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Artificial intelligence for ultrasonography: 
unique opportunities and challenges
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The application of artificial intelligence (AI) technology to medical imaging has recently brought about 
tremendous excitement, and AI is making its way into clinical practice, thanks to the technical prowess 
of current deep learning technology compared with the machine learning methods of the past, the 
wide availability of digital medical images, and the increased capabilities of computing hardware 
[1-4]. AI has been tried for ultrasonography in various organs and systems, such as the thyroid, 
musculoskeletal system, breast, and abdomen, as discussed in detail in the focused review articles of 
this special issue [5-8], albeit not as extensively as some other radiological imaging modalities such 
as chest X-rays [9]. The potential role of AI is anticipated to enhance the quality of ultrasonographic 
images, to provide various forms of diagnostic support (e.g., automated characterization of 
findings on ultrasonographic images; extraction of quantitative or predictive information from 
ultrasonographic images, which is difficult for a human examiner to do based on visual observations; 
and automated detection or segmentation of various structures on ultrasonographic images), and to 
improve workflow efficiency [10]. The list of specific examples of AI applications to ultrasonography is 
expected to grow in the future.

AI algorithms may augment the diagnostic accuracy and capability of ultrasonography examiners 
and are hoped to be particularly helpful for less-experienced examiners [11-15]. Ultrasonography 
is more widely used in clinical practice than computed tomography (CT) or magnetic resonance 
imaging (MRI), and it is performed by a more diverse range of medical professionals with varying 
levels of expertise, some of whom perform better than others. Typically, a single examiner interprets 
the findings and makes decisions on the fly while performing the examination. As a result, the greater 
operator-dependency and subjectivity of ultrasonography compared with CT or MRI are well-known 
issues. Therefore, one of the most eagerly anticipated benefits of applying AI in ultrasonography 
would be reduced variability between examiners. In this regard, AI may offer a unique opportunity to 
improve the performance of ultrasonography by removing variability between examiners. Nonetheless, 
it should be noted that the very nature of ultrasonography also poses challenges in the development 
and clinical implementation of AI for ultrasonography.

First, the operator-dependency and subjectivity of ultrasonography introduce additional variability 
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in the acquisition of imaging data. These factors could exacerbate 
the limited generalizability of current AI systems built with deep 
learning [16]. The finally obtained ultrasonographic images are 
determined by how the examiner captures them. Thus, the results of 
AI depend on how the target structure is represented and defined 
by the examiner in the captured image [17] and, furthermore, by 
whether the target object is correctly identified and captured at all, 
unless an entire 3-dimensional volume scan is used, such as those 
obtained using automated breast ultrasound systems. For the same 
reason, considerable discrepancies may exist between the dataset 
collected to train an AI algorithm and the imaging data generated 
in real-world practice to be fed into the AI system. Therefore, even 
for a highly sophisticated AI system to work correctly, some degree 
of competency of the human examiner, at least sufficing to scan 
the patient properly, still matters [17]. Moreover, standardization 
of scanning and image acquisition, depending on the diagnostic 
task, would be critical for the successful application of AI to 
ultrasonography, which requires human expertise. In some sense, 
the successful application of AI to ultrasonography creates an 
impetus for standardizing and ensuring the quality of examinations 
performed by humans.

Second, the more widespread use of ultrasonography in clinical 
practice and its relatively easy accessibility require extra caution 
when interpreting the results of AI used with ultrasonography. 
The results given by AI, which capitalizes on the associations 
between input features and outcome states, are probabilistic. 
Therefore, unlike the results provided by tests based on cause-effect 
relationships, the results of AI algorithms should generally not be 
regarded as fixed results. A positive result from a test that finds a 
clear causal determinant to make the diagnosis can be accepted as 
a fixed result regardless of other factors. An illustrative example is 
the reverse transcription polymerase chain reaction (RT-PCR) test 
for severe acute respiratory syndrome coronavirus 2. A positive RT-
PCR test result is an immutable proof of the presence of the virus, as 
this test finds the RNA of the virus, as long as extraordinary cases of 
residual RNA being detected in convalescent patients are excluded. 
In contrast, the interpretation of AI results is affected substantially 
by the pretest probability and the relevant spectrum of disease 
manifestation [18]. An AI algorithm typically applies a threshold 
to a probability-like internal raw algorithm output to generate the 
final categorical result shown to the user (e.g., cancer vs. benign) or 
may present the raw output in the form of probability (e.g., a 65% 
probability of cancer). Both the accuracy of the probability scale 
and the optimal threshold are profoundly affected by the pretest 
probability and disease manifestation spectrum, which are, in turn, 
determined by the baseline characteristics of the patient and the 
clinical setting. 

