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Summary
Background The exact sequence of events leading to 
ultimate hepatocellular damage following ischemia/
reperfusion (I/R) is incompletely understood. In this 
article, we review a mechanism of organ dysfunction 
after hepatic I/R or immunosuppressive treatment, in 
addition to the potential of liver sinusoidal endothelial 
cell (LSEC) protection and antiplatelet treatment for the 
suppression of hepatocellular damage.

Methods A review of the literature, utilizing PubMed-
NCBI, was used to provide information on the compo-
nents necessary for the development of hepatocellular 
damage following I/R.

Results It is well-established that LSECs damage fol-
lowing hepatic I/R or immunosuppressive treatment fol-
lowed by extravasated platelet aggregation (EPA) is the 

root cause of organ dysfunction in liver transplantation. 
We have classified three phases, from LSECs damage to 
organ dysfunction, utilizing the predicted pathogenic 
mechanism of sinusoidal obstruction syndrome. The 
first phase is detachment of LSECs and sinusoidal wall 
destruction after LSECs injury by hepatic I/R or immuno-
suppressive treatment. The second phase is EPA, accom-
plished by sinusoidal wall destruction. The various 
growth factors, including thromboxane A2, serotonin, 
transforming growth factor-beta and plasminogen acti-
vator inhibitor-1, released by EPA in the Disse’s space of 
zone three, induce portal hypertension and the progres-
sion of hepatic fibrosis. The third phase is organ dysfunc-
tion following portal hypertension, hepatic fibrosis, and 
suppressed liver regeneration through various growth 
factors secreted by EPA.
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Conclusion We suggest that EPA in the space of Disse, 
initiated by LSECs damage due to hepatic I/R or immu-
nosuppressive treatment, and activated platelets may 
primarily contribute to liver damage in liver transplanta-
tion. Endothelial protective therapy or antiplatelet treat-
ment may be useful in the treatment of hepatic I/R fol-
lowing EPA.

Keywords Ischemia/reperfusion  · Extravasated platelet 
aggregation · Sinusoidal endothelial damage · Antiplate-
let agents · Endothelial protection

Introduction

Ischemia/reperfusion (I/R) injury to the liver is a major 
complication of hemorrhagic shock, liver resection, and 
transplantation [1]. Although the sequence of events that 
leads to extent of hepatocellular damage after hepatic I/R 
is incompletely understood, liver sinusoidal endothelial 
cells (LSECs) may loosen from their tetherings to the 
space of Disse in zone 3 or even detach completely [2].

Hepatic I/R is considered as a biphasic phenomenon. 
Cellular damage due to hypoxia and a lack of biome-
chanical stimulus is exacerbated upon the restoration 
of oxygen delivery and shear stress [3]. Although the ini-
tial ischemic insult to the liver is tolerable, this first step 
triggers essential molecules in the induction of the more 
devastating reperfusion injury. Early phases of reperfu-
sion are characterized pathologically by endothelial cell 
swelling, vasoconstriction, neutrophil entrapment, and 
platelet aggregation within the sinusoids–resulting in 
failure of the microcirculation [4]. Simultaneously, nitric 
oxide (NO) levels are markedly reduced and there is an 
imbalance between endothelin-1 and NO production 
from NO synthase (NOS). This leads to vasoconstriction 
of the sinusoids [5]. As such, vasoconstriction of the sinu-
soids gives rise to narrowing of the sinusoidal lumen with 
consequential decreased leukocyte velocity. The fre-
quency of leukocyte-endothelial cell contact is elevated, 
promoting leukostasis. Flow is hindered in the sinusoidal 
network of the hepatic microcirculation due to stagnant 
leukocytes, unable to completely occlude the sinusoidal 
lumen [6]. Microcirculatory failure leads to aggravated 
and prolonged ischemia. Hypoxic regions of the liver 
heighten the degree of necrosis, Kupffer cell activation, 
and induce further cytokine and reactive oxygen species 
release. This creates a cycle of excessive inflammatory 
response, reactive oxygen and nitrogen species produc-
tion, and further oxidative tissue injury [7].

