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Despite ongoing vaccination COVID-19 is a global healthcare problem because of the lack
of an effective targeted therapy. In severe COVID-19 manifesting as acute respiratory
distress syndrome, uncontrolled innate immune system activation results in cytokine
deregulation, damage-associated molecular patterns release upon tissue damage and
high occurrence of thrombotic events. These pathomechanisms are linked to neutrophil
function and dysfunction, particularly increased formation of neutrophil extracellular traps
(NETs). While the association of NETs and severity of COVID-19 has been shown and
proved, the causes of NETs formation are unclear. The aim of this review is to summarize
potential inducers of NETs formation in severe COVID-19 and to discuss potential
treatment options targeting NETs formation of removal.
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INTRODUCTION

SARS-CoV-2 causes much more than just COVID-19. The world is still facing huge socio-economic
problems that will likely persist much longer than the pandemic itself (1). Experts agree that a
population-wide vaccination is the most effective weapon in the fight against SARS-CoV-2, but its
application is not trivial in today’s world (2, 3). Due to the current state of misinformation, those
who would not be vaccinated represent a significant portion of the population in many countries,
although the situation is dynamic and changes with the number of vaccines that have been approved
(2, 4–6). Unfortunately, if not enough people are vaccinated, the pandemic will not stop (7). If such
a scenario occurs, the only remaining solution will be targeted and effective treatment of patients
with severe COVID-19 (8). Several treatment strategies have already been proposed, but most of
them do not decrease COVID-19 mortality, but at best reduce the time of hospitalization (9–11),
with some even being ineffective and harmful (12). So far, the most successful approach seems to be
immunosupressive therapy (11, 13), but to design the best treatment is only possible if pathogenesis
of the disease is known in detail (14). And there are still gaps to fill.
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THROMBOSIS IN COVID-19

At the beginning of the pandemics, COVID-19 was almost
exclusively viewed in the context of lung damage, and therefore
artificial lung ventilation appeared to be a key therapeutic
intervention (15). However, initial results from China, Italy, and
the United States showed, that mortality of COVID-19 patients
admitted to ICU that were in the need of mechanical ventilation
was greater than 90% (16–18). Although the data were not so
alarming in other countries later (17, 19), it was clear that the
pathophysiology of COVID-19 required a more comprehensive
view. A partial explanation was provided by a study published in
the Lancet, where the authors showed that patients infected with
SARS-CoV-2 show endothelial dysfunction due to endothelial
inflammation, so-called endothelitis (20). The damaged
endothelium facilitates coagulation and thrombus formation,
whether in large vessels or in small arterioles and capillaries
(21). This thrombosis and subsequent coagulopathy cannot, of
course, be resolved by artificial lung ventilation and additional
oxygenation (22). Thrombotic complications were indeed found
to be one of the major issues in treating critically ill ICU patients
with COVID-19 (23). It has become clear, that identifying the
initiators and drivers of thrombosis is vital.
NEUTROPHIL EXTRACELLULAR TRAPS

DNA is found inside the nucleus and mitochondria of the cell
and as the primary information-carrying molecule is protected
by several membranes from external potentially damage-causing
factors (24). The same membranes, however, protect the DNA
also from release outside of the cell. Nevertheless, various types
of cell death might lead to DNA release into the extracellular
space (25). During inflammation, a significant source of this cell-
free DNA (cfDNA) comes from a specific type of neutrophil
response - the so-called NETosis, a process that results in the
formation of neutrophil extracellular traps (NETs) (26). NETs
are web-like structures composed of DNA-histone complexes
decorated by antimicrobial proteins and enzymes such as
myeloperoxidase (MPO), neutrophil elastase (NE), cathelicidin,
calprotectin and many others (27). In fact, their composition
varies and has been reported to be dependent on the stimulus
that activates neutrophils and initiates NETs release (28, 29).
INDUCTION OF NETS FORMATION

