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Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia and is characterized by cognitive

fluctuations, visual hallucinations, and Parkinsonism. The phenotypic expression of the disease

may, in part, relate to alterations in functional connectivity within and between brain networks.

This resting-state study sought to clarify this in DLB, how networks differed from Alzheimer’s dis-

ease (AD), and whether they were related to clinical symptoms in DLB. Resting-state networks

were estimated using independent component analysis. We investigated functional connectivity

changes in 31 DLB patients compared to 31 healthy controls and a disease comparator group of

29 AD patients using dual regression and FSLNets. Within-network connectivity was generally

decreased in DLB compared to controls, mainly in motor, temporal, and frontal networks.

Between-network connectivity was mainly intact; only the connection between a frontal and a

temporal network showed increased connectivity in DLB. Differences between AD and DLB were

subtle and we did not find any significant correlations with the severity of clinical symptoms in

DLB. This study emphasizes the importance of reduced connectivity within motor, frontal, and

temporal networks in DLB with relative sparing of the default mode network. The lack of signifi-

cant correlations between connectivity measures and clinical scores indicates that the observed

reduced connectivity within these networks might be related to the presence, but not to the sever-

ity of motor and cognitive impairment in DLB patients. Furthermore, our results suggest that AD

and DLB may show more similarities than differences in patients with mild disease.
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1 | INTRODUCTION

Dementia with Lewy bodies (DLB) is a common form of degenerative

dementia in older age and accounts for 4%–8% of all dementia cases

clinically (Vann Jones and O’Brien, 2014). It is characterized by core

symptoms of cognitive fluctuations, complex visual hallucinations, and

Parkinsonism (McKeith et al., 2005) in contrast to Alzheimer’s disease

(AD) which is mainly characterized by memory loss, particularly in the

early stages (Calderon, 2001). Neuroimaging methods such as resting-

state functional magnetic resonance imaging (fMRI) can aid in better

understanding the underlying brain changes associated with DLB and

how these differ from other dementia subtypes. Resting-state fMRI

can be used to study brain functional connectivity and enables charac-

terization of resting-state networks (RSNs) which are sets of brain

regions that are spatially distinct, but show coordinated activity in the

absence of a specific task (Biswal, Yetkin, Haughton, & Hyde, 1995;

Lowe, Mock, & Sorenson, 1998). Several RSNs have been consistently

found in healthy participant studies and involve brain regions that are

related to different functions such as visual, motor and sensory proc-

essing, attention, salience, and memory (Damoiseaux et al., 2006). One

resting-state network that has been of particular interest is the default

mode network (DMN) which is typically active during rest and deacti-

vated upon the execution of a task (Raichle et al., 2001) and whose

connectivity has been consistently found to be affected by AD (Binne-

wijzend et al., 2012; Greicius, Srivastava, Reiss, & Menon, 2004).

Most studies investigating functional connectivity in DLB have

used seed-based approaches (Galvin, Price, Yan, Morris, & Sheline,

2011; Kenny, Blamire, Firbank, & O’Brien, 2012; Kenny, O’Brien, Fir-

bank, & Blamire, 2013) or only considered a small set of RSNs based

on a priori hypotheses (Franciotti et al., 2013; Lowther, O’Brien, Fir-

bank, & Blamire, 2014; Peraza et al., 2014); overall findings are some-

what inconsistent. While some studies have found that connectivity

was generally decreased in DLB compared to age-matched healthy

controls (Lowther et al., 2014; Peraza et al., 2014), other studies only

report increased connectivity in DLB compared to controls (Kenny

et al., 2012; Kenny et al., 2013). Furthermore, the networks that have

been found to be altered in DLB differ between studies. Decreased

connectivity in DLB was reported for salience, executive (Lowther

et al., 2014), frontoparietal, sensorimotor, and temporal networks (Per-

aza et al., 2014) whereas increased connectivity has been shown for

basal ganglia (Kenny et al., 2013; Lowther et al., 2014) and thalamus

(Kenny et al., 2013). In particular, the role of the DMN in DLB has been

debated with different studies showing increased (Galvin et al., 2011;

Kenny et al., 2012), decreased (Lowther et al., 2014) or unchanged con-

nectivity within this network compared to controls (Franciotti et al.,

2013; Peraza et al., 2014). In addition to reporting inconsistent findings,

previous analyses have been limited to studying within-network con-

nectivity without considering connectivity changes between different

RSNs. Therefore, the aim of this study was to investigate functional

connectivity changes in DLB patients compared to healthy controls

within and between a wide range of RSNs without a priori selection.