LSECs, which lack an organized basal membrane, 
form the vascular wall of the hepatic sinusoid. Fenes-
trations penetrate the cytoplasm of these flattened cells 
forming clusters, called sieve plates, which render the 
hepatic microvascular endothelium discontinuous [8]. 
LSECs play an integral protective role in maintaining 
vascular homeostasis, inflammation, vascular tone, and 
toxicant clearance. Thus, the preservation of a healthy 
LSEC phenotype is fundamental to minimize any type 

of liver injury [3]. Damage to the endothelium, following 
hepatic I/R injury, is apparent within LSECs and hepa-
tocytes, indicated by the deposition of fibrinogen and 
erythrocyte congestion resulting in enlarged sinusoids. 
Sloughed LSECs, red cells, and stellate cells embolize 
downstream, leading to venous occlusions that progress 
to disrupt the normal liver architecture and achieve cen-
trilobular necrosis [9]. In the late phases of the disease, 
fibrosis and occlusion of the terminal venules develop, 
leading to hepatic failure and possibly death [10].

Sinusoidal obstruction syndrome (SOS), previously 
known as veno-occlusive disease, commences with sus-
tained LSECs injury, resulting in bleeding in the space 
of Disse and centrilobular hemorrhagic necrosis. The 
fundamental cause, moreover, is damage around the 
centrilobular area, including the sinusoid, by acute cel-
lular rejection, antibody-mediated rejection or hepatic 
I/R injury [11]. SOS is a life-threatening syndrome that 
results from sinusoidal congestion and is characterized 
by hepatomegaly, ascites, portal hypertension, weight 
gain and jaundice [12].

Platelets play an important role in hepatocellular 
damage. Furthermore, platelets have been suggested to 
be involved in the inflammatory response of hepatic I/R 
injury in various organs [13]. They are able to roll and 
adhere to postreperfusion endothelium in a P-selectin-
dependent manner [14, 15]. Platelets accumulate in the 
postischemic microvasculature early after reperfusion 
via P-selectin-ligand interactions. Platelet recruitment 
and subsequent activation might play an important role 
in the pathogenesis of hepatic I/R injury [14]. Plate-
let aggregation also correlated with reperfusion injury, 
thrombocytopenia and early graft dysfunction in liver 
transplantation [16]. As such, persistent thrombocytope-
nia after reperfusion is an unfavorable indicator for early 
liver graft dysfunction [17].

We previously reported that platelet aggregation in 
the space of Disse along with the sinusoid and plate-
lets phagocytosis by hepatocytes were observed in the 
allograft tissue of a living donor liver transplantation 
recipient with thrombocytopenia, who encountered a 
complication of SOS [18]. Therefore, LSECs damage after 
hepatic I/R or immunosuppressive treatment followed 
by extravasated platelet aggregation (EPA) is the root 
cause of organ dysfunction in liver transplantation.

This manuscript will review the role of platelet aggre-
gation and possible prevention for hepatocyte injury in 
hepatic I/R. The PubMed database was utilized in search-
ing for published literature in this area.

Platelets and hepatic ischemia/reperfusion injury

Whereas many of the mechanisms underlying the 
hepatic I/R-induced inflammatory response still remain 
unknown, growing evidence suggests a role for platelets 
in the pathogenesis of postischemia reperfusion injuryw 
[14]. Ischemia leads to the accumulation and activation 
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Platelets release potent proinflammatory chemokines 
and modulate leukocyte function [26]. Activated platelets 
release growth factors, such as thromboxane (TX) A2, 
serotonin, vascular endothelial growth factor (VEGF)-A, 
transforming growth factor (TGF)-β and plasminogen 
activator inhibitor (PAI)-1. TXA2 is a strong vasoactive 
metabolite of arachidonic acid with powerful proaggre-
gatory and proinflammatory properties. TXA2 is a vaso-
constrictor that increases portal venous resistance [27] 
and causes portal hypertension. Serotonin is well-known 
released from platelets on damage to the blood vessels 
walls. It acts as a potent vasoconstrictor. Although VEGF-
A acts as a vasodilator under ordinary circumstances, 
it acts, paradoxically, as a vasoconstrictor in patients 
with endothelial failure [28]. Bevacizumab, an antibody 
against VEGF-A, protects against liver injury associated 
with SOS [29]. PAI-1 suppresses fibrinolysis and the pro-
gression to fibrosis in the tissue microenvironment. In 
addition, PAI-1 acts as a negative regulator of hepatocyte 
proliferation by inhibiting urokinase-type plasminogen 
activator (u-PA), which activates hepatocyte growth fac-
tor [30, 31]. TGF-β, a major antiproliferative factor for 
hepatocytes, stimulates collagen synthesis through acti-
vated hepatic stellate cells (HSCs) [32].