Formation of NETs was initially discovered as a response of
neutrophils to the presence of bacteria and immediately, their
role in prevention of pathogen dissemination was recognized (26).
Since then, the list of bacteria that can induce the formation of
NETs has substantially grown (30–37). Neutrophils are also
capable of sensing the size of the stimulus and can selectively
form NETs in response to larger pathogens such as fungi and
parasites (38–44). Interestingly, NETs formation was also found to
be stimulated by viruses (Hantavirus, hRSV, HIV, influenza) but
their role in antiviral defense in vivo remains unresolved (45–52).
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While NETs might potentially restrain virus particles and their
individual components possess antiviral properties, NETs were
not found to be induced during mild influenza infection and mice
that are incapable of their formation do not display increased
susceptibility to influenza virus (51, 52). On the other hand, NETs
most likely mediate pathology of severe viral infections, where
virus-induced tissue damage allows subsequent bacterial
overgrowth that together with endogenous stimuli drives NETs
release (53, 54). Pathogens are recognized by neutrophils through
a variety of pattern recognition receptors (PRR’s) such as toll-like
receptors (TLR’s) 2, 4, 7, 8 and 9, dectins 1 and 2 and can also
induce NETs formation via activation of calcium signaling by
calcium ionophores (55).

Sterile stimuli are also capable of NETs induction and even
NETs themselves have been described to induce more NETs
(56, 57). If excessive NETs formation damages endothelium or
other tissue, neutrophils detect parts of free mitochondria that are
released from dead cells as damage-associated molecular patterns
(DAMPs) (58). More than 10 years ago, Carl J Hauser and
colleagues found that despite billions of years of evolution, the
immune system still recognizes mitochondria as bacteria (59). This
may be important in the crush syndrome, in polytrauma, where
patients end up in a septic shock-like condition even though they
do not have any confirmed microbial infection (60). Individual
mitochondrial DAMPs activate different receptors. Mitochondrial
DNA contains unmethylated CpG islets that are ligands for the
Toll-like receptor 9 (TLR9) (61–63). Formylated peptides and
proteins of mitochondrial origin are recognized by formyl
peptide receptors (FPR1-2) (64, 65) and saturated cardiolipin is
able to activate TLR4 mediated signaling (66, 67). During viral
pneumonia induced breakdown of pneumocytes, endothelocytes,
pulmonary megakaryocytes or during the formation of NETs by
neutrophils, free mitochondria are released (68, 69). These can
subsequently activate the immune system either as intact organelles
or as their individual mitochondrial DAMPs. Similar mechanism
might be at play in severe COVID-19 infection.

Another endogenous stimulus such as activated platelets can
induce NETs through the interaction of Highmobility group box 1
(HMGB1) with the receptor for advanced glycation end products
(RAGE) or TLR4 and P-selectin through binding to P-selectin
glycoprotein ligand (70–72). NETs formation is also induced by
the binding of anti-nuclear or anti-neutrophil antibodies and
immobilized immune complexes to FcgRIIIb receptor (73–76),
and even nanoparticles, cholesterol and monosodium urate
crystals can stimulate NETs formation (77–82). Finally, phorbol
12-myristate 13-acetate (PMA) triggers NETs formation
independently of any receptor via activation of protein kinase C
(PKC) and production of reactive oxygen species (ROS) and is
often used as positive control for NETs induction (30). All of the
pathogenic, as well as non-infectious stimuli capable of NETs
induction are listed in the Table 1.

Formation of NETs is a double-edged sword (85). While
being an extremely potent part of the antimicrobial defense, the
emerging NETs must also be rapidly removed. Otherwise, the
NETs activate other neutrophils and immunocompetent cells
contributing to the inflammation that generates more NETs
(55, 86). This creates a vicious cycle that is a key component
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in the pathogenesis of diseases as diverse as preeclampsia, sepsis
or rheumatoid arthritis (71, 87, 88), and data suggests, that it is
important for COVID-19 as well.
NETS DRIVE THROMBOSIS IN COVID-19

