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Smartphones are used ubiquitously worldwide and are essential tools in modern society. However, smartphone overuse is an
emerging social issue, and limited studies have objectively assessed this matter. The majority of previous studies have included
surveys or behavioral observation studies. Since a previous study demonstrated an association between increased push notifications
and smartphone overuse, we investigated the effects of push notifications on task performance. We detected changes in brainwaves
generated by smartphone push notifications using the N200 and P300 components of event-related potential (ERP) to investigate
both concentration and cognitive ability. ERP assessment indicated that, in both risk and nonrisk groups, the lowestN200 amplitude
and the longest latency during task performance were found when push notifications were delivered. Compared to the nonrisk
group, the risk group demonstrated lower P300 amplitudes and longer latencies. In addition, the risk group featured a higher rate
of error in the Go-Nogo task, due to the negative influence of smartphone push notifications on performance in both risk and
nonrisk groups. Furthermore, push notifications affected subsequent performance in the risk group.

1. Introduction

Smartphones quickly provide users with various types of
information wherever they are, at any time, and enable access
to various content via social network services (SNS) and
mobile games [1]. In addition, alternative technologies have
been installed on smartphones to enable access to content
such as GPS, music, and photos, which used to be accessible
only through specialized devices like navigation devices,MP3
players, and cameras. Smartphones have become established
as tools for day-to-day convenience; however, smartphone
addiction has emerged as an increasingly prevalent social
issue, which in case of overuse interferes with daily life [2–5].

Smartphone addiction refers to a behavioral disorder in
which a person uses content such as SNS, Internet browsing,
and mobile games for an excessive amount of time without
self-control, such that it interferes with daily life in a manner
similar to Internet addiction. Overuse of smartphones neg-
atively affects users, causing psychological conditions such
as sleep disorder and attention deficit disorder and physical

disabilities such as carpal tunnel syndrome and forward
head posture [6–8]. In particular, Kim [9] highlighted push
notifications fromSNS,multimediamessage services (MMS),
or applications (apps) as important factor to the excessive use
of smartphones. Here, a push notification refers to a frequent
alarm that provides users with information regardless of
whether they want it or not. This is the opposite concept to
pull methods, in which the user directly searches for infor-
mation. With push notifications, the smartphone providing
the information also controls the flow of information. While
the advantage of push notifications is that information can
be instantly delivered, this information is provided regardless
of the users need. Kim [9] reported that the duration and
frequency of smartphone usage increased with the number
of push notifications, concomitant with an increased risk of
developing smartphone addiction.

However, since most studies on smartphone addiction
or overuse have included questionnaire-based surveys or
behavioral observations [6, 10, 11], these results are based
on subjective opinions and might therefore be biased by
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individual perception. It was subsequently difficult to investi-
gate changes in behavioral characteristics or cognitive ability
caused by smartphone overuse. Therefore, it is necessary to
explore them using objective measurements.

In this paper, we analyze brainwaves to detect the effects
of smartphone push notifications on task performance with
regard to smartphone overuse. Brainwaves refer to the
recording of continuous changes in potential between two
points on the scalp, which relate to electrical activity in the
brain. Brainwave signals vary according to neural activity, the
conditions at the time of measurement, and general brain
function. We measured event-related potentials (ERPs) in
order to study the brainwaves produced in response to a spe-
cific stimulus. In many studies, ERP was used to assess both
concentration and cognitive ability using repeated tasks,
wherein the same stimulus was presented repeatedly, and
differences in the averaged potentials induced by the stim-
ulus were analyzed. Specifically, this study investigated the
ERP components N200 and P300, which reflect cognitive
functions such as attention and concentration [12, 13]. Next,
we measured changes in concentration and cognition ability
caused by various levels of smartphone overuse.

