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Observational studies have evaluated the potential association of socioeconomic
factors such as higher education with the risk of stroke but reported controversial
findings. The objective of our study was to evaluate the potential causal association
between higher education and the risk of stroke. Here, we performed a Mendelian
randomization analysis to evaluate the potential association of educational attainment
with ischemic stroke (IS) using large-scale GWAS datasets from the Social Science
Genetic Association Consortium (SSGAC, 293,723 individuals), UK Biobank (111,349
individuals), and METASTROKE consortium (74,393 individuals). We selected three
Mendelian randomization methods including inverse-variance-weighted meta-
analysis (IVW), weighted median regression, and MR–Egger regression. IVW
showed that each additional 3.6-year increase in years of schooling was
significantly associated with a reduced IS risk (OR = 0.54, 95% CI: 0.41–0.71, and
p = 1.16 × 10–5). Importantly, the estimates from weighted median (OR = 0.49, 95%
CI: 0.33–0.73, and p = 1.00 × 10–3) and MR–Egger estimate (OR = 0.18, 95% CI:
0.06–0.60, and p = 5.00 × 10–3) were consistent with the IVW estimate in terms of
direction and magnitude. In summary, we provide genetic evidence that high
education could reduce IS risk.

Keywords: stroke, educational attainment, Mendelian randomization, genome-wide association studies, ischaemic
stroke

Edited by:
Liangcai Zhang,

Janssen Research and Development,
United States

Reviewed by:
Yang Hu,

Harbin Institute of Technology, China
Keshen Li,

The First Affiliated Hospital of Jinan
University, China

*Correspondence:
Mingfeng Yang

mfyang@163.com
Huanming Li

13820788663@163.com

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 14 October 2021
Accepted: 24 December 2021
Published: 11 February 2022

Citation:
Gao L, Wang K, Ni Q-B, Fan H, Zhao L,

Huang L, Yang M and Li H (2022)
Educational Attainment and Ischemic

Stroke: A Mendelian
Randomization Study.

Front. Genet. 12:794820.
doi: 10.3389/fgene.2021.794820

Abbreviations: BMI, body mass index; CI, confidence interval; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome
wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics) consortium; DI-
AGRAM, DIAbetes Genetics Replication AndMeta-analysis consortium; IS, ischemic stroke; GWAS, genome-wide association
study; IVW, inverse-variance-weighted meta-analysis; OR, odds ratio; SD, standard deviation; SNP, single-nucleotide poly-
morphism; SSGAC, Social Science Genetic Association Consortium.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7948201

ORIGINAL RESEARCH
published: 11 February 2022

doi: 10.3389/fgene.2021.794820

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.794820&domain=pdf&date_stamp=2022-02-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.794820/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.794820/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.794820/full
http://creativecommons.org/licenses/by/4.0/
mailto:mfyang@163.com
mailto:13820788663@163.com
https://doi.org/10.3389/fgene.2021.794820
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.794820


INTRODUCTION

Stroke is one of the leading causes of serious long-term disability
in the world and is the fifth leading cause of death in the
United States (Mozaffarian et al., 2016a; Mozaffarian et al.,
2016b). Every year, there are more than 795,000 people having
a stroke and more than 130,000 deaths from stroke, and the
estimated stroke cost is $33 billion in the United States
(Mozaffarian et al., 2016b). In recent years, there has been an
increased interest for observational studies exploring the impact
of socioeconomic factors such as higher education on stroke risk.
In fact, a number of studies have reported that high education
could reduce the risk of stroke (Nordahl et al., 2014; Ferrario et al.,
2017; Kubota et al., 2017; Mchutchison et al., 2017). However,
there are still some inconsistent findings. In 2002, Chang et al.
found that stroke risk was reduced among less educated women
in Africa, compared to highly educated women (Chang et al.,
2002). It is well known that persons with cognitive impairment
are at a higher risk of stroke (Sajjad et al., 2015). In 2015, Sajjad
et al. conducted an observational study of 9,152 participants from
the Rotterdam (Sajjad et al., 2015). They identified that education
could modify the association between subjective memory
complaints and risk of stroke (Sajjad et al., 2015). Higher
education is significantly associated with a higher risk of
stroke (hazard ratio = 1.39; 95% CI: 1.07–1.81) (Sajjad et al.,
2015).