We also included a disease comparator group of AD patients to investi-

gate which changes in functional connectivity are specific to DLB

(rather than dementia per se) and might help to differentiate it from

other forms of dementia. We hypothesized to find changes in func-

tional connectivity in DLB in the following networks: motor and basal

ganglia networks because of previous evidence for their implication in

Parkinsonism (Szewczyk-Krolikowski et al., 2014), attentional networks

based on previous results in DLB (Peraza et al., 2014) and the presence

of a wide range of attentional deficits in DLB (Ballard et al., 2001), and

possibly visual networks given DLB-related impairments in visual proc-

essing (Mosimann et al., 2004). The second aim was to investigate

whether the observed connectivity changes in DLB were related to the

core clinical symptoms of visual hallucinations, cognitive fluctuations,

and Parkinsonism to test if the present analysis could help in furthering

our understanding of the etiological mechanisms underlying these

symptoms in DLB.

2 | METHODS

2.1 | Participants

The study involved 102 participants who were over 60 years of age:

33 were diagnosed with probable DLB, 36 with probable AD, and 33

were age-matched healthy controls (HC) with no history of psychiatric

or neurological illness.

Participants from two contemporary independent studies con-

ducted at one research center were combined for this analysis. Both

studies recruited patients from the local community-dwelling popula-

tion who had been referred to old age psychiatry and neurology serv-

ices, and were approved by the local ethics committee. DLB and AD

diagnoses were performed independently by two experienced old-age

psychiatrists using consensus criteria for probable DLB (McKeith et al.,

2005) and probable AD (McKhann, Drachman, Folstein, & Katzman,

1984; McKhann et al., 2011).

2.2 | Data acquisition

MR imaging for both studies was performed on the same 3T Philips

Intera Achieva scanner. The imaging protocol was the same in both

studies except for a different resolution of the structural scans. To

account for this, in the group analysis a dichotomous covariate of no

interest for study membership was included. Structural images were

acquired with a magnetization prepared rapid gradient echo (MPRAGE)

sequence, sagittal acquisition, echo time 4.6 ms, repetition time 8.3 ms,

inversion time 1250 ms, flip angle588, SENSE factor52, and in-plane

field of view 256 3 256 mm2 with slice thickness 1.2 mm, yielding a

voxel size of 0.93 3 0.93 3 1.2 mm3 (study 1) and in-plane field of

view 240 3 240 mm2 with slice thickness 1.0 mm, yielding a voxel size

of 1.0 3 1.0 3 1.0 mm3 (study 2). Resting-state scans for both studies

were obtained with a gradient echo echo-planar imaging sequence

with 25 contiguous axial slices, 128 volumes, anterior–posterior acqui-

sition, in-plane resolution52.0 3 2.0 mm, slice thickness56 mm, rep-

etition time53000 ms, echo time540 ms, and field of view5260 3

260 mm2. DLB patients who were taking dopaminergic medication

were scanned in the motor ON state.
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2.3 | Preprocessing

A first preprocessing step was carried out using FEAT (FMRI Expert

Analysis Tool) Version 6.0 which is part of the FMRIB’s software library

(FSL, www.fmrib.ox.ac.uk/fsl) including motion correction using

FMRIB’s Linear Image Registration Tool (MCFLIRT), slice-timing correc-

tion, and spatial smoothing with a 6.0mm full width at half maximum

Gaussian kernel. Participants were excluded if the MCFLIRT-estimated

motion parameters exceeded 2 mm translation and/or 28 rotation. To

assess differences in movement between the three groups due to

patients with Parkinsonian symptoms the following formula was used

(Liao et al., 2010):

head motion=rotation

5 M21ð Þ21
XM

i52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxi2xi21j22jyi2yi21j22jzi2zi21j2

q
;

where M is the total number of volumes (M5128) and xi, yi, and zi are

the translations/rotations at the ith time point in x, y, and z direction.

