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Abstract: Medical apparatus and instruments, such as vascular grafts, are first exposed to blood
when they are implanted. Therefore, blood compatibility is considered to be the critical issue when
constructing a vascular graft. In this regard, the coating method is verified to be an effective and
simple approach to improve the blood compatibility as well as prevent the grafts from blood leakage.
In this study, polyester fabric is chosen as the substrate to provide excellent mechanical properties
while a coating layer of polyurethane is introduced to prevent the blood leakage. Furthermore, gelatin
is coated on the substrate to mimic the native extracellular matrix together with the improvement
of biocompatibility. XPS and FTIR analysis are performed for elemental and group analysis to
determine the successful coating of polyurethane and gelatin on the polyester fabrics. In terms of
blood compatibility, hemolysis and platelet adhesion are measured to investigate the anticoagulation
performance. In vitro cell experiments also indicate that endothelial cells show good proliferation and
morphology on the polyester fabric modified with such coating layers. Taken together, such polyester
fabric coated with polyurethane and gelatin layers would have a promising potential in constructing
vascular grafts with expected blood compatibility and biocompatibility without destroying the basic
mechanical requirements for vascular applications.

Keywords: polyurethane; gelatin; coating; fabric; biocompatibility

1. Introduction

Cardiovascular diseases are known for their high incidence rate and mortality around
the world. According to statistics, the number of people dying of cardiovascular diseases
exceeds 15.2 million every year and the number is yearly increasing [1]. The medical im-
plants (artificial blood vessels, artificial heart valves, and cardiovascular stents) usually play
a critical role in the treatment of cardiovascular diseases [2]. However, the implants are first
exposed to blood after implantation, which will lead to blood compatibility problems [3].
The existence of implants usually causes considerable side effects—such as coagulation, inti-
mal hyperplasia, infection, and thrombosis—which lead to the failure of implantation [4–7].
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In previous studies, anticoagulant drugs such as heparin were added to the implants to
avoid coagulation reaction. For example, heparin and stromal cell-derived factor-1 alpha
(SDF-1α) were used to prepare functional small-diameter vascular grafts with enhanced
anticoagulant properties [8]. However, the expensive price is not suitable for large-scale
production and development. Therefore, it is necessary to create an efficient and low-cost
method to improve the blood compatibility of implants [9].

An ideal medical implant should not only be conducive to the mechanical property,
but also have good biocompatibility [10]. Polyester (PET) fabric, as an early developed
synthetic fabric, has been used as the substrate for vascular graft because of its excellent
mechanical properties [11–13]. It was first applied to the field of implant by military
surgeons and its special structure led to the development of tissue engineering [14]. To
make polyester fabrics more suitable for implantation process, many approaches has been
applied to modify it, such as UV radiation [15], MW radiation [16], and US radiation [17].
However, due to the poor hydrophilicity and cell compatibility of PET fabric materials, it
may lead to problems such as blood penetration and coagulation. Therefore, PET fabric
scaffolds cannot meet the needs of vascular transplantation.

Therefore, to overcome the shortcomings of synthetic grafts, we consider combining
synthetic fabrics with natural extracellular matrix (ECM) to give vascular grafts good me-
chanical and biological properties. Many studies have shown that this method of combining
components with different properties plays an important role in tissue engineering, espe-
cially in vascular transplantation [18,19]. Natural ECM compositions—such as collagen,
silk fibroin (SF), and gelatin (Gel)—are generally used to modify the synthetic polymer com-
patibility and promote cell proliferation. It has been reported that electrochemically aligned
collagen filaments were used to constructing bilayer small-diameter vascular to improve
endothelial cells adhesion and proliferation [20]. However, a previous study showed that
collagen coating was more susceptible to perioperative vascular graft infections in vivo [21].
SF vascular graft was also coated on the knitted vascule for venous replacement in rat
models. The result showed that SF had high patency and good histocompatibility, which
proved that SF was a promising tissue engineering material [22]. However, due to the
antigenicity of silk-sericin, degumming is a necessary process to use SF coating, which
increases the complexity of vascular coating [23]. Compared with collagen and SF, the
gelatin coating showed less formatted biofilms and bacterial adherence. In addition, the
gelatin provides more bioactive sites to combine the vascular scaffolds with coating more
tightly [24]. Therefore, in this study, we thus select gelatin to coat polyester fabric to give
the PET better biocompatibility.

In addition, blood penetration has always been an important factor affecting the suc-
cess of vascular transplantation. Polyurethane (PU) is considered an excellent coating mate-
rial because of its excellent expansibility, biocompatibility, and processability [25,26]. There-
fore, in order to overcome the problem of blood penetration, we introduced polyurethane
between the PET fabric and gelatin coating [27].