In recent years, large-scale genome-wide association studies
(GWAS) promptly identified some common genetic variants and
provided insight into the genetics of educational attainment
(Okbay et al., 2016) and stroke (Malik et al., 2016). The
existing large-scale GWAS datasets provide strong support for
investigating the potential causal association of educational
attainment with stroke risk by a Mendelian randomization
analysis (Mokry et al., 2015; Nelson et al., 2015; Ference et al.,
2017; Larsson et al., 2017a; Manousaki et al., 2017; Tillmann et al.,
2017). This method could avoid some limitations of observational
studies and is widely used to determine the causal inferences
(Mokry et al., 2015; Ference et al., 2017; Larsson et al., 2017a;
Manousaki et al., 2017; Tillmann et al., 2017; Wang et al., 2020).

It is reported that about 87% of all strokes are ischemic stroke
(IS), in which blood flow to the brain is blocked (Mozaffarian
et al., 2016a; Mozaffarian et al., 2016b). Intracerebral hemorrhage
is the second most common cause of stroke (about 15%–30% of
strokes) (An et al., 2017). Here, we performed a Mendelian
randomization (MR) study to investigate the association of
increased educational attainment with IS risk using the genetic
variants from the large-scale educational attainment GWAS
dataset (N = 405,072 individuals of European descent) and the
large-scale IS GWAS dataset (N = 29,633, including 10,307 IS
cases and 19,326 controls of European descent).

MATERIALS AND METHODS

Study Mesign
MR is based on three principal assumptions (Emdin et al., 2017;
Larsson et al., 2017a). First, the genetic variants selected to be

instrumental variables should be associated with the exposure
(educational attainment) (Emdin et al., 2017; Larsson et al.,
2017a). Second, the genetic variants should not be associated
with confounders (assumption 2) (Emdin et al., 2017; Larsson
et al., 2017a). Third, genetic variants should affect the risk of the
outcome (IS) only through the exposure (educational attainment)
(assumption 3) (Emdin et al., 2017; Larsson et al., 2017a). Recent
studies have provided the more detailed information about the
three principal assumptions (Liu et al., 2018; Liu et al., 2019;
Zhang et al., 2020; Liu et al., 2021a; Liu et al., 2021b; Sun et al.,
2021). This study is based on the publicly available, large-scale
GWAS summary datasets. All participants gave informed consent
in all these corresponding original studies. All relevant data are
within the paper and the Supplementary Tables S1. The authors
confirm that all data underlying the findings are either fully
available without restriction through consortia websites or may
be made available from consortia upon request.

Educational Attainment GWAS Dataset
We selected a large-scale GWAS dataset of educational
attainment in individuals of European descent whose
educational attainment was assessed at or above age 30
(Okbay et al., 2016). The examined phenotype is a continuous
variable measuring the number of years of schooling completed
(EduYears) (Okbay et al., 2016). This GWAS dataset consisted of
293,723 individuals in the discovery stage [Social Science Genetic
Association Consortium (SSGAC), EduYears mean = 14.3,
standard deviation (SD) = 3.6] and 111,349 individuals in the
independent replication stage (UK Biobank, EduYears mean =
13.7, SD = 5.1) (a total of 405,072 individuals of European
descent) (Okbay et al., 2016). In brief, the discovery stage
GWAS from SSGAC was performed at the cohort level in
individuals of European descent (Okbay et al., 2016). The
replication stage GWAS from UK Biobank was conducted
using conventionally population-based unrelated individuals
with “White British” ancestry in the United Kingdom (Okbay
et al., 2016). The meta-analysis of the discovery and replication
stages of GWAS identified 162 independent genetic variants with
the genome-wide significance (p < 5.00 × 10–8) (Okbay et al.,
2016). Here, we selected these 162 independent genetic variants as
the potential instrumental variables, as provided in Table 1 and
Supplementary Table S1, which could explain 1.6%–1.8% of the
variance in education (Tillmann et al., 2017). Meanwhile, Li and
others also selected these 162 independent genetic variants in
their MR analysis to evaluate the causal association between
educational attainment and asthma (Li et al., 2021).