Denoising was performed with ICA-AROMA in FSL which performs

single-subject independent component analysis (ICA) to remove motion

components from each participant’s functional data (Pruim, Mennes, Bui-

telaar, & Beckmann, 2015a; Pruim et al., 2015b). Additionally, eroded

CSF and white matter masks were estimated using FAST in FSL and the

mean signal inside the mask was regressed out of each participant’s

cleaned functional data. Functional and structural images were then co-

registered using boundary based registration in FSL, and normalized to

the standard MNI template using Advanced Normalization Tools (Avants

et al., 2011; Klein et al., 2009). Finally, functional data were temporally

high-pass filtered with a cutoff of 150 s and resampled to a resolution of

4 3 4 3 4 mm3. Grey matter probability maps were obtained from the

FAST-segmented T1 images and included as voxel-wise spatial covari-

ates in the group comparison analyses.

2.4 | Analysis of resting-state data

Resting-state networks were estimated using an independent set of 42

HC participants from two previous studies that were conducted on the

same MR scanner with similar imaging protocols (see Section 1 of the

Supporting Information for more information). The temporally concaten-

ated data from all additional control participants were subjected to a

group-ICA using FSL’s MELODIC (Multivariate Exploratory Linear Opti-

mized Decomposition into Independent Components). To obtain more

reliable components, a meta ICA approach was adopted as in (Biswal

et al., 2010; Poppe et al., 2013). Briefly, MELODIC was repeated 25

times on randomized subsets of 30 out of the 42 HC participants. Sub-

sequently, a meta ICA run was performed on the concatenated compo-

nents from all individual ICA runs. A model order of 70 independent

components was chosen for the individual as well as the meta ICA as

this has been shown to be optimal for assessing disease-related group

differences (Abou Elseoud et al., 2011; Dipasquale et al., 2015). To iden-

tify reliable components, the spatial correlation of each meta component

across the individual ICA runs was calculated and components with a

correlation <0.6 across runs were excluded (Cerliani et al., 2015). Fur-

thermore, the meta ICA procedure was repeated using all HC

participants from the main analysis and compared to the components

from the independent group to ensure that the selected RSNs were

present in both cohorts. All meta ICA components from the independent

cohort that survived these reliability checks were visually inspected with

respect to their spatial maps (Kelly et al., 2010) and 27 were identified as

being of biological interest according to the previous literature (Agosta

et al., 2012; Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux

et al., 2008) (Figure 1 and Supporting Information, Table S2).

Subsequently, FSL-dual regression was run with all 27 identified

RSNs concatenated in a single 4D image, to obtain subject-specific rep-

resentations of the RSN spatial maps and associated subject-specific

time courses. Group differences between DLB and HC and between

DLB and AD were assessed using FSL’s randomize function with

10,000 permutations and family-wise error correction for multiple com-

parisons using threshold-free cluster enhancement (TFCE). Covariates

of no interest were included to control for age, gender, and study

membership. Additionally, in order to reduce the impact of cortical

atrophy differences between our participant groups, we also included

grey matter probability maps as voxel-wise regressors in the linear

model (Damoiseaux, Prater, Miller, & Greicius, 2012).

To investigate between-network connectivity, the FSLNets package

was applied to the subject-specific time series from dual regression

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). Full and partial correlations

were calculated between all pairs of RSNs and the resulting correlation

coefficients were converted to z scores for further analysis. Partial corre-

lations are computed as correlations between two RSNs while control-

ling for the effect of all other RSNs and are thought to reflect more

direct connections (Smith et al., 2011). FSL-randomize with 10,000 per-

mutations was then applied to assess group differences in between-

network connectivity including covariates for age, gender, and study

membership. Results were FWE corrected for multiple comparisons.

