantly lower the synaptic plasticity induction

threshold and drive the recruitment of these as engram cells for new

contexts.

4.4 | Limitations and future directions

Although our model population spanned all forms of heterogeneities

and was physiologically constrained in several ways, there are some

limitations in the model and in parametric choices. First, the computa-

tional cost for each plasticity simulation involved either 900 pulses of
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different fi values ranging from 0.5 to 25 Hz in steps of 0.5 Hz, or TBS

repeated for 150 times. Both protocols were repeated for each of the

126 intrinsically heterogeneous models with different PAMPAR and sev-

eral diameter values. To partially offset for this tremendous computa-

tional cost, we had employed a single-compartmental model to assess

the impact of neural-circuit heterogeneities on plasticity profiles.

However, it is essential that future studies account for morphological

reconstructions of DG GCs with experimentally determined somato-

dendritic distributions of channels and receptors and assess plasticity

profiles for synapses placed at different somato-dendritic locations

(Sjostrom & Hausser, 2006). These studies could also specifically

employ immature versus mature dendritic morphologies rather than

introducing surface area changes through change in diameter. Such

analyses, in conjunction with electrophysiological experiments, would

address questions on heterogeneities in developmentally versus

adult-born GCs (Abrous & Wojtowicz, 2015; Anacker & Hen, 2017;

Beining, Jungenitz, et al., 2017; Cole et al., 2020; Doetsch & Hen,

2005; Kerloch et al., 2019; Laplagne et al., 2006; Snyder, 2019; Stone

et al., 2011; Tronel et al., 2015; Tuncdemir et al., 2019; Wu et al.,

2015), with specific reference to plasticity heterogeneities. Further,

these analyses will provide insights about the impact of neural hetero-

geneities, spanning adult- versus developmentally born mature as well

as immature neurons, on location-dependent plasticity profiles in the

stratified synaptic inputs from lateral versus medial entorhinal

cortices.

Second, as our focus here was on excitatory synaptic plasticity,

we have not incorporated inhibition into our analyses. However, given

the DG circuitry that recruits a diverse set of interneurons that

impinge along different locations of the somato-dendritic arbor

(Amaral et al., 2007; Andersen et al., 2006; Dieni et al., 2013;

Elgueta & Bartos, 2019; Freund & Buzsaki, 1996; Houser, 2007), it is

essential that the impact of heterogeneities in inhibitory synaptic

inputs on plasticity profiles are also assessed in more detail. In this

context, there are lines of evidence that the inhibitory neurotransmit-

ter GABA exerts functionally critical excitatory influences on the

immature cells, and through the process of maturation shifts to being

inhibitory (Chancey et al., 2013; Ge et al., 2006; Heigele et al., 2016).

Thus, future studies that account for inhibition should also assess the

impact of this switch in GABAergic impact on immature versus mature

GCs and their plasticity profiles.

Third, whereas our cellular-scale analysis has focused on the

biophysical and structural heterogeneities as sources of plasticity het-

erogeneities, there are other potential sources for plasticity heteroge-

neities. At the molecular scale, it is possible that heterogeneities in

the expression of plasticity related molecules (and associated signaling

cascades) across synapses and across neurons of the same subtype

could mediate plasticity heterogeneities (Josselyn & Frankland, 2018;

Park et al., 2016). At the network scale, when multiple neurons are

considered, pre-existing afferent and local connectivity onto these

neurons could form yet another potential source of plasticity hetero-

geneities (Josselyn & Frankland, 2018; Josselyn & Tonegawa, 2020).

In addition, there are lines of evidence for a lower overlap in synaptic

inputs impinging on immature GCs compared to inputs to mature GCs

(Dieni et al., 2016), suggesting a role for afferent heterogeneities in

not just regulating output correlations (Dieni et al., 2016; Mishra &

Narayanan, 2019, 2021b) but also in mediating plasticity heterogene-

ities. Thus, future studies could expand the analyses of plasticity het-

erogeneity beyond the cellular scale to encompass network- and

molecular-scale components that could drive plasticity heterogene-

ities. In assessing plasticity heterogeneities at the network scale, it is

important that the analyses are built on realistic networks of excit-

atory and inhibitory neurons receiving physiologically relevant local as

well as afferent input activity. As the synapse-localized calcium

dynamics are critical mediators of synaptic plasticity, it is important

that such analyses are performed on morphologically realistic neuro-

nal models with realistic calcium dynamics and diffusion (Basak &

Narayanan, 2018). At the molecular scale, performing realistic simula-

tions would entail precise measurements of the different plasticity-

related signaling molecules in different synapses and assessing intra-

and inter-neuronal variability in the concentration of these signaling

molecules across different synapses. Quantitative signaling cascades

could then be built with realistic calcium inputs (Basak & Narayanan,

2018; Bhalla, 2004, 2014; Bhalla et al., 2002; Bhalla & Iyengar, 1999)

to assess the molecular sources that mediate plasticity heterogeneity

across GC synapses.