IS GWAS Dataset
The IS GWAS dataset is from the METASTROKE consortium
(Malik et al., 2016). TheMETASTROKE consortium performed a
meta-analysis of 12 IS cohorts with a total of 10,307 IS individuals
and 19,326 controls of European ancestry (N = 29,633
individuals) (Malik et al., 2016). More detailed information is
described in the original study (Malik et al., 2016). The
significance threshold for the association of these 162
educational attainment genetic variants with IS is p < 0.05/162
= 3.09 × 10–4.
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TABLE 1 | 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs11130222 A T 0.59 0.025 0.0023 3.68E-28
rs13090388 T C 0.31 0.026 0.0024 2.58E-26
rs7029201 A G 0.41 0.025 0.0023 7.16E-27
rs9401593 A C 0.52 −0.024 0.0022 3.83E-28
rs12987662 A C 0.39 0.025 0.0023 8.52E-28
rs8002014 A G 0.27 −0.024 0.0025 3.80E-21
rs34305371 A G 0.1 0.036 0.0039 1.52E-20
rs10773002 A T 0.25 0.022 0.0026 7.74E-18
rs6882046 A G 0.74 −0.019 0.0025 8.12E-14
rs17824247 T C 0.59 −0.016 0.0023 2.41E-12
rs61160187 A G 0.61 −0.017 0.0023 2.71E-14
rs11588857 A G 0.21 0.02 0.0027 3.27E-13
rs2456973 A C 0.67 −0.019 0.0024 5.83E-16
rs10786662 C G 0.55 −0.017 0.0022 4.63E-14
rs4863692 T G 0.32 0.017 0.0024 4.61E-12
rs10223052 A G 0.36 0.016 0.0023 3.56E-12
rs11998763 A G 0.54 0.017 0.0022 4.61E-14
rs9964724 T C 0.68 0.018 0.0024 2.39E-14
rs6839705 A C 0.36 0.015 0.0023 1.19E-10
rs7964899 A G 0.44 0.016 0.0022 4.37E-13
rs12410444 A G 0.7 −0.017 0.0024 6.01E-13
rs112634398 A G 0.95 0.038 0.0055 2.74E-12
rs1106761 A G 0.38 −0.016 0.0023 1.37E-11
rs3172494 T G 0.12 0.023 0.0036 8.98E-11
rs58694847 C G 0.26 −0.018 0.0025 4.98E-12
rs1008078 T C 0.4 −0.017 0.0023 3.10E-14
rs34344888 A G 0.39 −0.016 0.0023 8.87E-13
rs1378214 T C 0.37 −0.015 0.0023 1.85E-11
rs16845580 T C 0.63 0.016 0.0023 4.14E-12
rs12900061 A G 0.18 0.019 0.0029 5.04E-11
rs35771425 T C 0.79 0.018 0.0027 2.71E-11
rs7776010 T C 0.82 −0.021 0.003 2.61E-12
rs1338554 A G 0.5 0.015 0.0022 1.52E-11
rs356992 C G 0.3 0.017 0.0024 4.03E-12
rs7593947 A T 0.51 0.015 0.0022 2.39E-11
rs1912528 T C 0.36 0.014 0.0023 1.53E-09
rs2992632 A T 0.72 0.016 0.0025 3.25E-11
rs4741351 A G 0.3 −0.015 0.0024 2.98E-10
rs6715849 A G 0.44 −0.015 0.0022 1.65E-11
rs660001 A G 0.21 −0.018 0.0027 1.34E-10
rs320700 A G 0.65 0.014 0.0023 3.91E-09
rs113474297 T C 0.13 −0.021 0.0034 8.34E-10
rs28420834 A G 0.45 −0.014 0.0023 2.67E-10
rs56231335 T C 0.67 −0.017 0.0024 7.17E-13
rs62263923 A G 0.64 −0.017 0.0023 1.11E-13
rs12076635 C G 0.79 0.018 0.0027 3.11E-11
rs9556958 T C 0.53 −0.015 0.0022 1.21E-11
rs8049439 T C 0.59 0.015 0.0023 6.99E-11
rs11774212 T C 0.52 0.016 0.0023 1.51E-12
rs10483349 A G 0.81 −0.017 0.0028 7.11E-10
rs71326918 A C 0.1 0.022 0.0039 1.02E-08
rs11687170 T C 0.83 0.021 0.0035 1.39E-09
rs7286601 T G 0.54 −0.014 0.0023 1.99E-09
rs73344830 A G 0.42 0.015 0.0023 9.93E-12
rs12143094 C G 0.06 0.029 0.0049 2.73E-09
rs34638686 T C 0.1 0.023 0.0038 1.51E-09
rs10761741 T G 0.42 0.013 0.0023 7.05E-09
rs75090987 A C 0.52 0.014 0.0022 1.14E-09
rs4500960 T C 0.46 −0.014 0.0022 2.56E-10
rs1562242 T C 0.48 −0.013 0.0022 5.95E-09
rs192818565 T G 0.8 0.02 0.0029 2.02E-12
rs12534506 A T 0.47 −0.014 0.0023 3.17E-10
rs10178115 T G 0.54 0.014 0.0022 5.84E-10