It is critical for AI users to understand that the same AI result 
could be correct for one patient but not for another, right in one 
hospital but not in another hospital, and so on, depending on 
patients’ baseline characteristics and the clinical setting. The 
limited generalizability of AI algorithms for medical diagnosis 
and prediction (i.e., the substantial variability in AI accuracy 
across patients and hospitals) is a well-known phenomenon, 
often described as "overfitting" in a broad sense [2,18-23]. This 
problem is primarily due to epidemiological factors, as mentioned 
above (pretest probability and disease manifestation spectrum), 
or, more simply, a disparity between training data and real-world 
data, rather than technical/mathematical overfitting [2,18-20]. 
This pitfall may be especially pronounced for AI algorithms for 
ultrasonography, as ultrasonography examinations are often used 
in a wide range of clinical settings and patients, and are performed 
by a diverse range of medical professionals with varying expertise. 
Ultrasonography systems are also more diverse, with more vendors 
and versions, than CT or MRI. While one might expect AI to be more 
helpful for less-experienced examiners, ironically, less-experienced 
examiners may be more likely to have difficulties in appraising AI 
results and more vulnerable to developing a complacent attitude 
of merely accepting the AI results without the necessary appraisal. 
Such complacency would ultimately compromise the accuracy of 
ultrasonography examinations. The fact that ultrasonography is 
typically performed and interpreted on the fly by a single practitioner 
may further increase the risk. Consequently, the human expertise 
of the examiner, including adequate knowledge and experience in 
ultrasonography examinations, sound clinical and epidemiological 
knowledge, and ideally some knowledge about AI as well, would be 
crucial for maximizing the benefits that AI may provide.

The issue of overfitting underscores the importance of an 
adequate external validation of an AI algorithm in various real-
world clinical settings where it is intended to be used [16,18,24-
34]. For all the reasons explained above, perhaps, the importance 
of sufficient external validation should be even more strongly 
emphasized for AI applications to ultrasonography. A recent 
systematic review of studies that evaluated AI algorithms for the 
diagnostic analysis of medical imaging found that only 6% of such 
studies published in peer-review journals performed some form of 
external validation (whether they were otherwise methodologically 
adequate or not) [35]. Future research on AI for ultrasonography 
should emphasize the external validation of developed algorithms, in 
addition to the development of novel algorithms. Rigorous external 
validation helps to clarify the boundaries of when an AI algorithm 
maintains its anticipated accuracy and when it fails, and can thus 
help assure the users of conditions where the AI system can be used 
safely and effectively. Furthermore, establishing a mechanism to 
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deliver such information to the end-users of AI more effectively and 
explicitly would also be an important next step [36].

Third, the operator-dependency of ultrasonography makes 
prospective research studies to validate AI even more essential. 
The effect of a computerized decision support system such as AI 
depends on not only its technical analytic capability, but also on 
how the computerized results are presented to and acted upon by 
human practitioners. Considering the expected operator-dependency 
and variability in generating the ultrasonography image data and 
in acting upon AI results in on-the-fly decision-making during real-
time examinations, there could be meaningful differences between 
an analysis of retrospectively collected images and natural clinical 
practice. Studies on AI for ultrasonography have so far mostly 
been retrospective. More prospective studies that involve actual 
interactions between human examiners and AI systems should be 
performed.

AI research in healthcare is accelerating rapidly, with numerous 
potential applications being demonstrated. However, there are 
currently limited examples of such techniques being successfully 
deployed in clinical practice [1,16]. The introduction of AI into 
medicine is just beginning, and there remain multitudes of 
challenges to overcome, including difficulties in obtaining sufficiently 
large, curated, high-quality, representative datasets, deficiencies 
in robust clinical validation, and technical limitations such as the 
"black box" nature of AI algorithms, to name just a few [1,16,37]. 
These challenges are all relevant to AI for ultrasonography. This 
article highlighted a few additional points that are unique to AI 
as applied to ultrasonography and need to be addressed for the 
successful development and clinical implementation of AI for 
ultrasonography. In summary, the nature of how ultrasonography 
examinations are performed and utilized demands extra attention 
to the following issues regarding AI for ultrasonography. It is crucial 
to maintain the human expertise of examiners, in terms of both 
ultrasonography itself and the related clinical and epidemiological 
knowledge. Standardization of scanning and image acquisition, 
depending on the diagnostic tasks that AI is used to perform, is 
also critical. The importance of sufficient external validation of AI 
algorithms is especially significant for AI used with ultrasonography. 
Prospective research studies that involve actual interactions 
between human examiners and AI systems, rather than analyses of 
retrospectively collected images, should also be conducted.
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