The hypothesis that neutrophils and NETs are implicated in the
formation of thrombi during severe SARS-CoV-2 infection has
been proposed several times (89–94). Blood myeloperoxidase-
DNA complex levels (i.e. NETs) were identified as a biomarker of
an early response to SARS-CoV-2 infection, suggesting that
circulating NETs are involved in COVID-19 pathology (95).
Since then, several studies found that the production of NETs is
increased in COVID-19 and their concentration is associated
with severity of the disease and thrombosis (96–100), and NETs
were found to be predominantly located in the lower respiratory
tract of critically-ill patients (101). Skendros and his colleagues
even proposed a mechanism of NETs induced thrombosis in
COVID-19, where SARS-CoV-2 triggered complement
activation leads to thrombin induced expression of tissue
factor (TF) in neutrophils, which results in TF rich pro-
coagulatory NETs (100). Increased NETs formation during
SARS-CoV-2 infection has also been linked to ischemic stroke,
underlying the importance of therapy focused on the inhibition
of NETs formation (102). The fact that several studies and meta-
analyses identified neutrophilia as one of the predictors of
COVID-19 severity and an increased neutrophil to lymphocyte
ratio has high predictive value if present at the beginning of the
infection further underscores the role of neutrophils in early
stages of COVID-19 pathology (103–107). In addition, the
dysregulation of myeloid populations resulting in immature or
dysfunctional neutrophils was found to be characteristic for
developing severe, but not mild COVID-19 (108, 109). Lastly,
genetic predisposition might also affect NETs mediated COVID-
19 pathology. Genome-wide association study investigating
genetic variants associated with circulating NETs levels in
plasma revealed a variant in TMPRSS13 gene coding a type II
transmembrane serine protease to be significantly associated
with increased level of MPO-DNA complexes (110).
Interestingly, the same protease TMPRSS13 was reported to
enhance cellular uptake and replication of SARS-CoV-2,
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making it an interesting target for future investigation (111).
Other study identified a variant on 3p21.31 region associated
with increased respiratory failure risk in COVID-19 that
enhances expression of leucine zipper transcription factor like
1 gene (LZTFL1). LZTFL1 regulates a viral response pathway and
is associated with epithelial-mesenchymal transition and it is
possible that this epithelial dysfunction is driven by neutrophil
extracellular traps (112, 113).
MECHANISMS OF NETS INDUCTION
IN COVID-19

Soon after it was found that SARS-CoV-2 infection results in the
formation of neutrophil extracellular traps, the search for
possible mechanisms of NETs induction in COVID-19 has
begun. Arcanjo and his colleagues were the first to describe
that both live, and heat-inactivated SARS-CoV-2 virus cultivated
on and isolated from Vero cells could induce NETs formation at
surprisingly low concentrations (83). Possible mechanism of
SARS-CoV-2 induced NETs formation was later proposed by
Veras and his colleagues. They reported that live, but not
formaldehyde inactivated SARS-CoV-2 virus induces the
formation of NETs and their induction is dependent on virus
binding to neutrophil angiotensin converting enzyme (ACE2)
receptor, again at interestingly low multiplicity of infection rate
of 1 (84). Additionally, neutrophil elastase – a NETs component,
is able to cleave S protein, resulting in an easier SARS-CoV-2
entry into the cell through ACE2, potentially increasing virus
infectivity and its ability to stimulate immune response (114).
Thus, as was already proposed, NETs formation might be
induced by SARS-CoV-2 virus and at the same time increase
its infectivity, making NETs and neutrophil elastase promising
treatment targets (115). Whether these findings apply to a
situation in vivo remains to be elucidated.

One possible factor linking endothelial dysfunction and
deregulation of NETs formation with COVID-19 might be
angiotensin 1-7, a product of ACE2, which functions as a key
receptor for SARS-CoV-2 (116). Binding of the virus to this
receptor leads to a reduction in the production of angiotensin 1-
7 as a ligand of the Mas receptor (117, 118). The resulting
imbalance between increasing angiotensin II and decreasing
TABLE 1 | Known pathogenic as well as sterile NETs inducers, corresponding receptors they interact with, along with a pathway the are independent of regarding
NETs formation.