(Continued on following page)
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TABLE 1 | (Continued) 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs62100765 T C 0.42 −0.015 0.0023 1.08E-10
rs12142680 A G 0.09 0.026 0.0043 8.97E-10
rs71413877 A G 0.04 0.035 0.0058 1.91E-09
rs149613931 T G 0.06 −0.028 0.0048 5.54E-09
rs17167170 A G 0.8 0.019 0.0028 1.79E-12
rs12956009 T C 0.57 −0.013 0.0022 3.75E-09
rs2179152 T C 0.37 −0.013 0.0023 9.30E-09
rs7033137 C G 0.76 0.015 0.0026 1.77E-08
rs4378243 T G 0.83 0.018 0.0029 1.04E-09
rs4493682 C G 0.17 0.019 0.003 1.54E-10
rs9755467 T C 0.16 0.019 0.0031 5.11E-10
rs4851251 T C 0.27 −0.015 0.0025 1.36E-09
rs7945718 A G 0.62 0.014 0.0023 1.26E-09
rs1382358 T C 0.87 0.02 0.0035 1.66E-08
rs148490894 A G 0.98 0.044 0.0078 1.84E-08
rs12761761 T C 0.24 0.016 0.0027 1.04E-08
rs142328051 T C 0.91 0.022 0.0039 3.60E-08
rs55786114 T C 0.07 −0.03 0.0045 4.11E-11
rs7948975 T C 0.64 0.014 0.0023 1.14E-09
rs1606974 A G 0.12 0.022 0.0034 1.82E-10
rs10772644 C G 0.88 0.02 0.0035 1.65E-08
rs111321694 T C 0.17 −0.016 0.003 4.33E-08
rs17425572 A G 0.46 0.014 0.0022 1.38E-09
rs111730030 T G 0.06 −0.029 0.005 7.51E-09
rs1550973 A G 0.35 −0.014 0.0023 2.00E-09
rs2406253 A G 0.81 0.016 0.0028 4.64E-08
rs7772172 A G 0.4 0.013 0.0023 9.83E-09
rs281302 A G 0.56 −0.013 0.0022 2.88E-09
rs17372140 A G 0.3 −0.014 0.0024 9.19E-09
rs12640626 A G 0.58 0.013 0.0023 1.66E-08
rs113011189 T C 0.09 −0.025 0.0045 2.91E-08
rs56081191 A G 0.07 0.028 0.0047 3.67E-09
rs12694681 T G 0.69 0.014 0.0024 1.81E-08
rs12134151 C G 0.5 −0.013 0.0022 1.14E-08
rs7914680 T G 0.71 −0.014 0.0025 1.60E-08
rs6493271 T C 0.83 0.017 0.0029 4.21E-09
rs152603 A G 0.65 −0.013 0.0023 2.01E-08
rs7791133 A C 0.38 −0.014 0.0023 2.33E-09
rs1389473 A G 0.38 −0.013 0.0023 4.52E-09
rs61874768 T G 0.18 −0.016 0.0029 3.85E-08
rs10818606 T C 0.4 −0.014 0.0023 5.67E-10
rs2568955 T C 0.25 −0.016 0.0026 5.77E-10
rs268134 A G 0.25 0.014 0.0026 3.53E-08
rs6939294 T C 0.23 0.016 0.0026 2.90E-09
rs12653396 A T 0.56 −0.013 0.0022 7.65E-09
rs648163 T C 0.26 0.014 0.0025 1.38E-08
rs140711597 C G 0.98 0.052 0.0091 1.66E-08
rs301800 T C 0.18 0.016 0.0029 2.85E-08
rs12462428 T C 0.81 0.016 0.0028 3.31E-08
rs11756123 A T 0.35 −0.015 0.0023 6.43E-11
rs7429990 A C 0.27 −0.015 0.0026 8.44E-09
rs12702087 A G 0.46 0.013 0.0022 1.74E-09
rs4076457 T C 0.25 0.015 0.0026 8.85E-09
rs78387210 T C 0.09 0.023 0.004 8.41E-09
rs7610856 A C 0.43 0.012 0.0023 3.02E-08
rs78365243 T C 0.95 0.029 0.0052 2.22E-08
rs1115240 C G 0.75 −0.016 0.0026 7.05E-10
rs7605827 A T 0.29 0.016 0.0029 4.86E-08
rs76076331 T C 0.14 0.02 0.0032 2.38E-10
rs1596747 A G 0.51 0.014 0.0022 1.14E-09
rs77702819 T G 0.09 0.022 0.004 2.93E-08
rs12646808 T C 0.66 0.015 0.0024 3.79E-10
rs2624818 A G 0.11 0.021 0.0037 8.63E-09
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Pleiotropy Analysis
We performed a comprehensive pleiotropy analysis to assure that
the selected genetic variants do not exert effects on IS through
biological pathways independent of education levels. The
American Heart Association and American Stroke Association
have reported the leading risk factors for stroke, including high
blood pressure, high cholesterol, heart disease (coronary artery
disease), diabetes, current smoking, obesity, and excessive alcohol
drinking (Meschia et al., 2014). In stage 1, we manually evaluated
the potential pleiotropy using the GWAS datasets about the
known confounders including high blood pressure, high
cholesterol, body mass index (BMI), smoking behavior, and
alcohol drinking from the UK Biobank (Sudlow et al., 2015);
coronary artery disease from the CARDIoGRAMplusC4D
[Coronary ARtery DIsease Genome wide Replication and
Meta-analysis (CARDIoGRAM) plus The Coronary artery
disease (C4D) Genetics] consortium (Nikpay et al., 2015); and
type 2 diabetes from the DIAGRAM (DIAbetes Genetics
Replication And Meta-analysis) consortium (Zhao et al.,
2017). The significance threshold for the association of these