The preparation of vascularized and functional coating materials using synthetic
polymers and natural bioactive components is an important research subject in the field of
tissue engineering. Therefore, this study used polyester textile as the substrates, gelatin
coating as the natural bioactive components and polyurethane coating as impermeability
components, which successfully avoid the inherent shortcomings of synthetic materials.
This method provides an effective way to construct better vascular scaffolds (Scheme 1).
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vacuum oven at 37 °C for 24 h. 

  

Scheme 1. Schematic illustration showing the coating of polyurethane and gelatin on the polyester
fabric and their use in preventing blood leakage and promoting endothelia cell proliferation.

2. Materials and Methods
2.1. Materials

Polyester plain fabrics were bought in local chemical fiber industrial (Fa Xinrui Textile
Co., Qingdao, China). Medical grade polyurethane (PU-Pellethane® 2363-80AE TPU)
were purchased from Dow Chemical (Guangzhou, China). Glycerol was obtained from
Sinopharm Chemical Reagent (Shanghai, China). Sodium citrate anticoagulant whole
blood was acquired from Beijing Bersee Science and Technology (Beijing, China). Medical
grade gelatin (type A from bovine skin, ~250 bloom), glutaraldehyde (25% commercial
aqueous reagent), and N,N-dimethylformamide (DMF) were supplied by Shanghai Macklin
Biochemical (Shanghai, China). Human umbilical vein endothelial cells (HUVECs) were
obtained from the Institute of Biochemistry and Cell Biology (Chinese Academy of Sciences,
Shanghai, China). Cell culture medium and reagents were provided by Aladdin Life
Technologies (Shanghai, China).

2.2. Coating Procedure
2.2.1. PU Coating onto the Bare Polyester Fabric

PU particles (5 g) were dissolved in DMF solutions (100 mL) at 80 ◦C for 8 h to prepare
the PU solution. The bare polyester fabric was cut into 5 × 5 cm2 segments, and then the
PU solution was evenly gradient coated on the polyester fabric with a brush. Subsequently,
the fabrics were dried in vacuum oven at 37 ◦C for 48 h. The fabrics developed through
this process were marked as PU@PET.

2.2.2. Gelatin Coating onto the Bare Polyester Fabric

Gelatin particles (4 g) and glycerol (4 g) was dissolved in deionized water (50 mL) and
stirred at 37 ◦C for 1 h to prepare the mixture solution. The bare polyester fabric was cut
into 5 × 5 cm2 segments, and the above solution was evenly distributed on it with a brush.
Subsequently, the fabrics were dried in oven at 37 ◦C for 30 min. The coating and drying
processes were repeated 4 times, and then the gelatin was successfully coated onto the bare
polyester fabrics. The fabrics obtained by this method were marked as Gel@PET. The dried
fabrics immersed in 0.1% glutaraldehyde solution for 2 min and then dried in a vacuum
oven at 37 ◦C for 24 h.

2.2.3. PU-Gel Coating on the Bare Polyester Fabric

The preparation of PU-Gel coating fabric (PU-Gel@PET) was described in Sections 2.2.1
and 2.2.2. The PU layer was first coated on the PET and then the gelatin layer coated on the
PU layer.
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2.3. Characterization

The morphology of the fabric was observed by scanning electron microscopy (SEM)
(Phenom XL, Phenomenon World, Eindhoven, The Netherlands). The average static water
contact angle of coated/uncoated fabrics was measured according to the drop method
(Contact Angle Meter) using data physics OCA (Data Physics, Stuttgart, Germany). Five
different positions of each fabric were measured to get the average value at room tempera-
ture. Chemical structure analysis of the coating fabric was analyzed by Fourier transform
infrared spectroscopy FTIR (Nicolet 50, Thermo Scientific company, Waltham, MA, USA),
with a wavenumber range of 400 and 4000 cm−1. The chemical element composition of
the fabric was analyzed by X-ray photoelectron spectroscopy (XPS) (Axis Supra+, Kratos
Analytical, Manchester, UK), including the full spectrum and atomic ratio of carbon, ni-
trogen, and oxygen on different coating samples. Thermogravimetric measurements were
performed from room temperature to 600 ◦C at a ratio of 10 ◦C min−1 (N2 atmosphere) on
Mettler Toledo TGA/DSC 3+ STARe System (Mettler Toledo, Zurich, Switzerland). Another
thermal analysis was performed by differential scanning calorimeter (DSC) (Mettler Toledo
TGA/DSC 3+ STARe System, Mettler Toledo, Zurich, Switzerland) at a ratio of 10 ◦C min−1