LSEC apoptosis also play an important role in hepatic 
I/R injury during liver transplantation [33]. Platelet 
sequestration occurs after transplantation with possi-
bly deleterious effects. In an isolated perfused rat liver 
model, single platelets were adherent to sinusoidal lining 
without morphological or dynamic evidence of impair-
ment in microcirculation with increase in the number of 
apoptotic LSECs. Platelets cause LSECs apoptosis upon 
reperfusion of liver grafts. These results indicate that the 
prevention of adhesion plays a protective role [15].

Extravasated platelet aggregation and organ 
dysfunction

The liver can be subjected to three forms of ischemia, 
namely cold (or hypothermic), warm (or normothermic), 

of platelets within vascular beds early after reperfusion 
[19].

We reported that CD42b expression, as a platelet 
marker, was apparent along with the sinusoid in Zone 3 
but not in Zone 1 in liver allograft tissue (Fig. 1a).

Remarkably, superior adenosine diphosphate (ADP)-
dependent aggregative levels of platelets prior to graft 
reperfusion were demonstrated to be positively corre-
lated with serum markers for hepatocellular reperfusion 
damage. Schulte et al. reported that a certain increase in 
the ADP-dependent functional status of platelets in the 
pediatric recipients of liver grafts may result in a critical 
promotion of platelet adherence and activation in liver 
graft LSECs following reperfusion [16, 20]. Platelet accu-
mulation in the postischemic microvasculature might 
significantly contribute to the manifestation of hepatic 
I/R injury [14].

Extracellular nucleotides are released in a regu-
lated manner either by platelets, a variety of vascular 
and hepatic cells in response to inflammatory stress, 
through cellular swelling, or with exocytosis. Levels of 
extracellular nucleotides are, in turn, regulated by CD39 
(ectonucleoside triphosphate diphosphohydrolase-1/
ENTPD1), the dominant vascular ectonucleotidase. 
CD39, expressed only on the luminal surface of prolifer-
ating or activated LSECs and absent in hepatocytes [21, 
22], hydrolyzes the terminal phosphate of adenosine 
triphosphate(ATP) and ADP in an enzymatic cascade 
that generates adenosine monophosphate(AMP) [23]. 
Under normal conditions, in the absence of stressors 
such as hypoxia/ischemia, high shear stress, and triggers 
for inflammation (cytokines/chemokines), CD39 helps to 
maintain a homeostatic vascular environment, maintain 
blood fluidity and inhibit inflammation [24]. ADP, one of 
the most potent signals for platelet aggregation, as well 
as proinflammatory signals such as ATP, are released into 
the extracellular environment in the presence of adverse 
conditions, such as hepatic I/R. When this occurs, the 
extracellular concentration of ADP and ATP increases 
markedly [25]. When platelets contact collagen, they pro-
duce ADP, which further promotes platelet aggregation.

Fig. 1 Immunohistochemical staining of liver allograft tissues 
with antibody to CD42b. a. CD42b expression is evident as 
dark particles, morphologically characterized as platelets (black 
arrows). Platelets were observed in the sinusoid in zone 3. 

Erythrocytes were evident in the sinusoid (white arrows).  
b CD42b expression was observed in extravasation or in the 
hepatocyte cytoplasm (black arrows), indicative of extrava-
sated platelet aggregation. Hepatocytes are denoted by “H”.
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Additionally, antiapoptosis induced by ishchemic 
preconditioning can improve liver function, as well as 
protect LSECs [49]. Ischemic preconditioning directly 
protected hepatocytes after warm I/R, not via suppres-
sion of alterations in sinusoidal cells, as is present in cold 
hepatic I/R injury [50].

and rewarming [34]. In transplanted liver ischemia, dis-
ruption of the endothelial wall leads to leukocyte [35] 
and platelet adhesion [15, 36], which induces microcir-
culatory disturbances [37]. Transplanted liver damage is 
slightly different from liver resection, due to the duration 
of sustained ischemia.