Fourth, our analyses here were limited to synaptic plasticity from

the perspective of in vitro protocols. Of the two induction protocols

employed in this study, although the 900 pulses protocol is an

extremely useful biophysical tool to assess plasticity mechanisms

(Anirudhan & Narayanan, 2015; Ashhad & Narayanan, 2013;

Bienenstock et al., 1982; Castellani et al., 2001; Castellani et al., 2005;

Cooper & Bear, 2012; Dudek & Bear, 1992; Honnuraiah & Narayanan,

2013; Narayanan & Johnston, 2010; Philpot et al., 2001; Shah et al.,

2006; Shouval et al., 2002; Yeung et al., 2004; Yu et al., 2008), the

physiological relevance is minimal given the requirement for

900 pulses for any given induction frequency. However, the TBS pro-

tocol carries considerable physiological relevance because the inputs

from the lateral and the medial entorhinal cortices to the DG are theta

modulated (Deshmukh et al., 2010). Therefore, the TBS protocol

involves an activity pattern that is physiologically relevant in the con-

text of the DG network (Beck et al., 2000; Bland, 1986; Buzsaki,

2002; Colgin, 2013, 2016; Davis et al., 2004; Diamantaki et al., 2016;

Greenstein et al., 1988; Larson & Munkacsy, 2015; McHugh et al.,

2007; Pavlides et al., 1988; Pernia-Andrade & Jonas, 2014;

Sainsbury & Bland, 1981; Shors & Dryver, 1994; Winson, 1974, 1978;

Zhang et al., 2020).

In extrapolating our conclusions to an in vivo setting involving

engram cell formation, it is essential that in vivo activity patterns and

other forms of plasticity are considered as well. One route to

approach plasticity in a network that incorporate different (intrinsic,

synaptic, structural, and afferent) forms of heterogeneities studied

here would be to use heterogeneous network models receiving activ-

ity patterns from the entorhinal cortices (Mishra & Narayanan, 2019,

2021b). Neuronal models and their connectivity should be constrained

by the DG network, with plasticity implemented through the calcium

control hypothesis employed here. In a heterogeneous conductance-
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based setting, calcium through voltage- and ligand-gated calcium

channels could contribute to heterogeneous calcium influx across dif-

ferent neurons. The neuronal population could be constructed with

mature or immature neurons, with differential connectivity and ion-

channel densities to provide insights about plasticity heterogeneities

in an in vivo setting. Predictions from such heterogeneous biophysical

networks could then be tested in DG networks using in vivo electro-

physiology and/or population imaging of calcium activity in awake

behaving animals.

Furthermore, plasticity in the DG GCs is known to span synaptic

and intrinsic properties (Bliss & Lomo, 1973; Lopez-Rojas et al., 2016;

Mishra & Narayanan, 2021c, 2022). These observations necessitate

future studies to assess the impact of neural heterogeneities on con-

junctive intrinsic and synaptic plasticity, especially with reference to

plasticity heterogeneities, resource allocation, and engram formation

(Josselyn & Frankland, 2018; Josselyn & Tonegawa, 2020; Lisman

et al., 2018; Mishra & Narayanan, 2021c; Park et al., 2016; Rao-Ruiz

et al., 2019; Silva et al., 2009). Analyses of the heterogeneities in such

conjunctive plasticity involving multiple components, along with their

roles in context-specific resource allocation, could provide crucial

insights about how the brain accomplishes stable and continual learn-

ing in an ever-changing environment (Mishra & Narayanan, 2021c).

Finally, and importantly, our analyses emphasize the need to sys-

tematically characterize the expression of plasticity heterogeneities

across different brain regions. Such analyses should span behavioral

learning processes and pathological conditions to probe the mechanistic

origins of and functional implications for plasticity heterogeneity. For

instance, could pathology-induced hyperplasticity that spans several

neurological disorders (Bernier et al., 2011; Calabresi et al., 2003;

Chattarji et al., 2015; Hulme et al., 2013; Kauer & Malenka, 2007;

Markram & Markram, 2010; Rinaldi et al., 2008; Roozendaal et al.,

2009; Soda et al., 2019) be a mechanism to reduce plasticity heteroge-

neity across neurons, thereby hampering context-specific memory for-

mation? Could loss of plasticity heterogeneity in the amygdala be a

mechanism behind fear generalization that is observed with certain neu-

rological disorders (Chattarji et al., 2015; Ghosh & Chattarji, 2015;

Markram et al., 2008; Rahman et al., 2017; Suvrathan et al., 2014)?

Could the ability of different neural-circuit components—spanning trans-

membrane proteins, cytosolic and nuclear signaling elements, synaptic

strength, neuronal morphology—to synergistically contribute to similar

plasticity profiles (i.e., plasticity degeneracy) provide a therapeutic route

for robustness in neural learning hampered by pathological conditions?

These and other associated questions need to be systematically

addressed through quantitative characterization of plasticity heteroge-

neities spanning different brain regions, physiological contexts, and

pathological conditions, together assessing the implications for plasticity

heterogeneities in context-specific encoding of learned behavior.
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