stimulus receptor signaling independent of reference

pathogenic bacteria FPR1, FPR2, TLR4, TLR9 – (26, 30–37)
fungi Dectin 1, 2 not known (38–42)
viruses TLR7, TLR8, ACE2 not known (45–52, 83, 84)
parasites TLR2, TLR4 NOX2 (43, 44)
ionophores none ERK, NOX2 (36, 37)

sterile platelets RAGE, PSGL1, TLR2, TLR4 NOX2 (70–72)
mitochondria TLR4, TLR9, FPR1, FPR2 – (58, 59, 63–67)
immune complexes FcgRIIIb NOX2 (33, 73–76)
crystals and nanoparticles none PAD4 (77–81)
PMA none PAD4 (30)
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angiotensin 1-7 can stimulate endothelial dysfunction, an
inflammatory response, induce NETs and thrombus formation
(119–121). The consequences of these pathomechanisms are
consistent with the histopathology of COVID-19 (122).
Compared to influenza, lung necropsies in patients with
COVID-19 showed similar diffuse alveolar damage but much
more pronounced thrombosis with microangiopathy.
Microthrombi were up to 9 times more frequent in the
pulmonary circulation of COVID-19 when compared to
influenza (122). Proposed mechanisms of NETs formation and
induction of thrombosis in COVID-19 are illustrated in Figure 1.
TARGETING NETS FORMATION

Whether a neutrophil decides to form a NET depends on the
context, i.e. also on the size, number and structural properties of
the potential inducers (123). Understanding NETosis on a
molecular level is extremely important, as the knowledge of
signaling pathways involved in NETs induction will enable for
selective inhibition of NETs formation, rather than just unspecific
attenuation of inflammation. As was mentioned above, both
pathogenic and sterile stimuli activate neutrophils through
binding of various membrane and intracellular receptors and
Frontiers in Immunology | www.frontiersin.org 4
viaMEK–extracellular-signal-regulated kinase (ERK) and protein
kinase C (PKC) induce the production of ROS. ROS then activate
MPO, which triggers oxidative activation of NE required for the
degradation of actin cytoskeleton and subsequent histone
processing upon NE nuclear translocation (41, 124, 125).
Histone citrullination by protein-arginine deiminase type 4
(PAD4) further enhances chromatin decondensation and after
mixing with cytoplasmatic components and permeabilization of
the plasma membrane, NET is released into the extracellular
space (30, 126–128).

To date, several compounds that target components of this
pathway have been suggested as a potential intervention in
COVID-19, most notable of them being Chloramidine, an
inhibitor of PAD4 and NE inhibitor Sivelestat (ONO-5046),
that has already been approved for the treatment of ARDS in
Japan (92). While Sivelestat improves pulmonary function and
oxygen saturation in ARDS patients, meta-analysis of completed
clinical trials did not show improvement in survival of patients
with ARDS (129). Currently, new generation of NE inhibitors
(Lonodelestat, Alvelestat, CHF6333 and Elafin) have entered
clinical trials, albeit neither NE nor PAD4 inhibitors are
currently tested in clinical trials investigating COVID-19.
Other, less specific drugs that could inhibit neutrophil
recruitment or indirectly attenuate NETs formation such as
FIGURE 1 | Potential mechanism underlying NETs formation and thrombosis induction in COVID-19. Upon SARS-CoV-2 infection, pneumocyte death and endothelial
dysfunction result in the release of DAMPs and SARS-CoV-2 into extracellular space, where they bind to PRRs and ACE2 receptors and initiate activation of neutrophils
and formation of NETs. NETs that are not removed from the circulation induce more NETs in a vicious circle and cause thrombosis and inflammation that might even
lead to cytokine storm. Additionally, binding of SARS-CoV-2 on ACE2 receptor of endothelial cells may promote angiotensin II and angiotensin 1-7 imbalance leading to
endothelial dysfunction and inflammation, which further contributes to NETs induction and thrombus formation. Figure was created with BioRender.com.
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Colchicine, Disulfiram, Anakinra, N-Acetyl Cysteine,
Azithromycin, Aspirin, Cyclosporine A and Metformin are
being clinically evaluated in COVID-19 but only two will
inspect the effect of intervention on NETs formation (92). One
retrospective study will examine the effect of Anakinra and the
other examined the effect of disulfiram, but no results are
currently available (NCT04594356, NCT04594343). Finally,
hydroxychloroquine that interferes with NETs formation
through inhibition of TLR9 has been proposed as a
therapeutical intervention for COVID-19, although it has
already been shown that it does not improve clinical outcome
and mortality of patients with COVID-19 (130, 131).