2.5 | Statistical analyses

Statistical analyses were carried out in IBM SPSS version 23. Table 1

shows which statistical tests were applied to assess between-group dif-

ferences for the different clinical variables. Spearman’s rank correlation

was used to assess relations between functional connectivity and clinical

scores in the DLB patients, including the three scores related to the core

DLB symptoms (CAF total score for cognitive fluctuations, UPDRS III for

Parkinsonism, and NPI hallucination subscale which was specifically

focused on visual hallucination occurrence) and a measure of global cog-

nition (MMSE). Correlations were computed for the mean connectivity

within clusters with significant differences between DLB and controls

(from dual regression) and for between-network connectivity scores for

connections with significant between-group differences (from FSLNets).

All correlations were computed in the DLB group separately.

3 | RESULTS

One AD patient had to be excluded due to coregistration errors. Addi-

tionally, two HC, six AD, and two DLB participants were excluded

because of excessive motion. This resulted in 31 DLB patients, 29 AD

patients, and 31 healthy controls for further analysis. The overall
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motion for all included participants was not significantly different

between the three groups (Kruskal–Wallis test; rotation, H2 5 1.93,

p5 .38; translation, H2 5 1.13, p5 .57).

3.1 | Demographics

All three groups were matched for age and gender and the two demen-

tia groups were matched in terms of overall cognition (MMSE and

FIGURE 1 Spatial maps of the 27 resting-state networks (RSNs) obtained from the independent healthy control group. RSN maps are thresh-
olded at 3< z<12. Images are shown in radiological convention, that is, the left side of the image corresponds to the right hemisphere [Color
figure can be viewed at wileyonlinelibrary.com]
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CAMCOG) and duration of dementia (Table 1). As expected, the num-

ber of patients taking dopaminergic medication was significantly higher

in the DLB group. The number of patients taking cholinesterase inhibi-

tors was not significantly different between the dementia groups. DLB

patients were significantly more impaired in terms of Parkinsonism, vis-

ual hallucinations, and cognitive fluctuations than the AD patients.

3.2 | Within-network connectivity

Between-group comparisons of the dual regression results were per-

formed across the whole brain space, that is, they were not spatially

bounded by the thresholded RSN spatial maps shown in Figure 1.

Decreased connectivity in DLB compared to controls was

observed for nine RSNs including the lateral sensorimotor network, the

medial sensorimotor network, the temporal network, the basal ganglia

network, the right motor network, the thalamic network, the insular

network 1, the anterior cingulate network, and the temporal pole net-

work. Increased connectivity in DLB compared to controls was found

in very small clusters for the left motor network, the ventral attention

network, and the insular network 2 (Figure 2, Table 2, and Supporting

Information, Figure S2).

Very small clusters of increased connectivity in DLB compared to

AD were found for the default mode network 1 (Table 2 and

Supporting Information, Figure S2). There were no clusters of

decreased connectivity in DLB compared to AD.

There were no significant differences in connectivity between DLB

patients who were taking dopaminergic medication (N518) compared

to those who were not (N513) except for two very small clusters of

increased connectivity in the medicated patients comprising one voxel

for the supplementary motor area network in left frontal orbital cortex

and right superior frontal gyrus. A comparison between patients on and

off cholinesterase inhibitors was not possible due to small numbers in

the latter group.

3.3 | Between-network connectivity

When considering full correlations, there was a change in connectivity

between the temporal pole and the anterior cingulate networks in DLB

compared to HC (Figure 3). While this connection showed a negative

correlation in controls, the mean correlation was around zero in the

DLB group. There were no connections with decreased connectivity in

DLB compared to controls.

When comparing AD and DLB a significant difference was found

for the connection between the left fronto-parietal and the occipital

pole networks which were positively correlated in the AD group, but

TABLE 1 Demographic and clinical variables, mean (standard deviation)