2. Related Works

2.1. Smartphone Addiction. Recent studies have addressed the
issue of pathological smartphone use. Existing studies on
smartphone addiction mostly consist of surveys based on
questionnaires and interviews.However, these studies did not
reflect continuous evaluation, and doubts have been raised
regarding the objectivity of such evaluations. Darcin et al. [14]
defined smartphone addiction in college students with regard
to social anxiety and loneliness and reported that people who
were younger when they first used smartphone-based SNS
exhibited a wider range of addictive smartphone habits. In
addition, this study found that psychological tendencies, such
as loneliness, were strongly linked to excessive smartphone
use.

Moreover, Sayrs [15] reported that cognitive states,
including stress, productivity, boredom, and loneliness, were
related to smartphone use. Lee et al. [1] monitored the usage
of GPS apps and other tools in order to objectively measure
patterns of pathological smartphone use, performed statis-
tical analysis of the data, and compared the analysis results
with Korean smartphone addiction scale (K-SAS) scores.The
results identified a strong correlation between K-SAS results
and the data obtained by statistical analysis. Based on these
findings, Lee et al. [1] proposed a smartphone addiction
management system (SAMS). Accordingly, Lin et al. [16]
created a mobile app for the identification of smartphone
addiction, which indicated that the frequency of smartphone
use was strongly linked to smartphone addiction. Park et
al. [17] conducted a survey questionnaire consisting of the
following items: motivation for social inclusion, motivation
for instrumental use, innovativeness, intention to keep using
the smartphone, smartphone dependency, and so forth. As
a result, they suggested that smartphone dependency was
affected by smartphone usage history.

Furthermore, Lee et al. [18] analyzed smartphone usage
patterns and habits in a smartphone risk group and a nonrisk
group and reported that the duration and frequency of smart-
phone use correlated with excessive use. Push notifications
for incoming messages were strongly linked to smartphone
addiction. Despite little difference in the duration of smart-
phone use between the risk group and the nonrisk group, they
identified that previous studies focused on the duration of
use as a cause of addiction rather than a characteristic of use.
Therefore, they suggested that characteristics of smartphone
use other than duration should be investigated. Similarly, Xu
et al. [19] argued that despite the introduction of various
mobile devices and apps, the understanding of smartphone
usage patterns is lacking compared to that of the existing
web services. In addition, Xu et al. [19] investigated the usage
patterns of apps at a national level and reported various usage
patterns according to a smartphone user’s pattern of behavior
(time, place, object, etc.).

2.2. Auditory Notification. Auditory push notifications are a
useful tool for notifying users of incoming data andmessages.
However, push notificationsmay also cause stress, depending
on the user’s environment. Previous studies have evaluated
the effects of auditory push notifications on behavior but have
failed to consider various factors between users, including
subjective and environmental differences. To overcome this
limitation, performance evaluation methods that can be
applied to various environments have been suggested [20].
Yoon and Lee [21] performed a study into the stress levels
of users who received push notifications from a smartphone
messenger and proposed a design method for push notifi-
cations that might reduce stress. Kim [9] investigated the
effects of push notifications on the formation of habits for
mobile app use and found that increasing the number of push
notifications produced a greater frequency of app visits.These
results suggest an effect of push notifications on media habit
formation.

2.3. ERP. ERPs refer to brainwaves that occur in response to
a specific stimulus and reflect brain responses associated with
sensory, motor, and cognitive events. ERP-based methods
of assessment are widely used in behavioral research, since
they provide high temporal resolution of neural processes
relating to behavior [22]. Most ERP studies focus on stimulus
responses relating to sensory and cognitive abilities. Two
important components of ERP analysis are P300 and N200.
P300 refers to a peak in the positive direction appearing in
the interval between 300 and 350ms after the presentation
of auditory stimuli and between 350 and 450ms after the
presentation of visual stimuli. The maximum amplitude
appears at parietal electrode sites, and as a component of
ERP, it is an important index for the study of information
processing in the brain, with particular relevance to cognitive
psychology [23, 24].