The subendothelial space of Disse, located between 
the hepatocytes and the sinusoid, contains HSCs (myo-
fibroblasts) and a network of reticular fibers holding the 
hepatocytes together. Large amounts of albumin and 
other plasma proteins enter the space of Disse, pass 
through hepatocyte junctions, and form ascites contain-
ing a high concentration of protein and a low serum to 
ascites albumin gradient. In normal liver, the space of 
Disse contains a matrix of basement-membrane con-
stituents that is not electron dense [38]; in injured tissue 
this may be replaced by matrix filled with fibril-forming 
collagens and fibronectin [39].

In the normal liver, collagen type III are concentrated 
in the portal tracts and around terminal hepatic veins, 
with occasional bundles located between hepatocytes 
and endothelial cells in the space of Disse. Hepatic isch-
emia causes endothelial cell activation following HSCs 
activation, increasing hepatic parenchymal and portal 
tract fibrosis in ischemic liver tissues [40]. Following a 
fibrogenic stimulus, HSCs undergo a complex process of 
activation in which they become transformed from qui-
escent to activated myofibroblast-like cells [41–43]. Acti-
vated HSCs are the primary cell type responsible for the 
production of collagen I. This subendothelial accumula-
tion of collagen, termed “capillarization” of the sinusoid, 
is associated with clinical liver disease [44]. Fibrosis may 
also impede the rapid exchange of solutes between the 
sinusoidal space and hepatocytes [45].

Following the destruction of endothelial wall and result-
ing LSECs damage caused by hepatic I/R or immuno-
suppressive treatment, platelets enter the space of Disse 
(Fig.  1b) and aggregate by activated HSCs (Fig.  2). Fur-
thermore, platelets produce platelet-derived growth factor 
TGF-β to activate HSCs and promote fibrosis [46]. Therefore, 
liver fibrosis may be caused by EPA in this pathway (Fig. 3).

The production of collagen I may be associated with 
increased serum alanine transaminase level and be uti-
lized as a marker for hepatic I/R injury.

Possible treatment

No standard method for treating hepatic dysfunction by 
hepatic I/R has yet been established. Systemic antico-
agulation and thrombolytic therapies have been tested 
extensively [47]. Defibrotide, a polydeoxyribonucleic 
acid, was recently shown to have a promising response 
rate in patients with severe SOS [48]. Conditional to the 
extent of LSECs damage and EPA in the space of Disse, 
prophylactic administration of endothelial protective 
and antiplatelet agents may be effective prior to the 
development of irreversible damage.

Fig. 3 Mechanisms involved in hepatic injury after liver isch-
emia/reperfusion. EPA in the space of Disse, initiated by 
damage to the sinusoidal endothelium, is induced by isch-
emia/reperfusion or immunosuppressive treatment. The vari-
ous growth factors released by activated platelets, including 
thromboxane A2, serotonin, plasminogen activator inhibitor-1, 
and transforming growth factor-β, may induce portal hyper-
tension and the progression of hepatic fibrosis, as well as sup-
pression of liver regeneration, initiating hepatic dysfunction

 

Fig. 2 Extravasated platelet aggregation schematic mecha-
nism. Damage to the sinusoidal endothelium can result in the 
denuding of the endothelium or the loss of fenestrations, al-
lowing platelets to enter the space of Disse. This space con-
tains reticulin fibers, consisting primarily of collagen type III. 
Platelets can easily attach to collagen type III, forming aggre-
gates in the space of Disse. Activated hepatic stellate cell syn-
thesize a fibrotic matrix rich in collagen type I. In addition, the 
extravasated platelets in the space of Disse can be phagocy-
tized by hepatocytes through the asialoglycoprotein receptor.
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which has coagulant properties and is made by platelets. 
Beraprost is also administered as an antiplatelet agent.

Conclusion

We suggest that EPA in the space of Disse, initiated by 
LSECs damage due to hepatic I/R or immunosuppressive 
treatment, and activated platelets may primarily contrib-
ute to liver damage in liver transplantation. Endothelial 
protective therapy or antiplatelet treatment may be use-
ful in the treatment of hepatic I/R following EPA.
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