(N2 atmosphere) in the temperature range of −70 ◦C to 200 ◦C. The bursting strength was
tested by a universal mechanical tester (HD026 Series, HONGDA Co., Guangzhou, China).
The thimble diameter of the burst strength test was 25 mm, and the moving speed was set to
50 mm/min. The samples were made into circular with a diameter of 125 mm, and 5 repli-
cates were made for each sample. The instrument records the maximum burst strength
when the fabric was destroyed by the thimble. The bursting strength was calculated by the
formula

Bursting strength =
Tb

πD2

4

where Tb is the bursting force, D is the diameter of probe.

2.4. In Vitro Degradation

The degradation ratio was evaluated by immersing the coating fabric in phosphate-
buffered saline (PBS) solution. The coating fabrics were incubated with PBS (pH = 7.4)
at 37 ◦C for 1 month. Finally, the fabrics were dried in vacuum oven for 24 h to keep the
weight constant. The percentage of weight loss for each fabric was calculated as

Weight loss(%) =
w0 − wt

w0
× 100

where w0 and wt presented the dry weight of the coating fabric before and after degradation
at different time intervals.

2.5. Blood Compatibility Assays

In order to evaluate the blood compatibility of the uncoating and coating fabrics,
fresh sodium citrate anticoagulant rabbit whole blood was used for platelet adhesion test,
hemolysis test, whole blood adhesion, activated partial thromboplastin time (APTT), and
recalcification time test.

2.5.1. Platelet Adhesion Test

Anticoagulant rabbit whole blood was centrifuged at 1200 rpm for 10 min to collect
platelet-rich plasma. The samples were made into circle with diameter of 14 mm and placed
in 24-well plate, then 500 µL of the above plasma was added into the 24-well plate and
incubated at 37 ◦C for 2 h. The samples were then rinsed with PBS 3 times to remove non-
adhered platelets and fix the platelets with 4% glutaraldehyde for 2 h. Finally, the samples
were dehydrated with gradient ethanol (30%, 50%, 70%, 90%, 95%, and 100%, respectively).
The adhesion numbers and morphologies were observed by SEM after spraying gold for
90 s.
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2.5.2. Hemolysis Test

In the hemolysis tests, double distilled water was used as positive control, and physio-
logical saline was served as negative control. Diluted blood was prepared with physiologi-
cal saline and whole blood in the ratio of 4:5 (v/v). First, the samples were rinsed with PBS
3 times, then the samples were put in a conical tube containing 10 mL physiological saline.
Six replicates were prepared for each sample. These conical tubes were incubated at 37 ◦C
for 30 min, then 200 µL diluted blood was added to each conical tube, gently shaken at
37 ◦C for 2 h, and centrifuged at 3000 rpm for 10 min. The supernatant from each centrifuge
tube was aspirated, and transferred to a 96-well plate, optical density value was read at a
wavelength of 545 nm with a spectrophotometer (SpectraMax ABS). The hemolysis rate
can be calculated according to the following equation.

HR% =
Ats − Anc

APc − Anc
× 100%

where Ats, Anc, and Apc mean the value of optical density at 545 nm of sample groups,
negative groups, and positive groups, respectively.

2.5.3. Whole Blood Adhesion Test

Samples were placed into 24-well plate and add 1 mL PBS to moisten them. The
samples were then incubated in an oscillating shaker at 37 ◦C for 2 h, then 200 µL whole
blood containing sodium citrate anticoagulant was added into the 24-well plate, and
incubation continued for 1 h. Afterwards, the 24-well plate was taken out and gently rinsed
with PBS 3 times. We then added 1 mL of 2.5% glutaraldehyde to each well to fix the
whole blood for 5 min, and then placed the whole blood in refrigerator at 4 ◦C for 12 h.
Subsequently, the samples were dehydrated with gradient ethanol (30%, 50%, 70%, 90%,
95%, and 100%, respectively). The samples were pre-frozen at −20 ◦C for 48 h, and then
freeze-dried for 3 days. Finally, the adhesion morphologies were observed by SEM after
spraying gold for 90 s.

2.5.4. Activated Partial Thromboplastin Time

The samples were made into circles with a diameter of 14 mm and put into 24-well
plates. Three replicates were performed for each sample group, and the blank group was
used as the positive control group. Whole blood was centrifuged at 3000 rpm for 10 min
to separate plasma. Then added 100 µL plasma and 100 µL APTT reagent into 24-well
plate and incubated for 5 min, at which point 100 µL CaCl2 was added and timing was
started. The 24-well plates were shaken gently to observe the liquid fluid condition. When
the liquid stopped flowing, the stopwatch was stopped and the time recorded.