P300 is divided into P3a and P3b. P3a usually refers
to P300 and exhibits maximum amplitude in the frontal
and central regions when nontarget stimuli appear amidst
repeated target stimuli. P3a relates to attention processing
and features a relatively larger amplitude and shorter latency
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than P3b. P3b refers to a component that exhibits maximum
amplitude in the parietal region in response to target stimuli
[25–27]. Since the latency of P300 is typically believed
to represent the speed of stimulus classification, a shorter
latency reflects superior cognitive ability. The amplitude of
P300 reflects stimulus information, wherein a higher level of
concentration is accompanied by a larger amplitude. There-
fore, a reduction in P300 amplitude is used as an indicator of
various psychological symptoms, including alcohol and drug
addiction [28].

By contrast, N200 refers to a stimulus-induced negative
peak appearing in the interval between 250 and 400ms (180–
325ms) after stimulus onset. N200 is the greatest in the
frontal and central regions and is divided into the following
three components: N2a, N2b, and N2c. N2a, also referred
to as mismatch negativity (MMN), reflects mismatched
responding to a task. MMN is a component induced by an
infrequent stimulus that appears amidst a repeated stimulus
and is mainly assessed in studies relating to auditory stimuli
[13]. Unlike MMN, N2b is not limited to auditory processes
but appears in response to both visual and auditory stimuli.
N2b is mainly observed using the oddball paradigm and
appears in central regions in response to nontarget stimuli.
Comparatively, N2c is expressed in posterior regions in
response to visual stimuli and in frontal-central regions in
response to auditory stimuli. The latency of N2c is an indi-
cator of reaction time in response to the stimulus, and N2c
amplitude is larger in response to target stimuli compared
to nontarget stimuli. The subcomponents of N200 possess
distinct characteristics. N2a does not require concentration
on the stimulus and does not appear in conjunction with the
P3 component. However, N2b andN2c require concentration
on the stimulus and appear together with P3a and P3b,
respectively [29].

Cristini et al. [30] used ERPs to assess recurrence risk
in patients with alcohol addiction. They reported increased
recurrence among patients with alcohol addiction who
demonstrated higher P300 amplitudes at the Cz and Pz
electrodes. Pandey et al. [31] found that the N200 amplitude
of patients with alcohol addiction was not increased between
Nogo and Go responses and reported that this was the result
of a decline in frontal lobe function. However, no previous
study has used ERPs to investigate the differences in response
to push notifications with regard to smartphone overuse.
Therefore, the aim of this study was to use the Go-Nogo task
to study the effects of smartphone push notifications on task
performance by analyzing N200 and P300 components [32].

3. Research Goals

The aim of this study was to monitor both the amplitude and
latency of the ERP components N200 and P300, in order to
evaluate the effects of push notifications on task performance,
and to identify whether the concentration and cognitive abil-
ities of the smartphone risk group were reduced compared
to the nonrisk group. We performed a Go-Nogo task twice,
with each round consisting of three sessions. Subjects were
given a push notification with a natural intensity during the
first session of the first Go-Nogo task. The push notification

was also delivered before starting the third session. From this,
we investigated the effects of smartphone push notifications
before and during the task on subjects’ task performance.
No push notifications were delivered in the second Go-Nogo
task, duringwhich performancewas compared depending on
the presence or absence of smartphone push notifications.

4. Methods

4.1. Subjects. Subjects were recruited using an announcement
for a study to analyze brainwaves according to the colorful-
ness of a video, in order to blind them from the nature of
the experiment. A presurvey was conducted with questions
taken from the smartphone addiction scale (hereafter, S
scale) developed by the Korean National Information Society
Agency in 2011 [33] and additional questions. Individuals
on the boundary between the smartphone risk and nonrisk
groups were excluded in order to obtain a distinct difference
between the two groups.The experiment took no longer than
2 hours, and subjects were informed about the experiment
prior to completion. This excluded the delivery of push
notifications but included instructions about filling in a
consent form prior to the experiment. Data from 14 subjects
was used for analysis, with six in the risk group (3 women and
3 men; mean age, 22 years) and eight in the nonrisk group (5
women and 3 men; mean age, 22.6 years).