162 genetic variants with the potential confounders is a
Bonferroni correction p < 0.05/162 = 3.09E-04.

In stage 2, we selected three statistical methods to perform
the pleiotropy analysis. The first statistical method is based on
the heterogeneity test (Greco et al., 2015; Hartwig et al., 2017;
Liu et al., 2017). The potential heterogeneity in these genetic
variants could be evaluated using Cochran’s Q test (together
with the I2 index), which is a useful tool to explore the
presence of heterogeneity due to pleiotropy or other causes,
especially in MR studies with large sample sizes based on
summary data (Greco et al., 2015). The second statistical
method is the MR–Egger intercept test that provides an
assessment of the validity of the instrumental variable
assumptions and provides a statistical test of the presence
of potential pleiotropy (Dale et al., 2017). The third statistical
method is a newly developed method named Mendelian
Randomization Pleiotropy RESidual Sum and Outlier (MR-
PRESSO) test (Verbanck et al., 2018). In all these three
statistical methods, the threshold of statistical significance
for evidence of pleiotropy is p < 0.05.

TABLE 1 | (Continued) 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs7633857 C G 0.52 −0.014 0.0026 4.74E-08
rs11976020 A G 0.23 −0.015 0.0027 4.43E-08
rs4308415 C G 0.44 −0.013 0.0022 2.52E-09
rs700590 T C 0.59 −0.013 0.0023 2.84E-08
rs756912 T C 0.52 −0.014 0.0022 1.14E-09
rs7241530 T C 0.36 −0.013 0.0023 2.28E-08
rs35971989 A G 0.84 0.018 0.0032 2.95E-08
rs11771168 T C 0.24 −0.015 0.0027 2.56E-08
rs17504614 T C 0.8 0.016 0.0028 1.56E-08
rs9914544 A C 0.62 −0.013 0.0023 4.66E-08
rs4675248 A G 0.4 −0.012 0.0023 4.39E-08
rs6800916 A T 0.08 −0.024 0.0043 1.70E-08
rs35532491 A T 0.9 -0.022 0.0038 7.15E-09
rs56044892 T C 0.2 −0.016 0.0028 5.37E-09
rs79925071 T G 0.56 0.013 0.0022 1.52E-08
rs12145291 T C 0.94 −0.029 0.0051 2.21E-08
rs34106693 C G 0.83 0.017 0.0031 1.80E-08
rs12754946 T C 0.57 0.013 0.0023 1.48E-08
rs4741343 A G 0.18 −0.016 0.0029 2.32E-08
rs76878669 C G 0.76 0.014 0.0026 4.12E-08
rs775326 A C 0.32 −0.014 0.0024 1.22E-08
rs10821136 T C 0.34 0.013 0.0024 3.58E-08
rs1925576 A G 0.54 −0.012 0.0022 2.23E-08
rs6065080 T C 0.36 −0.013 0.0023 1.16E-08
rs56158183 A G 0.07 0.025 0.0043 1.42E-08
rs12531458 A C 0.52 0.012 0.0022 3.81E-08
rs62379838 T C 0.69 0.013 0.0024 4.06E-08
rs7590368 T C 0.73 −0.014 0.0025 2.72E-08
rs113520408 A G 0.27 0.015 0.0025 7.15E-09
rs62263033 T C 0.96 0.037 0.0063 5.60E-09