2.5.5. Re-Calcification Time Test

The samples were made into circle with a diameter of 14 mm and put into 24-well
plate. Three replicates were performed for each sample group, and the blank group
was used as the positive control group. The rabbit whole blood containing sodium citrate
anticoagulant was centrifuged at 1000 rpm for 10 min, and then the slight yellow suspension
was drawn and labeled as PPP (platelet-deficient plasma). We added 1 mL of PPP and
CaCl2 (0.025 mol/L) to the 24-well plates, respectively, and started timing. The 24-well
plates were observed carefully. When the fibrous material began to appear, the stopwatch
was stopped and the time recorded.

2.6. Cell Compatibility Assays

The HUVECs were cultured at 37 ◦C in Dulbecco’s modified Eagle medium (DMEM)
containing 10% fetal bovine serum. The culture medium was replaced every two days.
When the density of HUVECs reached 80%, they were digested for subsequent inoculation.
All samples were made into circle with diameter of 14 mm, and 3 replicates for each sample
to obtain the average value. Samples were placed in 24-well plates and fixed with a stainless
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steel ring. The samples were sterilized overnight at room temperature with 75% ethanol
steam, and then washed completely with PBS. Samples were soaked in DMEM medium
for 2 h to ensure that HUVECs could be evenly seeded. After that, the digested HUVECs
were inoculated on the material at a planting density of 104 cells/well, and the medium
was replaced every two days.

SEM were used to investigate the cell morphologies after 3 days of culture. First,
the sample was washed with PBS, and then the cells were fixed on the sample with
paraformaldehyde solution (4% concentration) at 4 ◦C (overnight). On the second day, the
samples were dehydrated with gradient ethanol (30%, 50%, 70%, 90%, 95%, and 100%,
respectively) for 20 min each time. Before imaging, the samples were dried in air for 2 h
and sprayed with gold for 80 s.

The cell counting kit-8 (CCK-8) was used to study the proliferation of HUVECs on
the coating samples for 1, 3, and 5 days. First, the medium was removed from the 24-well
plate and the samples were rinsed with PBS, at which point 100 µL CCK-8 solution (10 µL
CCK-8 + 90 µL culture medium) was added to the well. After incubating at 37 ◦C for 3 h,
the aliquot was transferred into a 96-well plate, and the absorbance of each well was read
with an enzyme labeling instrument at a wavelength of 450 nm. In this study, tissue culture
plate (TCP) wells were used as control.

HUVECs cultured on samples for 3 days were used for immunofluorescence stain-
ing. The nuclei and cytoskeletons were stained with 40,60-diamidino-2-phenylindole
hydrochloride (DAPI, Invitrogen, Shanghai, China) and rhodamine-conjugated phalloidin
(Invitrogen, Shanghai, China), respectively, and then the cells were observed using confocal
laser-scanning microscopy (Nikon, Ti2-U, Tokyo, Japan).

2.7. Statistical Analysis

The results were analyzed using one-way ANOVA followed by least square difference
test (LSD), where p < 0.05 was considered statistically significant. Experimental results
were presented as mean ± SD.

3. Results and Discussion
3.1. Morphological Analysis

According to the vascular function, the first coating should meet the requirement of
preventing blood infiltration. Therefore, the polyurethane was coated on the polyester
fabrics. Meanwhile, it also needs to satisfy the requirements of promoting endothelial cell
migration and regeneration. Therefore, there were gelatin coatings above the polyurethane
coating layer. The thickness of the material constructed by polyurethane and gelatin
coating process was almost 300 µm, which was approximately close to the thickness of a
human artery wall. There was a positive correlation between wall thickness and diameter.
When the diameter is less than 6 mm, the wall thickness is about 400~700 µm [28]. As
shown in Figure 1A–D, the SEM morphologies of polyurethane coating and gelatin coating
were uniformly spread on the bare polyester, and the thickness of the coating was not as
thick as that of PU-Gel@PET group. Through the numerous attempts, four-layer gelatin
coating had the best effect in obatining suitable thickness and density in compliance with a
human arterial vessel (Figure 1E). We also observed the coating surface of artificial vascular
constructed by Terumo company, which is famous for preparation of vascular grafts and
vascular equipment. The materials surface is also dense and covered the original material.
In this study, we found that mixing the gelatin solution with glycerol solution at a mass ratio
of 1:1 can improve the softness of the coating without damaging the cell compatibility of
gelatin. Furthermore, the mechanical properties can be successfully maintained to support
the blood flow.
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With the increase of coating times, the surface morphologies of samples became denser,
and the coating nearly covers each hole of the fabric. The internal pores of PET were filled
with coating materials. This hybrid coating provided a suitable structure, with large pores
in the outer layer and small pores in the inner layer. The weight of coating fabric per
square meter was growing linearly with the increase of the coating times. The static water
contact angles of polyester fabric with different coatings were shown in Figure 1F. The
sample coating with gelatin had a lower angle, which exhibited greater hydrophilicity than
bare polyester and PU coating polyester. Therefore, the gelatin coating could effectively
improve the hydrophilicity of PET, thereby improving cell compatibility and reducing
protein adsorption [29]. The surface of the material had a high water absorption rate,
which reduced the chance of protein adhesion. The improved hydrophilicity results in
biodegradation rate will be discussed in the next part [30].
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3.2. In Vitro Degradation