Recently, mtDNA has been identified as an activator of cyclic
GMP-AMP synthase (cGAS)-Stimulator of interferon genes
(STING) signaling that drives aberrant type I interferon (type I
IFN) response in COVID-19 (132). Moreover, pharmacological
inhibition of STING improved disease outcome in a murine model
of SARS-CoV-2 induced lung inflammation. Since type I IFN is
also known to be an inducer of NETs formation, therapeutical
targeting of DAMPs that are released from dead pneumocytes
after SARS-CoV-2 infection should also be considered (133, 134).
In fact, it has already been proposed, that cell-free mitochondria
constitute a potential treatment target, since inhibition of their
recognition by neutrophils could result in decreased neutrophil
reactivity and NETs formation (135).

Another possible therapeutic strategy is to focus on the removal
of NETs. NETs clearance is important for preventing sterile
inflammation and thrombosis and is carried out by monocytes
and macrophages, but also depends on the plasma nuclease
activity (136). Because of histones, antimicrobial peptides and
other proteins that bind DNA with high affinity, NETs may be
partially resistant to deoxyribonuclease (137, 138). Additionally,
Frontiers in Immunology | www.frontiersin.org 5
anti-NET antibodies found in the plasma of COVID-19 patients
likely also stabilize NETs and impair their clearance (139).
Nevertheless, exogenous administration of recombinant
deoxyribonuclease 1 has already been shown to decrease the
concentration of plasma levels of cell free DNA and NETs in
vitro and may be used as a potential therapeutic intervention
(140). There are currently 8 registered clinical trials evaluating
NETs in COVID-19 patients (NCT04409925, NCT04541979,
NCT05139901, NCT04359654, NCT04402970, NCT04817332,
NCT04594356, NCT04594343). Of those, NCT04594356,
NCT04594343 were mentioned above and will investigate the
effect of Anakinra and Disulfiram, and NCT04817332 evaluates
the effect of protease inhibitor Brensocatib, that is expected to
reduce NE activity. The remaining five are investigating the effect
of recombinant human DNase 1 (rhDNase 1) on NET quantity,
with NCT04402970 having already published results (141). In this
study, treatment with rhDNase 1 was associated with decreased
DNA-MPO complexes (i.e. NETs) in lungs as well as improved
oxygenation. This study was however limited by its small sample
size of 30 patients, and while a small decrease in mortality was
observed upon rhDNase 1 treatment, it was not statistically
significant and a more extensive trial would be warranted. All of
the currently available as well as proposed treatments targeting
NETs are listed in the Table 2.

Increased concentration of NETs components and cfDNA
were negatively associated with clinical outcomes, indicating that
NETs formation should be potentially evaluated not only as a
novel target for therapeutic interventions, but could also be used
as a clinical biomarker (142). A case study by Zuo and colleagues
found remnants of NETs such as cfDNA, citrullinated histone H3,
myeloperoxidase and its complexes in patient sera were associated
with higher risk of thrombosis, in spite of previous prophylactic
TABLE 2 | Compounds that degrade or inhibit the formation of NETs and their corresponding targets with proposed mechanism of action in relation to clinical trials with
COVID-19 patients.

tested in compound target mode of action clinical trial identifier

clinical trials evaluating
NETs

rhDNase 1 DNA DNA degradation NCT04409925, NCT04402970, NCT04541979,
NCT05139901, NCT04359654

Anakinra IL-1b IL-1 receptor antagonist NCT04817332
Disulfiram Gasdermin A Gasdermin A inhibition NCT04594343
Brensocatib NE inhibition of NE activity NCT04817332

clinical trials not
evaluating NETs

Azithromycine Cytokines inhibition of neutrophil
migration

–

Hydroxychloroquine TLR9 increase of lysosomal pH –

Colchicine Tubulin disruption of microtubule
assembly

–

Aspirin Cyclooxygenase
1 and 2

inhibition of platelet aggregation –

Metformin mTORC1 and
AMPK

AMPK activator –

N-acetyl cysteine ROS antioxidant attenuating ROS
mediated signaling

–

Cyclosporine A Cytophilin calcineurine pathway inhibitor –

not a subject of COVID-19
clinical trials

Chloramidine PAD4 inhibition of PAD4 activity N/A
Sivelestat, Lonodelestat,
Alvelestat, CHF6333, Elafin

NE inhibition of NE activity N/A
NA, not applicable.
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anticoagulation (143). While this phenomenon should be further
explored, these results suggest that standard anticoagulation
treatment may not be sufficient and targeting NETs formation
and promoting their degradation should be prioritized.