4.2. Go-NogoTask. Various figureswere presented in the cen-
ter of a screen with a white background, as shown in Figure 1,
and trials were designed so that subjects pressed number 1
when the color of the figure was yellow and pressed nothing
when it was green. The length of stimulus presentation was
set to 150ms, and each session was composed of 186 trials,
with 148 Go trials and 38 Nogo trials. Subjects were allowed
1min of practice prior to the main trial, which was composed
of three sessions. Each session lasted for approximately 6min,
with 1min rest between sessions.Therefore, task performance
lasted for a total of approximately 18min.

4.3. Push Notification. This experiment used vibration push
notifications for all subjects in order to prevent differences in
response relating to the smartphone notification sound. Push
notifications were delivered twice during the experiment.
This is shown in Figure 2. The first push notification (here-
after, P1) was presented during performance of the Go-Nogo
task in Session 1, and the second push notification (hereafter,
P2) was presented during rest time before starting the Go-
Nogo task in Session 3. Push notifications were delivered via
a special device, placed behind the subjects so that they were
clearly able to recognize the push notification but were not
able to check it.

4.4. EEG (Electroencephalogram) Procedure. Subjects wore
an EEG cap during the experiment to record brainwaves.
The experiment was composed of three steps: Task 1 with
the push notification, watching a video, and Task 2 without
the push notification (hereafter, P3). This is shown in Fig-
ure 3. Approximately 18-minute-long Go-Nogo tasks were
performed during Tasks 1 and 2. Two push notifications (P1
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(a) (b)

Figure 1: Go-Nogo task: (a) example of Go task and (b) example of Nogo task.

Practice 
session Rest Session 1 Session 2Rest Rest Session 3

P1 P2

Push
notification 2 

Push
notification 1 

(1min) (1min) (1min) (1min)(about 6min) (about 6min) (about 6min)

Figure 2: Go-Nogo task procedure.
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Go-Nogo task 1
with push notification

Watching 
the music video Finish the 

experimentwithout push notification
Go-Nogo task 2

(around 20min)(around 18min) (around 18min)

Figure 3: Experimental procedure.

and P2) were delivered when performing Task 1. Subjects
watched a video during the rest between the first and the
second tasks. A null push notification (P3) was delivered
during the second task so that the data could be used as a
control. In all experiments, the subjects performed the tasks
in a separate space to the tester with illumination intensity of
0, so that they could focus on the task.

5. Data Analysis

5.1. ERP (Event-Related Potential). For ERP analysis, N200
and P300 were analyzed for Nogo responses in order to
examine the differences in task performance between the
smartphone risk group and the nonrisk group following the
administration of push notifications. A NeuroScan device
and the Curry 7 software programwere used for themeasure-
ment of brainwaves. To minimize noise in the experiment,
brainwave data were recorded after impedance was set to 5
or below, while electrodes with an impedance of 10 or over
at the end of the experiment were excluded from analysis.
Brainwaves were measured based on 10-20 system as shown
in Figure 4. Of the 64 channels, FCz in the central frontal
region was selected as the representative electrode for ERP

FPz
FP1 FP2

F7
F3 Fz F4

F8

T3 C3 Cz C4 T4

T5
P3

Pz
P4

T6

O1 O2
Oz

A1 A2

Figure 4: International 10-20 electrode placement system.

measurement, sinceN200 and P300 could be easilymeasured
and there was less noise in the data. To remove noise from
the ERP data, the pre-200ms and post-800ms domains in
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Figure 5: Results of the between-sessions, within-group comparisons: (a) nonrisk group and (b) risk group.

the area outside of the threshold (min 0, max 60) were
substituted for the covariance values and the baseline was set
to constant. AmeanERPplot of the interval between−200ms
and 500ms was derived from 38 Nogo trials in each session.
Since it was difficult to verify the normal distribution of the
amplitude and latency data, we conducted nonparametric
statistical testing using the Mann-Whitney 𝑈 test.