Gelatin is the product of collagen hydrolysis and is a kind of water-soluble natural
polymer [31]. Therefore, once the gelatin coating material was immersed in the aqueous
solution, the gelatin would biodegrade over time. The polyurethane layer would also
degrade in the aqueous solutions. The ratio of degradability of coating layer was shown
in Figure 2A, it can be found that of the Gel coating remains at approximately 82.2%,
and that of PU-Gel coating remains at approximately 65.1% after 30 days. This mass
difference of two coating layers could be conducive to adhesive force of polyurethane. One
of the shortcomings of gelatin is fast degradation. The deposition of oxidized alginate and
gelatin gel on PET grafts also demonstrates this characteristic, in which the gelatin coating
degraded by 90% after 14 days [32].
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Figure 2. (A) Degradation of Gel coating and PU-Gel coating samples. (B) Burst strength of PET and
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3.3. Fabric Strength

It is known that polyester fabrics had excellent mechanical property. With the addi-
tion of polyurethane coating, the tensile strength increased dramatically, which could be
attributed to the dense intensity of polyurethane [33]. As shown in Figure 2B, the tensile
strength of PET, PU@PET, Gel@PET, and PU-Gel@PET were 1.32 MPa, 1.45 MPa, 1.26 MPa,
and 1.52 MPa, respectively. This parameter is about 9 times that of Xing’s work [34],
whose burst tensile is approximately 1000 mmHg, while the burst tensile of swine blood
vessels is between 2000~4000 mmHg [32]. Therefore, the sample we prepared met the
requirement. This is mainly due to the polyester textile excellent mechanical properties
and this feature also extends the range of application. The gelatin coating samples were
significantly reduced compared with pure PET samples and other samples (p < 0.01) which
may be attributed to the brittleness of gelatin coating. The lower content of elastic gelatin
can withstand force and deformation, which made the coating more rigid [35]. Thus, this
coating exhibited lowest burst strength. Even though, ultimate tensile strength of PU@PET
and PU-Gel@PET both showed a good agreement with the healthy arteries which was
1.5 ± 0.5 MPa due to the soft segments of polyurethane [36]. In vascular tissue engineering,
the proximity (related to mechanical property) of the grafts to the natural vascule was an
important factor affecting the patency of the graft. From the results of tensile strength, the
addition of a polyurethane layer has thus been proved to be necessary.

3.4. Characterization
3.4.1. Fourier Transform Infrared Spectroscopy Analysis

Fourier transform infrared spectroscopy (FTIR) was used to characterize the gelatin
and polyurethane coating on the pristine polyester. As shown in Figure 3A, there was
no major difference between the pristine polyester fabrics with gelatin and polyurethane
coating fabrics. Compared with the bare polyester, the polyurethane coating sample
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showed two new characteristic peaks at 2940 cm−1 and 2860 cm−1, which was attributed
to the stretch vibration of C-H groups [31,37,38]. In addition, the two absorption peaks
showed as well. Moreover, another new characteristic peak in 1540 cm−1 is amide II band
of urethane, in which the weak acidity of -NH group is favorable to hydrogen bonding
between the substrates and polyurethane, or the polyurethane intermolecular chains [39].
The characteristic peaks in 1240 cm−1 and 1090 cm−1, are the stretching vibration of C-O
groups from carbonyl group. The intensity of their peaks has increased significantly, which
also indicated that the polyurethane was successfully coated. Gelatin and polyurethane
coating fabrics showed the characteristic peaks at 2940 cm−1 and 3310 cm−1 due to the
stretch vibration of C-H and -OH groups, respectively [40]. In the fingerprint region, new
characteristic peaks appeared at 1650 cm−1 and 1540 cm−1 in the spectrogram of gelatin
coating fabric, which was attributed to the stretch vibration of amide bond and bending
vibrations of amide double bond [41,42]. Compared with the spectroscopy of gelatin
coating, the PU-Gel coating fabric spectroscopy showed stronger characteristic peaks at
1650 cm−1 and 1540 cm−1, which was attributed to the mixture effect of polyurethane and
gelatin [43]. The above results indicated that the gelatin and polyurethane were successfully
coated on the pure polyester fabrics.
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3.4.2. X-ray Photoelectron Spectroscopy Analysis