Today, it still remains unclear what induces the formation of
NETs during SARS-CoV-2 infection, why geriatric and not
immunosuppressed patients are at higher risk of death from
COVID-19, and how to best intervene to avoid the negative
consequences of increased NETs production. Since the early
outbreak in Wuhan, old age was found to be a major risk factor
for mortality of COVID-19 patients (144). While it has been
hypothesized, that increased risk of thrombotic complications is
attributed to individuals with specific genetic conditions that
favor the release of NETs and are therefore predisposed for
abnormal coagulation (145), so far, no studies have stratified
COVID-19 patients ex ante based on NETs formation. Whether
elderly people and those with underlying health problems such as
diabetes or asthma are at the highest risk of developing severe
COVID-19 because of altered neutrophil function and NETs
formation remains to be determined.
CONCLUSION

NETs research is in an exciting phase. While the evidence for
the procoagulatory properties of NETs and their involvement in
Frontiers in Immunology | www.frontiersin.org 6
the COVID-19 pathology is growing stronger, insight into the
mechanisms initiating their formation is still lacking. To develop
targeted therapies focused on NETs inhibition is only possible if
the factors that are involved in their induction are elucidated,
and that requires extensive preclinical studies followed by clinical
trials. This work presents current knowledge on the stimuli that
might activate neutrophils and induce the formation of NETs
during SARS-CoV-2 infection and highlights possible treatment
options for COVID-19, but also for several other pathologies
with shared pathogenesis involving NETs formation. Many
unknowns need to be resolved, but understanding the
complexities of NETs formation in vivo would be beneficial
beyond the current pandemic.
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121. Romero A, San Hipólito-Luengo Á, Villalobos LA, Vallejo S, Valencia I,
Michalska P, et al. The Angiotensin-(1-7)/Mas Receptor Axis Protects From
Endothelial Cell Senescence via Klotho and Nrf2 Activation. Aging Cell
(2019) 18(3):e12913. doi: 10.1111/acel.12913

122. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F,
et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in
Covid-19. N Engl J Med (2020) 383(2):120–8. doi: 10.1056/NEJMoa2015432

123. Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil’s
Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front
Immunol (2018) 9:288. doi: 10.3389/fimmu.2018.00288

124. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil
Elastase and Myeloperoxidase Regulate the Formation of Neutrophil
Extracellular Traps. J Cell Biol (2010) 191(3):677–91. doi: 10.1083/
jcb.201006052

125. Porto BN, Stein RT. Neutrophil Extracellular Traps in Pulmonary Diseases:
Too Much of a Good Thing? Front Immunol (2016) 7:311. doi: 10.3389/
fimmu.2016.00311

126. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in
NET Formation. Front Immunol (2012) 3:360. doi : 10.3389/
fimmu.2012.00360

127. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone
Hypercitrullination Mediates Chromatin Decondensation and Neutrophil
Extracellular Trap Formation. J Cell Biol (2009) 184(2):205–13. doi: 10.1083/
jcb.200806072

128. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, et al. Human
PAD4 Regula te s Hi s tone Arg in ine Methy la t ion Leve l s v ia
Demethylimination. Science (2004) 306(5694):279–83. doi: 10.1126/
science.1101400

129. Tagami T, Tosa R, Omura M, Fukushima H, Kaneko T, Endo T, et al. Effect
of a Selective Neutrophil Elastase Inhibitor on Mortality and Ventilator-Free
Days in Patients With Increased Extravascular Lung Water: A Post Hoc
Analysis of the PiCCO Pulmonary Edema Study. J Intensive Care (2014) 2
(1):67. doi: 10.1186/s40560-014-0067-y