5.2. Go-Nogo Task. The two tasks were compared with regard
to differences in performance based on smartphone push
notifications. First, in order to identify differences according
to the timing of push notifications, performance in P1, during
which the push notification was delivered during the task,
was compared with that of P2, where the push notification
was delivered prior to the task. Second, in order to ascertain
differences according to the presence or absence of push
notifications, P1 performance with push notifications and
P3 performance without push notifications were compared.
Here, performance referred to error rate and reaction time.
The error rate was defined as the rate of Go responses in
Nogo trials and the number of Nogo responses within Go
trials across all sessions, wherein reaction time referred to the
response time in Go trials.

6. Results

6.1. ERP (Event-Related Potential). ERP data were compared
between sessions within each group and between the risk
and the nonrisk groups for each session. The results of the
between-session, within-group comparisons are presented
in Figure 5, where the yellow, gray, and green lines show
the ERPs for P1, P2, and P3, respectively. Results for the
comparison between the risk and nonrisk groups in each
session are presented in Figure 6, where the blue and red
lines indicate the nonrisk and the risk group, respectively.The
N200 amplitude and latency values are presented in Table 1.

When the amplitudes of the risk group were compared
by session, the lowest amplitude (−6.99 𝜇V) was detected
in P1, in which the push notification was presented during

the task, and the second lowest amplitude (−7.315 𝜇V) was
detected in P2, in which the push notification was presented
before starting the task. P1 (261ms) and P2 (258ms) featured
similarly long latencies, whereas P3 had a shorter latency
(253ms). These data indicate that P1, in which push notifica-
tions were presented during the task, had the greatest impact
on concentration and cognitive ability in the risk group.

In the nonrisk group, similar to the risk group, P1 featured
the lowest amplitude (−6.503 𝜇V), whereas the amplitudes
of P3 (−8.834 𝜇V) and P2 (−9.086 𝜇V) were similar. Latency
values were 258ms for P1, 248ms for P2, and 247ms for
P3, wherein P1 demonstrated the longest latency, indicating
that concentration and cognitive ability declined in the
nonrisk group following push notification delivery during
the task, whereas notifications before the task had no effect
on ability. When the nonrisk group and the risk group were
compared in each session, the amplitude of P1 (−6.503 𝜇V)
in the nonrisk group was smaller than that of the risk group
(−6.99 𝜇V). For P2 and P3, by contrast, the amplitudes of the
risk group (−7.315 𝜇V, −8.635 𝜇V) were lower than those of
the nonrisk group (−9.086 𝜇V, −8.834 𝜇V). In addition, the
risk group demonstrated longer latencies than the nonrisk
group in all sessions. This indicates that push notifications
delivered during the task affected the nonrisk group; however,
subsequent task performance was not affected.

By contrast, the risk group was continuously affected by
push notifications delivered during the task, even during
subsequent task performance. The amplitude and latency of
P300 are presented in Table 2. P300, unlike N200, exhibited
no particular trends with regard to amplitude or latency in
either session for the risk group or the nonrisk group. When
the risk and nonrisk groupwere compared across sessions, P1,
P2, and P3 in the risk group exhibited lower amplitudes than
those in the nonrisk group, and P1 and P2 featured longer
latencies. These data indicate that the risk group was more
affected by push notifications than the nonrisk group.

6.2. Go-Nogo Task. Error rate and reaction time for the Go-
Nogo task are shown in Figure 7. The risk group featured
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Table 1: N200 amplitude and latency.