The XPS analysis was used to further confirm the polyurethane and gelatin had been
successfully coated on the fabric. The pure polyester fabric contains C and O elements,
while the coating fabrics exhibited three peaks at the binding energies of 535, 404, and
284 eV, which were attributed to O, N, and C elements, respectively. This was due to the
introduction of N element when the pure polyester fabric was coated [11,44,45]. The XPS
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survey spectra spectrum of before and after coating fabrics were shown in Figure 3B. The
appearance of the N element was shown in Table 1.

Table 1. Element content of different coating samples.

Sample
Atomic Percentage of Element (%)

C O N

PET 82.44 17.56 /
PU@PET 79.13 18.21 2.66
Gel@PET 68.15 17.58 14.27

PU-Gel@PET 65.33 18.73 15.94

3.4.3. Thermo Gravimetric Analysis

Figure 3C showed the thermo gravimetric analysis (TGA) of the fabrics before and
after coating. The weight of the gelatin coating fabric began to decrease slightly at 80 ◦C,
and then in the range of 250 ◦C to 500 ◦C, the total weight loss was 80%. For uncoating
fabrics, the weight started to decrease at 380 ◦C, which contributed to the decomposition
of polyethylene terephthalate. Compared with the bare polyester fabrics, the PU coating
fabrics began to decompose at 300 ◦C due to the polyurethane was more easily to decom-
pose than polyester. In consideration of the above results, polyurethane and gelatin were
successfully coated on the polyester fabric.

3.4.4. Differential Scanning Calorimeter Analysis

Figure 3D exhibited the endothermic and exothermic conditions of PET and different
coating samples. There was no significant difference between the DSC curve of PET
and PU@PET. The endothermic peak usually represented the glass transition or melting
behavior. In this study, since the gelatin structure was not conducive to crystallization, the
endothermic peak represented the glass transition behavior. As shown in Figure 3D, there
was an obviously endothermic peak at approximately 80 ◦C. The temperature of Gel@PET
was slightly higher than PU-Gel@PET which indicated the variety of glass transition
temperature. The temperature difference was caused by the introduction of PU, which
made the chain segment more flexible and easier to move. In conclusion, the DSC curve
also showed the gelatin and PU layer were successfully coated on the polyester.

3.5. Blood Compatibility Assays
3.5.1. Platelet Adhesion

The degree of platelet adhesion of fabric was determined by measuring the quantity of
adhered platelets. Activated platelets can not only activate a variety of coagulation factors,
but their adhesion to blood contact materials is the key to cause vascular graft coagulation
and thrombosis [5]. Compared with other blood cells, platelets were more sensitive to the
contact of biomaterial surfaces. As shown in Figure 4E, the PU@PET group displayed a
significantly higher platelet adhesion compared with PET, Gel@PET, and PU-Gel@PET
groups, which indicated that the PU coating had a poor blood compatibility. There was no
significant difference in platelet adhesion between the Gel@PET and PU-Gel@PET groups,
thus indicating that Gel and PU-Gel coatings had great potential to inhibit platelet adhesion.
In addition, the shape of platelets was approximately circular without pseudopodia, which
indicated the platelets had not been activated [46]. The gelatin coating material showed
obvious hydrophilicity compared with the polyurethane coating material, which may be
the reason for improving the blood compatibility. From the SEM images, the PET and
PU-Gel@PET group showed less platelet adhesion than other groups, which made the
PU-Gel coating a potential coating technology for vascular applications.
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were in red boxes in A–C). (A–D) the SEM morphology of the PET, PU@PET, Gel@PET, and PU-
Gel@PET samples, respectively. (E) The statistic number of platelet adhesion. (F) The hemolysis ratio
of different coating samples. (*, **, and *** represented p < 0.05, p < 0.01, and p < 0.001, respectively,
indicating significant differences between the two groups).