rs11643654 A C 0.6 0.013 0.0023 2.00E-08
rs10930008 A G 0.73 −0.014 0.0025 4.14E-08
rs56262138 A T 0.3 0.014 0.0025 2.29E-08
rs113779084 A G 0.31 0.014 0.0024 2.70E-08
rs62262721 T C 0.96 0.042 0.0072 3.41E-09
rs1967109 A G 0.15 −0.017 0.0031 4.40E-08
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Mendelian Randomization Analysis
We selected three MR methods including inverse-variance-
weighted meta-analysis (IVW), weighted median regression,
and MR–Egger regression, as in recent studies (Dale et al.,
2017; Larsson et al., 2017a; Tillmann et al., 2017; Liu et al.,
2018; Liu et al., 2019). If there is no clear evidence of pleiotropy,
these three methods should give consistent estimates. The odds
ratio (OR) as well as 95% confidence interval (CI) of IS
corresponds to a per 3.6 increase [about 1 standard deviation
(SD)] in educational attainment levels. All analyses were
conducted using R (version 3.2.4) and R package
“MendelianRandomization” (Yavorska and Burgess, 2017). The
statistical significance was p < 0.05.

Power Analysis
The proportion of education variance explained by the
instrumental variables can be estimated using R2.

R2 � ∑
k

i�1

β2i p2pMAFSNPi(1 −MAFSNPi)
var(X)

where βi is the effect size (beta coefficient) associated with the
education for SNPi, MAFSNPi is the minor allele frequency for
SNPi, K is the number of genetic variants, and var(X) is the
variance of the education [var(X) = 1 for education, since the beta
estimates refer to change in 1 standard deviation (SD)] (Pattaro
et al., 2016; Mack et al., 2017). The strength of the instrumental
variables was evaluated by the first-stage F-statistic (Noyce et al.,
2017; Xu et al., 2017). A common threshold is F > 10 which avoids
bias in MR studies (Burgess and Thompson, 2011). Here, we
calculated statistical power to estimate the minimum detectable
magnitudes of association for IS using the web-based tool mRnd
and a two-sided type-I error rate α of 0.05 (Brion et al., 2013).

RESULTS

Association of Educational Attainment
Variants With IS
Of the 162 genetic variants associated with educational
attainment, we extracted the summary statistics for all these
162 variants in the IS GWAS dataset. The characteristics of
162 genetic variants used as instrumental variables in IS are
described in Supplementary Table S2. We noticed that none of
these 162 genetic variants was significantly associated with IS risk
at the Bonferroni-corrected significance threshold (p < 0.05/162 =
3.09 × 10–3) (Supplementary Table S2).