HC (N531) AD (N529) DLB (N531) Between-group differences

Male:Female 22:9 20:9 19:12 v2 5 0.73, p 5 0.70a

Study 1:Study 2 15:16 13:16 12:19 v2 5 0.60, p 5 0.74a

Age 76.4 (7.2) 75.2 (8.6) 78.13 (6.7) F2,88 5 1.16, p 5 0.32b

AChEI - 26 28 v2 5 0.007, p 5 0.93c

PD meds - 1 18 v2 5 20.66, p < 0.001c

Duration - 3.7 (1.7)f 3.4 (2.3) U 5 339, p 5 0.14d

MMSE 28.9 (1.1) 21.8 (3.8) 22.03 (4.3) t58 5 0.20, p 5 0.85e

CAMCOG 96.7 (3.2) 70.3 (13.5) 73.29 (13.6) t58 5 0.86, p 5 0.39e

UPDRS III 1.94 (2.8) 3.5 (4.0) 18.1 (10.2) t58 5 7.32, p < 0.001e

CAF total - 1.00 (2.51)f 4.8 (4.9)g t56 5 3.66, p 5 0.001e

NPI total - 5.9 (5.5)h 14.55 (11.03)i t54 5 3.68, p 5 0.001e

NPI hall - 0j 1.6 (1.8)i t53 5 4.53, p < 0.001e

Note. AChEI, number of patients taking acetylcholinesterase inhibitors; AD, Alzheimer’s disease; CAF total, Clinical Assessment of Fluctuations total
score; CAMCOG, Cambridge Cognitive Examination; DLB, dementia with Lewy bodies; Duration, duration of cognitive symptoms in years; HC, healthy
controls; Mayo total, Mayo Fluctuations Scale; Mayo cognitive, Mayo Fluctuation cognitive subscale; Mayo arousal, Mayo Fluctuations arousal subscale;
MMSE, Mini Mental State Examination; PD meds, number of patients taking dopaminergic medication for the management of Parkinson’s disease symp-
toms; UPDRS III, Unified Parkinson’s Disease Rating Scale III (motor subsection); NPI, Neuropsychiatric Inventory; NPI hall, NPI hallucination subscore.
aChi-square test HC, AD, DLB.
bOne-way ANOVA HC, AD, DLB.
cChi-square test AD, DLB.
dMann–Whitney U test AD, DLB.
eStudent’s t- test AD, DLB.
fN5 28.
gN530.
hN527.
iN529.
jN526.
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showed a negative correlation in DLB (Figure 3). There were no signifi-

cant differences for either contrast when using partial correlations.

3.4 | Exploratory correlations with clinical scores in

dementia with Lewy bodies

After applying FDR correction for multiple comparisons we did not find

any significant correlations between clinical scores and mean within-

network connectivity in the DLB group for the clusters that showed

significant group differences. Uncorrected results are shown in Sup-

porting Information, Table S4. As an additional exploratory analysis, we

also investigated voxelwise correlations between clinical scores and

connectivity within the clusters resulting from the group comparison

(see Section 5 of the Supporting Information). However, even with this

more granular analysis we did not find any significant correlations after

applying FDR correction for multiple comparisons.

4 | DISCUSSION

We investigated within- and between-network connectivity in a wide

range of RSNs in DLB compared to healthy controls as well as AD

patients. With respect to within-network connectivity more decreases

than increases in connectivity were identified in the DLB group

FIGURE 2 Dual regression results for comparison between DLB and HC. RSN maps are shown in red-yellow. (a–f) Clusters with decreased
connectivity in DLB; HC>DLB, p< .05, threshold free cluster enhancement (TFCE) corrected, shown in blue. (g) Clusters with increased
connectivity in DLB; DLB>HC, p< .05, TFCE corrected, shown in green. See Table 2 for more information on cluster locations and sizes.
All images are shown in radiological convention [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Dual regression results