As shown in Figure 4E, the adhesion of platelets in the four samples is between 100
and 800 per square millimeter, and the result of polyurethane coating is the highest. The
results were relatively low compared with Chernonosova’s work [47]. They used a mixture
of polyurethane and gelatin to prepare vascular grafts by electrospinning, and the lowest
platelet adhesion was more than 1000/mm2.

3.5.2. In Vitro Hemolysis Ratio

Hemolysis was a very simple and reliable qualitative and quantitative detection
method for evaluating blood compatibility [48]. The interaction intensity between materials
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and erythrocytes was mainly displayed by measuring the degree of erythrocyte lysis and
hemoglobin dissociation. The higher the hemolysis rate, the greater the damage to erythro-
cytes. In this study, only the supernatant of the positive control was red, which indicated
that the erythrocytes were destroyed. However, the supernatant of the other groups was
transparent, indicating that the erythrocytes were still retained as before. Figure 4F showed
the specific values of different coating materials. The values of PET, PU@PET, Gel@PET,
and PU-Gel@PET groups were 0.88%, 0.50%, 0.95%, and 0.83%, respectively. According to
the ASTM-F 756-00 standard, the hemolysis ratio of materials in contact with blood could
be classified to three categories according to the hemolysis index and its percentage. The
first type of hemolysis rate is greater than 5%, which indicates the hemolysis is serious.
The second type of hemolysis rate is 2–5%, which indicates mild to moderate hemolysis.
The third type of hemolysis rate is less than 2%, indicating minor hemolysis, and this
kind of material can be used as a non-hemolytic biological material [49]. Therefore, from
the perspective of hemolysis rate, both the coated and uncoated fabrics had good blood
compatibility.

As shown in Figure 4F, the hemolysis ratio is less than 1%, showing excellent anti-
hemolysis. The result is also lower than Chernonosova’s work, whose hemolysis rates were
between 2% and 4% [47]. Javanmard’s work reported that the hemolysis ratio of scaffold is
about 2%, and that of ePTFE and is at around 4% [50].

3.5.3. Whole Blood Adhesion

As shown in Figure 5, the surface of Gel@PET group had the highest erythrocyte
adhesion, followed by the PU@PET group. The erythrocyte on the surface of these two
coatings was in an aggregation state, which means that these two coating methods were
prone to thrombus. While the PET and PU-Gel@PET group displayed in Figure 5A,C
showing less erythrocyte adhesion than Gel@PET and PU@PET groups, which was because
the bare polyester fabric and PU-Gel coating had smooth surface. In addition, the wetting
ability of surface may also affect the adhesion of erythrocytes.

3.5.4. Activated Partial Thromboplastin Time Test

Activated partial thromboplastin time is a kind of screening test to measure the
coagulation factor deficiency by the endogenous pathway. Adding enough activated
contact factor activator and partial thromboplastin to replace platelet phospholipid, and
then adding moderate Ca2+, could lead to endogenous coagulation. The time from the
addition of Ca2+ to plasma coagulation is the APTT. As shown in Figure 5E, the APTT
values of the PET, PU@PET, Gel@PET, PU-Gel@PET, and positive groups were 68.4 s, 88.5 s,
85.5 s, 79.1 s, and 61.3 s, respectively. There was no significant difference between the
coating groups and the positive group, except the PU coating. Furthermore, the results
were consistent with the results of hemolysis ratio, which indicates the polyurethane had
excellent biocompatibility.

3.5.5. Re-Calcification Time Test

Plasma re-calcification was a common measurement for evaluating the function of the
endogenous coagulation system. Soluble fibrinogen is converted into insoluble fibrinogen
by adding Ca2+. Over time, insoluble fibrinogen further crosslinks to form a thrombus. The
longer the time of re-calcification, the better the anticoagulation property and hemocompat-
ibility. As shown in Figure 5F, the re-calcification time values of PET, PU@PET, Gel@PET,
and PU-Gel@PET were 106.3 s, 99.8 s, 97.7 s, and 108.9 s, respectively. The glass slide
served as a positive group due to its non-thrombogenic property. There was no significant
difference in the values between the experimental group and the positive group. The test
results showed that all the experimental groups had excellent biocompatibility.
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Hemocompatibility is related to the chemical composition and hydrophilicity of the
materials. The results of the contact angle showed that the gelatin coating significantly
increased the hydrophilicity, which indicated that the gelatin coating was essential for
improving hemocompatibility. The contact angle results were consistent with the hemo-
compatibility assays, in which gelatin coating had the best effect, followed by PU-Gel@PET
group. Although the gelatin coating displayed the best biocompatibility, the polyurethane
layer was essential for vascular application because the pure polyester and pure gelatin
coating polyester fabrics could not inhibit blood leakage. Therefore, both polyurethane
coating and gelatin coating are indispensable.