Pleiotropy Analysis
In stage 1, 51 of these 162 educational attainment genetic variants
are significantly associated with known confounders at the
Bonferroni-corrected significance threshold (p < 0.05/162 =
3.09 × 10–3), as described in Supplementary Tables S3–S9. In
brief, seven genetic variants were significantly associated with
smoking. Two genetic variants were significantly associated with
coronary artery disease. Six genetic variants were significantly
associated with high blood pressure. 43 genetic variants were

significantly associated with BMI. To meet the MR assumptions,
we excluded these 51 genetic variants in the following analysis. In
stage 2, using the remaining 111 genetic variants, the
heterogeneity test showed no significant heterogeneity [I2 =
0%, 95% CI (0%; 16.8%), and p = 0.7093]. The MR–Egger
intercept test showed no significant pleiotropy (MR–Egger
intercept β = 0.018; p = 0.064). The MR-PRESSO test did not
identify any horizontal pleiotropic outliers.

Association of Educational Attainment
Levels With IS
Using the remaining 111 genetic variants, IVW showed that each
SD increase in years of schooling (3.6 years) was significantly
associated with a reduced IS risk (OR = 0.54, 95% CI: 0.41–0.71,
and p = 1.16 × 10–5). Interestingly, the estimates from weighted
median (OR = 0.49, 95% CI: 0.33–0.73, and p = 1.00 × 10–3), and
MR–Egger estimate (OR = 0.18, 95% CI: 0.06–0.60, and p = 5.00 ×
10–3), were consistent with the IVW estimate in terms of direction
andmagnitude, as provided in Table 2. Figure 1 shows individual
causal estimates from each of the 111 genetic variants using
different methods.

Power Analysis
Here, all these 111 genetic variants could explain about 1.09% of
the educational attainment variance (R2 = 1.09%). The first-stage
F-statistic for the instrument including these 111 genetic variants
was 327.56 > 10, so a weak instrument bias is unlikely. The actual
N for IS GWAS is 29,633, and the proportion of cases is 0.347822.
Our MR study had 80% power to detect effect sizes of moderate
magnitude with ORs as low as 0.71 and as high as 1.37 per SD
increase in educational attainment levels for IS. Importantly, the
power to detect the causal association (OR = 0.54, 95% CI:
0.41–0.71, and p = 1.16 × 10–5) is 100% by selecting these 111
genetic variants as the instrumental variables. Hence, our analysis
has enough statistical power to detect robust causal effect
estimates.

DISCUSSION

It has been a long time since the relation between the educational
attainment and risk of stroke was evaluated. Until November
2015, there have been 79 observational studies including
approximately 164,683 strokes (Mchutchison et al., 2017).
However, these observational studies have reported both
positive and negative associations between higher educational
attainment and stroke (Mchutchison et al., 2017). Meanwhile,

TABLE 2 | MR analysis results between educational attainment and IS.

Method OR 95% CI p value

Inverse-variance weighted 0.54 0.41–0.71 1.16 × 10–5

Weighted median 0.49 0.33–0.73 1.00 × 10–3

MR–Egger 0.18 0.06–0.60 5.00 × 10–3

OR, odds ratio; CI, confidence interval; the significance was at p < 0.05.
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there was clear between-study heterogeneity in all comparisons,
ranging from 76% to 96% (Mchutchison et al., 2017). Until now,
it has been difficult to establish causality because of
methodological limitations of traditional observational studies.

Here, we performed an MR analysis to evaluate the potential
association of educational attainment with IS risk using large-scale
GWAS datasets. MR is based on the premise that the human genetic
variants are randomly distributed in the population (Emdin et al.,
2017). These genetic variants are largely not associated with
confounders and can be used as instrumental variables to estimate
the causal association of an exposure with an outcome (Emdin et al.,
2017), which could avoid the methodological limitations of the
traditional observational studies.

Our results indicated that a genetically increased educational
attainment was significantly associated with reduced IS risk. IVW
showed that each additional 3.6-year increase in years of
schooling was significantly associated with a reduced IS risk
(OR = 0.54, 95% CI: 0.41–0.71, and p = 1.16 × 10–5).
Importantly, other sensitivity analyses further supported this
estimate. All these findings show that the causal association
between genetically increased educational attainment and
reduced IS risk is robust. Hence, our results do seem to hint
at what lifestyle choices may help protect against IS. The life
experiences that engage the brain, such as higher educational
attainment, may protect against IS risk.