N voxels p value MNI (X, Y, Z) Location

HC>DLB

Lateral sensorimotor network

LSMN-1 1 0.046 24, 28, 30 L supplementary motor cortex

Medial sensorimotor network

MSMN-1 1 0.048 26, 21, 19 L hippocampus, white matter

Temporal network

TN-1 34 0.002 17, 12, 16 R lingual gyrus, R occipital fusiform gyrus

TN-2 20 0.014 21, 21, 26 R posterior cingulate gyrus, R precuneus

TN-3 10 0.02 26, 15, 15 L lingual gyrus

TN-4 9 0.017 30, 8, 16 L inferior lateral occipital cortex

TN-5 6 0.007 34, 18, 14 L inferior temporal gyrus

TN-6 5 0.033 33, 11, 13 L inferior lateral occipital cortex

TN-7 2 0.043 34, 14, 23 L superior lateral occipital cortex

TN-8 1 0.040 37, 17, 13 L inferior temporal gyrus

Basal ganglia network

BGN-1 5 0.039 15, 29, 21 R putamen

BGN-2 2 0.035 17, 32, 22 R caudate

Right motor network

RMN-1 142 0.001 15, 26, 30 R precentral gyrus

RMN-2 54 0.003 14, 34, 24 R middle frontal gyrus, R inferior frontal gyrus

RMN-3 22 0.007 25, 15, 23 L precuneus

Thalamic network

THN-1 5 0.039 30, 9, 24 L superior lateral occipital cortex

Insular network 1

ISN1-1 1 0.032 13, 34, 24 R inferior frontal gyrus

Anterior cingulate network

ACN-1 11 0.028 29, 37, 24 L superior frontal gyrus, L middle frontal gyrus

ACN-2 4 0.044 20, 37, 25 R anterior cingulate cortex

ACN-3 1 0.027 34, 18, 15 L inferior temporal gyrus

Temporal pole network

TPN-1 190 0.005 24, 40, 19 R anterior cingulate cortex, L anterior cingulate cortex,
R paracingulate, L paracingulate

TPN-2 100 0.003 31, 44, 16 L frontal pole, L inferior frontal gyrus, L frontal orbital cortex

TPN-3 3 0.041 21, 22, 30 R precuneus, R precentral gyrus

DLB>HC

Left motor network

LMN-1 4 0.012 16, 26, 31 R precentral gyrus, white matter

Ventral attention network

VAN-1 1 0.036 27, 16, 22 L precuneus

Insular network 2

(Continues)
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compared to controls, mainly in motor, temporal, and frontal networks.

This is the first study to investigate how connectivity between different

RSNs is affected by DLB. However, the results from this analysis sug-

gest that long-range functional connections are largely intact in DLB as

there was only one connection between a frontal and a temporal net-

work that showed altered between-network connectivity compared to

controls. When directly comparing both dementia groups we only

found very small differences indicating that AD and DLB might not be

that different with respect to their resting-state functional connectivity.

Furthermore, we did not find any consistent relation between altered

connectivity in DLB and any clinical variables suggesting that this anal-

ysis method might not be the most suitable to identify neural correlates

of clinical DLB symptoms.

4.1 | Decreased connectivity in motor networks in

dementia with Lewy bodies

Connectivity was decreased in DLB compared to controls in several

motor networks, including both sensorimotor, the basal ganglia, and

the right motor networks. Overall, the observed changes in these net-

works correspond well to the clinical manifestation of DLB which is—

among other core symptoms—characterized by Parkinsonian motor

features (McKeith et al., 2005). Moreover, the results show substantial

overlap with previous findings in Parkinson’s disease (PD) and empha-

size the significance of alterations in motor networks in DLB even

though primarily this condition is characterized by cognitive decline

and, frequently, significant AD co-pathology (Irwin et al., 2017).

Decreased connectivity in the basal ganglia network has been

found in PD compared to controls and AD and has been suggested as

a biomarker for early PD (Rolinski et al., 2015; Szewczyk-Krolikowski

et al., 2014). While we found similar results in our DLB group, the clus-

ters of decreased connectivity were much smaller than in previous PD

studies. This might be due to the use of dopaminergic medication in

many of our DLB patients which has been shown to restore basal gan-

glia connectivity to near-normal levels (Szewczyk-Krolikowski et al.,

2014). The present results stand in contrast to previous studies in DLB

that found increased basal ganglia connectivity compared to controls

(Kenny et al., 2013; Lowther et al., 2014). The discrepancy between

previous results in DLB and the present results and more recent PD

studies is likely to be due to the use of different preprocessing meth-

ods, especially with respect to the removal of motion artefacts. It has

recently been argued that motion correction approaches such as those

used in previous DLB studies might have led to spurious findings and

that prior results might have to be re-evaluated using more appropriate

motion correction techniques such as those applied in this study (Ciric

et al., 2017; Parkes, Fulcher, Yucel, & Fornito, 2017; Power, Schlaggar,

& Petersen, 2015). This is especially crucial when studying elderly

patients and comparing groups with different degrees of motor symp-

toms (van Dijk, Sabuncu, & Buckner, 2012).