In summary, compared with uncoated samples, the blood compatibility of coated
samples is improved, which is the result of the comprehensive action of many factors.
Firstly, the hydrophilicity of the surface has changed. The addition of gelatin coating makes
the surface hydrophilic, which is improves contact between material surface and blood.
Secondly, the anticoagulant properties of polyurethane materials are closely related to their
microphase-separated structure, which is very similar to the lining of blood vessels in
living organisms. The microphase-separated structure is formed by connecting the hard
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and soft segments of the polyurethane structure by physical cross-linking points. Therefore,
the addition of PU coating is also conducive to improve blood compatibility. Finally, the
greatest credit is gelatin coating, which is similar to the substance in the inner layer of
human vascular and can better restore the condition of the working blood vessels.

3.6. Cell Morphology and Proliferation Test

In this study, CCK-8 assay was performed to evaluate the cell proliferation on day 1, 3,
and 5 after culture. The quantitative analysis of cell proliferation on different groups was
shown in Figure 6. On day 1, the PU@PET group displayed the highest absorbance among
the five groups. As the culture continued, the absorbance of each group began to change.
The absorbance of group PET, Gel@PET, and TCP increased significantly on day 3 and day
5. Finally, the absorbance of Gel@PET group was significantly higher than that of PET,
PU@PET, and PU-Gel@PET groups on day 5. This result could be attributed to the addition
of gelatin coating. Animal gelatin was considered to have excellent biocompatibility due
to the abundant amino acid, such as arginine-glycine-aspartate, which could regulate
the cellular response and behavior and improve the biocompatibility [51]. The results
showed that the cell proliferation of PU-Gel coating was better than that of pure PU coating,
which can meet the proliferation requirements. At the same time, PU-Gel coating also had
excellent mechanical properties and biocompatibility, which can meet the needs of artificial
blood vessel transplantation.
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In addition to detecting the proliferation of HUVECs, we also analyzed the morphol-
ogy of HUVECs by SEM and fluorescence analysis. As shown in Figure 7, the lengths
of HUVECs are approximately 30–50 µm, the width and thickness are 10–30 µm and
0.1–10 µm, respectively [52]. The shape of HUVECs will change with the shape of the
culture medium. In this study, HUVECs were cultured on the coating polyester fabrics.
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Therefore, the shape of HUVECs was consistent with the elongation of fabrics. As shown
in Figure 7A1–D1, HUVECs were observed to grow well in PET and PU@PET samples,
while the Gel@PET and PU-Gel@PET groups were difficult to distinguish the shape of
HUVECs which was attributed to the dense coating layer merged with HUVECs matura-
tion layer. Figure 7A2–D2 display the morphology of the stained monolayer (HUVECs)
after 3 days of culturing. As expected, the PET group showed good intercellular inter-
action, and the gelatin coating significantly promoted the recruitment and migration of
HUVECs (Figure 7A2,C2). While in the PU@PET group, the growth of HUVECs was not as
ideal as the other groups, which was consistent with the test results of CCK-8 test, which
may be due to the inhibitory effect of DMF on cell growth. In general, the PU-Gel@PET
group showed good HUVEC morphology which demonstrated that PU-Gel bilayer on
the polyester fabric was a suitable candidate for vascular coating or other implantable
materials.
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In summary, the mechanism of improvement in endothelial cell proliferation is similar
to that in hemocompatibility. However, due to the more demanding proliferative environ-
ment for endothelial cells, the addition of PU coating does not promote the proliferation
due to the introduction of organic solvents. The main effect is still from the gelatin coating.

4. Conclusions

In summary, we successfully coated polyurethane and gelatin on a polyester substrate
for vascular applications. The polyurethane layer can effectively inhibit the blood infiltra-
tion and the gelatin layer can reduce the platelet adhesion and homolysis, and improve
blood compatibility and tissue compatibility, thus promoting the infiltration and regenera-
tion of HUVECs. This strategy has no negative effects on the tensile strength, degradation
ratio, blood compatibility, and cell adhesion and migration of the coating. Considering
the excellent blood compatibility and histocompatibility of this coating method, it can be
applied to vascular grafts. This double-coated blood vessel, which simultaneously utilizes
the mechanical properties of synthetic polymers and the degradability of natural polymers,
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provides a new idea for preparing vascular grafts. The vascule constructed by this method
needs further animal experiments to evaluate its response in vivo.
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