Nonrisk group Risk group
Session P1 P2 P3 P1 P2 P3
Amplitude (𝜇V) −6.50376 −9.08664 −8.83492 −6.99048 −7.3151 −8.63528
Latency 258 248 247 261 258 253

Table 2: P300 amplitude and latency.

Nonrisk group Risk group
Session P1 P2 P3 P1 P2 P3
Amplitude (𝜇V) 8.83268 6.27596 7.96026 6.410275 5.35475 4.364368
Latency 343 359 347 347 361 338
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Figure 6: Comparison between the nonrisk group and the risk group in each session: (a) P1 session, (b) P2 sessions, and (c) P3 sessions.
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Figure 7: Results of Go-Nogo task: (a) error rate and (b) reaction time.
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higher error rate values overall. Performance during P1, when
push notifications were delivered during the task, featured
the highest error rate. The nonrisk group showed similar
error rates for P1, P2, and P3. The risk group exhibited
shorter reaction times than the nonrisk group. In addition,
no significant differences were identified in reaction time
or error rate between P1, P2, and P3 in the nonrisk group,
whereas the risk group exhibited shorter reaction times and
higher error rates in P1, which then stabilized in P2 and
P3. This indicates that the risk group made hastier decisions
during P1 than the other sessions, due to the effects of push
notification delivery on task performance.

7. Discussion

Subjects in the present study performed tasks composed of
repeated trials to investigate the effects of push notifications
between a smartphone risk group and a nonrisk group. The
two tasks were divided into three subsessions (P1, P2, and P3)
with varying conditions. Previous studies [3–5] indicated the
effects of smartphone addiction using surveys or psychologi-
cal and behavioral observations. It was possible to determine
the effects of smartphone addiction or overuse on physical or
psychological health by the users’ responses. However, such
studiesmight generate superficial results due to the subjective
nature of previous research. Therefore, it is necessary to
investigate the physiological effects of smartphone overuse in
terms of changes in brainwaves.

To address this problem, we analyzed changes in brain-
waves relative to physiological effects or cognitive ability.
From the ERP experimental results, we found that differences
in concentration and cognition ability correlated with levels
of smartphone overuse. Lee et al. [18] found a correlation
between smartphone addiction and push notifications. In our
study, the smartphone overuse group (the risk group) was
more sensitive to push notifications than the nonrisk group.
In particular, the risk group demonstrated impaired concen-
tration after hearing the pushnotification, an observation that
was not detected in the nonrisk group.

However, our experiments had several limitations. First,
since only FCz electrodes were used in the present study, we
were unable to investigate the reaction of parietal or occipital
regions. If we compared brainwaves at additional electrode
positions, it would be possible to investigate the functional
influence of smartphone overuse in various brain regions. In
addition, this study utilized the same Go-Nogo task in all
sessions to create an experimental environment inwhich only
the push notifications were not controlled.

8. Conclusion

In this paper, we explored the effects of smartphone push
notification delivery during a task according to the level
of smartphone overuse using ERP. From our experimental
results, we found that both the smartphone risk group
and the nonrisk group demonstrated sensitive reactions to
smartphone push notifications during tasks. While the per-
formance of the nonrisk group was unaffected by previously
delivered push notifications, the delivery of push notifications

affected subsequent task performance in the risk group.
In other words, smartphone push notifications produced a
decline in task performance in the smartphone risk group,
exerting a negative influence on cognitive function and con-
centration.

ERP was able to measure the negative effects of smart-
phone overuse in terms of psychological or physical char-
acteristics. Particularly in the risk group, we observed lower
N200 amplitude and longer response latency. A higher error
rate and longer reaction time were also identified in the risk
group during the Go-Nogo task.

In future studies, it might be possible to determine the
level of smartphone overuse by measuring responses to push
notifications.While this study used a single type of push noti-
fication, future studies using various types will be required to
investigate sensitivity to different push notifications.
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