In addition to decreased basal ganglia connectivity we found reduced

connectivity within cortical motor networks. The right motor network

showed large clusters of decreased connectivity in DLB within primary

motor areas. Sensorimotor networks have been commonly shown to be

altered in Lewy body diseases (Tessitore, Giordano, de Micco, Russo, &

Tedeschi, 2014; Wu et al., 2011; Yu, Liu, Wang, Chen, & Liu, 2013) and

lower connectivity within the motor cortex has been reported previously

in DLB (Peraza et al., 2014, 2016; Taylor, Colloby, McKeith, & O’Brien,

2013). In addition to reduced connectivity within the motor network

itself we found that cognitive control areas, such as frontal and default

mode areas, were less strongly involved in this network in DLB, which

might be related to impairments of voluntary movement control in this

disease group. However, we did not find any correlations between the

reduction in motor network connectivity and the severity of Parkinson-

ism. It might be that motor connectivity changes are related to the pres-

ence of Parkinsonian symptoms, but not their severity.

4.2 | DLB-related changes in nonmotor networks

With respect to nonmotor networks, we found decreased connectivity

in DLB compared to controls mainly in temporal and frontal networks.

The temporal network showed a general disconnection from different

occipital regions which agrees with previous findings in DLB (Peraza

et al., 2014; Taylor et al., 2012). The connections between occipital and

temporal cortices represent the ventral visual streamwhich is involved in

TABLE 2 (Continued)

N voxels p value MNI (X, Y, Z) Location

ISN2-1 6 0.021 29, 42, 24 L frontal pole

AD>DLB

No significant clusters

DLB>AD

Default mode network 1

DMN1-1 1 0.044 13, 12, 24 R superior lateral occipital cortex

DMN1–2 1 0.025 13, 12, 27 R superior lateral occipital cortex

All clusters are reported with p< .05, threshold free cluster enhancement (TFCE) corrected. The table shows the number of significant voxels per clus-
ter, the minimal p value inside the cluster, the MNI coordinates of the voxel with minimal p value, and the location of the cluster (estimated from the
Harvard–Oxford Cortical and Subcortical Structural Atlases and the Cerebellar Atlas in FSL).
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object recognition (Ungerleider and Haxby, 1994). A breakdown of this

important visual pathwaymight thus be related to visuo-perceptual diffi-

culties in DLB (Mosimann et al., 2004). However, similarly to previous

studies we did not find any significant correlations with frequency or

severity of visual hallucinations (Peraza et al., 2014). As was previously

posited, it may be that the observed connectivity changes foster a corti-

cal state that is permissive for the occurrence of visual hallucinations, but

that is not directly related to their severity of frequency of occurrence.

The temporal pole network demonstrated lower synchronizations

in DLB compared to controls, mainly in frontal areas such as anterior

cingulate cortex (ACC) and frontal pole. Similarly, the frontal anterior

cingulate network showed a disconnection from inferior temporal

regions. The observed reduced involvement of the ACC within the

temporal pole network in DLB seemed to be compensated by an

increase in between-network connectivity between the temporal pole

and the anterior cingulate networks. The ACC is an important region

involved in cognitive control and emotional processing (Bush, Luu, &

Posner, 2000) and abnormalities in this region have been associated

with different aspects of Lewy body diseases. While reduced metabo-

lism in the ACC has been found in both DLB and PD with dementia

(Yong, Yoon, An, & Lee, 2007), synaptic and pathological changes in

this region have been implicated in visual hallucinations in DLB

FIGURE 3 Correlation matrices from FSLNets analysis for (a) HC, (b) AD, and (c) DLB. Upper triangular matrices show full correlations
while partial correlations are plotted in the lower triangular matrices. (d) Boxplots show z scores for edges with significant group differences
for full correlations (black squares in panel a–c, p< .05, FWE corrected for multiple comparisons). OPN, occipital pole network; LFPN, left
fronto-parietal network; TPN, temporal pole network; ACN, anterior cingulate network [Color figure can be viewed at wileyonlinelibrary.com]
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(Teaktong et al., 2005) and cognitive deficits in PD (K€ovari et al., 2003).