130. Gasmi A, Peana M, Noor S, Lysiuk R, Menzel A, Gasmi Benahmed A, et al.
Chloroquine and Hydroxychloroquine in the Treatment of COVID-19:
March 2022 | Volume 13 | Article 821007

https://doi.org/10.1042/CS20200531
https://doi.org/10.1042/CS20200531
https://doi.org/10.1111/all.14533
https://doi.org/10.1111/all.14533
https://doi.org/10.1101/2020.04.09.20059626
https://doi.org/10.1101/2020.04.09.20059626
https://doi.org/10.1093/infdis/jiaa756
https://doi.org/10.1182/blood.2020007008
https://doi.org/10.1084/jem.20201012
https://doi.org/10.1172/JCI141374
https://doi.org/10.1093/infdis/jiab050
https://doi.org/10.5607/en20048
https://doi.org/10.1016/j.intimp.2020.107034
https://doi.org/10.1016/S2665-9913(20)30343-X
https://doi.org/10.1016/S2665-9913(20)30343-X
https://doi.org/10.1111/ijlh.13354
https://doi.org/10.1002/jmv.25819
https://doi.org/10.1016/j.endien.2021.11.002
https://doi.org/10.1016/j.endien.2021.11.002
https://doi.org/10.3390/cells9102206
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.3389/fimmu.2021.615527
https://doi.org/10.3390/v13030384
https://doi.org/10.1038/s41588-021-00955-3
https://doi.org/10.1038/s41588-021-00955-3
https://doi.org/10.3389/fimmu.2021.663303
https://doi.org/10.1128/JVI.01412-08
https://doi.org/10.1128/JVI.01412-08
https://doi.org/10.1152/physrev.00019.2020
https://doi.org/10.1016/j.phrs.2020.104833
https://doi.org/10.1038/nm1267
https://doi.org/10.1016/j.ejim.2020.04.037
https://doi.org/10.2119/2007-00073.Fraga-Silva
https://doi.org/10.2119/2007-00073.Fraga-Silva
https://doi.org/10.4049/jimmunol.1000314
https://doi.org/10.1111/acel.12913
https://doi.org/10.1056/NEJMoa2015432
https://doi.org/10.3389/fimmu.2018.00288
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.3389/fimmu.2016.00311
https://doi.org/10.3389/fimmu.2016.00311
https://doi.org/10.3389/fimmu.2012.00360
https://doi.org/10.3389/fimmu.2012.00360
https://doi.org/10.1083/jcb.200806072
https://doi.org/10.1083/jcb.200806072
https://doi.org/10.1126/science.1101400
https://doi.org/10.1126/science.1101400
https://doi.org/10.1186/s40560-014-0067-y
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pastorek et al. NETs in COVID-19
The Never-Ending Story. Appl Microbiol Biotechnol (2021) 105(4):1333–43.
doi: 10.1007/s00253-021-11094-4

131. Zhang S, Zhang Q,Wang F, Guo X, Liu T, Zhao Y, et al. Hydroxychloroquine
Inhibiting Neutrophil Extracellular Trap Formation Alleviates Hepatic
Ischemia/Reperfusion Injury by Blocking TLR9 in Mice. Clin Immunol
(2020) 216:108461. doi: 10.1016/j.clim.2020.108461

132. Di Domizio J, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al.
The cGAS-STING Pathway Drives Type I IFN Immunopathology in
COVID-19. Nature (2022). doi: 10.1038/s41586-022-04421-w

133. Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, Hadebe S, Chakravarty P,
Ioannou M, et al. Type I IFN Exacerbates Disease in Tuberculosis-
Susceptible Mice by Inducing Neutrophil-Mediated Lung Inflammation
and NETosis. Nat Commun (2020) 11(1):5566. doi: 10.1038/s41467-020-
19412-6

134. Grunwell JR, Stephenson ST, Mohammad AF, Jones K, Mason C, Opolka C,
et al. Differential Type I Interferon Response and Primary Airway Neutrophil
Extracellular Trap Release in Children With Acute Respiratory Distress
Syndrome. Sci Rep (2020) 10(1):19049. doi: 10.1038/s41598-020-76122-1

135. Vorobjeva NV, Sud’ina GF, Chernyak BV. Mitochondria Are Potential
Targets for the Development of New Drugs Against Neutrophilic
Inflammation in Severe Pneumonia Including COVID-19. Front
Pharmacol (2021) 12:609508. doi: 10.3389/fphar.2021.609508
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