Our findings are comparable to findings from traditional
observational studies with OR = 0.74 (Mchutchison et al.,
2017), 0.65 (men) (Ferrario et al., 2017), and 0.71 (women)
(Ferrario et al., 2017). Meanwhile, our findings are also
consistent with the results from a recent MR study, which
found that one SD increase in years of schooling (3.6 years)
was associated with a reduced risk of coronary heart disease
(OR = 0.67, 95% CI 0.59–0.77; p = 3.00 × 10–8) (Tillmann et al.,
2017). It has been established that coronary artery disease is one
of the leading risk factors for stroke (Meschia et al., 2014).

Until now, 3 MR studies have also investigated the causal
association between educational attainment and IS. Harshfield
et al. assessed the causal effect of 12 lifestyle factors on risk of

stroke (Harshfield et al., 2021). They found that genetically
increased educational attainment was associated with reduced
risk of IS, large artery stroke, and small vessel stroke, and
intracerebral hemorrhage using 305 educational attainment
genetic variants (Harshfield et al., 2021). Wen et al. selected
58 educational attainment genetic variants and identified a
suggestive causal association between education and IS (p =
0.048) (Xiuyun et al., 2020). Gill et al. selected 625 instrument
SNPs for educational attainment and found that education was
causally associated with stroke risk (Gill et al., 2019). A main
difference between our and previous MR studies is the manual
pleiotropy analysis. These above 3 MR studies only used the
statistical methods to perform the pleiotropy analysis (Gill et al.,
2019; Xiuyun et al., 2020; Harshfield et al., 2021).

This MR study has several strengths. First, this study may
benefit from the large-scale educational attainment GWAS
dataset (N = 405,072 individuals of European descent
individuals) and IS GWAS dataset (N = 29,633 individuals of
European descent). Importantly, power analysis further provides
ample power to detect the association of educational attainment
with IS risk. Second, both the educational attainment and IS
GWAS datasets are from the European descent, which may
reduce the influence on the potential association caused by the
population stratification. Third, multiple independent genetic
variants are taken as instruments, which may reduce the
influence on the potential association caused by the linkage
disequilibrium; Fourth, we selected multiple methods to
perform MR analysis, as in previous studies (Mokry et al.,
2015; Nelson et al., 2015; Emdin et al., 2017; Larsson et al.,
2017a; Manousaki et al., 2017; Noyce et al., 2017). Fifth, we
performed a comprehensive pleiotropy analysis to evaluate the
potential association of these educational attainment genetic
variants with known IS risk factors. We excluded 51 genetic
variants associated with potential confounders, which meets the
MR assumptions.

Despite these interesting results, we recognize some
limitations in our study. First, we could not completely rule
out that there may be additional confounders, although some

FIGURE 1 | Individual causal estimates from each of the 111 genetic variants. This scatter plot shows individual causal estimates from each of 111 genetic variants
associated with educational attainment on the x-axis and IS risk on the y-axis. The continuous line represents the causal estimate of educational attainment on IS risk.
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other available software or tools may be helpful to identify the
pleiotropy, such as GSMR (Zhu et al., 2018) and CAUSE
(Morrison et al., 2020). Until now, it is almost impossible
to fully rule out pleiotropy present in any MR study (Emdin
et al., 2017; Larsson et al., 2017a; Larsson et al., 2017b). Second,
it could not be completely ruled out that population
stratification may have had some influence on the estimate.
Third, the genetic association between education and IS may
be different in different ancestries. Hence, this causal
association should be further evaluated in other ancestries.
In some individuals, the association between a genetic variant
and one specific outcome may have been confounded by the
hidden population structure (Davies et al., 2018). Thus, MR
studies using these individuals could have been biased by
population stratification or different ancestries (Davies
et al., 2019). In fact, Zheng et al. found that hypertension
could play different causal roles on chronic kidney disease
across ancestries (Zheng et al., 2022). Fourth, the underlying
mechanisms about the causal association between educational
attainment and IS remain unclear.

In summary, we provide genetic evidence that high education
could reduce IS risk. Our findings could have public health
implication to raise awareness of the extent to which
educational inequalities are associated with risk of IS.
Meanwhile, population-based solutions may contribute to
ameliorate the deleterious effects of low educational
attainment on health outcomes.
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