The present results provide further evidence for the importance of

ACC abnormalities in Lewy body diseases and suggest that the previ-

ously described changes at the synaptic level might lead to more wide-

range disruptions of the functional connectivity profile of this region.

However, whilst we replicated the common finding of decreased

DMN connectivity in the posterior cingulate cortex in AD (Supporting

Information, Figure S1 and Table S3; Binnewijzend et al., 2012; Grei-

cius et al., 2004), we did not find any changes in DMN connectivity in

DLB compared to controls. Additionally, DMN connectivity was

increased in DLB compared to AD albeit only in very small clusters.

These results indicate that the finding of DMN hypoactivity is rather

specific to AD and might not be present in DLB patients (Franciotti

et al., 2013; Peraza et al., 2014).

The results of this study suggest that long-range connections are

largely intact in DLB which is somewhat contradictory to results from a

previous graph-based analysis that found a relative loss of medium and

long range connections in DLB (Peraza, Taylor, & Kaiser, 2015). However,

while this study focuses on spatially distinct networks, the previous graph-

theoretic approach is a more global analysis. It might thus be that connec-

tions between independent resting-state networks are rather intact while

this might not be true for long distance connections in general.

4.3 | Comparison of the dementia groups

In contrast to previous studies we did not find large differences

between the two dementia groups with respect to their within-

network functional connectivity (Galvin et al., 2011; Lowther et al.,

2014). An important difference to previous studies was the use of a

more stringent motion correction technique and the inclusion of a

covariate to control for voxel-wise grey matter differences. Previous

studies on AD-DLB differences did not include a grey matter covariate

even though grey matter loss is generally more severe in AD than in

DLB (Watson, O’Brien, Barber, & Blamire, 2012) and might thus lead to

spurious results in a group comparison (Damoiseaux et al., 2012). Fur-

thermore, it has been shown that subtle differences in motion between

groups can be mistaken for neuronal effects (van Dijk et al., 2012).

In our investigation, however, we found a between-network con-

nectivity difference between AD and DLB for the left frontoparietal

and occipital pole networks, which showed opposed synchronizations;

positive in AD and negative in DLB. In the HC group, the correlation

between these two networks is on average negative, which suggests

that the positive correlation seen in the AD group is likely to represent

an abnormal shift of connectivity from negative to positive correlation.

Functional alterations in occipital and attentional systems have been

previously reported in AD (Li et al., 2012; Sorg et al., 2007) although

not between these two systems. Further research will be needed to

corroborate their altered functional inter-relations.

4.4 | Limitations

One limitation of this study is that some of the DLB patients were on

dopaminergic medication and scanned in the ON state which might

have influenced their functional connectivity measures. However, it

has been shown that dopaminergic medication tends to normalize con-

nectivity towards healthy levels (Szewczyk-Krolikowski et al., 2014;

Tahmasian et al., 2015), which implies that the group differences that

we found were not due to medication. Another possible limitation is

the fact that all diagnoses were based on clinical assessment rather

than pathological confirmation. However, it has been shown that the

standardized clinical criteria used in this study show high specificity

when validated against autopsy findings (McKeith et al., 2000).

4.5 | Conclusion

Functional differences between AD and DLB were subtle and suggest

that these two dementias may have more similarities than differences

in patients with mild disease. Additionally, our study revealed a general

decrease in functional connectivity in DLB compared to healthy aging

in motor, frontal, and temporal networks with a relative sparing of the

DMN. The observed functional connectivity alterations might be

related to the presence of motor and cognitive impairment in DLB as

networks commonly associated with these functions showed lower

connectivity. However, we were not able to find significant correlations

between decreased functional connectivity in these RSNs and clinical

scores associated with motor and cognitive function in DLB. Further

research will be needed to infer the neural mechanisms associated with

the symptomatic complexity of DLB and its differences with AD.
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