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Boolean network models are one of the simplest models to study complex dynamic behavior in biological
systems. They can be applied to unravel the mechanisms regulating the properties of the system or to
identify promising intervention targets. Since its introduction by Stuart Kauffman in 1969 for describing
gene regulatory networks, various biologically based networks and tools for their analysis were devel-
oped. Here, we summarize and explain the concepts for Boolean network modeling. We also present
application examples and guidelines to work with and analyze Boolean network models.
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1. Introduction

The development of diseases, aging, or even the maintenance of
homeostasis are complex processes influenced by numerous fac-
tors [1]. Molecular studies of isolated interactions alone are no
more sufficient to understand biology at a system level (Fig. 1A).
Exemplarily, it is hard to judge if the crosstalk of multiple enhan-
cers and silencers present at a promoter can transactivate tran-
scription [2] or to evaluate feedback regulations in drug
resistance as shown for AKT inhibitors [3,4]. Therefore, the
dynamic properties of biological networks have moved into focus
[5] which can be assessed through mathematical models. Depend-
ing on the available information, dynamic models can be of a qual-
itative or quantitative nature [6]. Since quantitative models such as
ordinary differential equation models require kinetic parameters,
they are only feasible for small and well-investigated systems [7].

Boolean network (BN) models are one of the simplest dynamic
models [8,9]. In BN models, one implicitly assumes that all biolog-
ical components are described by binary values and their interac-
tions by Boolean regulatory functions [8,9] (Fig. 1B). Simulation
of Boolean networks gives insights into the dynamics of the respec-
tive system (Fig. 1C). Although simple in their composition, BN
models have been applied to a wide range of processes from devel-
opment [10] to aging [11]. Furthermore, they were used to uncover
regulatory interactions leading to protein overexpression in cancer
[12] or to screen for promising intervention strategies [13].

In this review, we summarize and explain the concepts of BN
models and illustrate how this kind of model can be applied to
address new biologically motivated hypotheses.
2. Boolean network models

BNs contain a set of variables X ¼ x1; x2; :::; xnf g; xi 2 B. Each of
these variables represents one component of the modeled system.
The value of a variable describes the actual state of the designated
component. Each variable has one of two possible values – false or
true [14]. These two states are a rough approximation, however
sufficient to describe the qualitative behavior of an investigated
system. Even if not named Boolean, biologists routinely classify
in such a binary manner. For instance, a gene is either expressed
or not, and a pathway is categorized as being activated or
repressed [15]. Furthermore, concentration levels in many regula-
Fig. 1. From biology to Boolean network models. Panel (A) displays one part of the FOXO
and their interactions. However, dynamic properties of the system cannot be derived fro
depicted as logical circuit (blue box). Boolean functions are used to model the regulatory
set of logic gates (AND/OR/NOT). The transition of each component from a certain time t
are depicted as a directed graph. Each node shows one possible assignment of each compo
to its successor. The dynamics of the given example show three disjunct subparts of the g
of the references to colour in this figure legend, the reader is referred to the web versio
tory processes behave according to a Hill-function [16,17]. For
many values of the Hill-Coefficient, this curve is sigmoidal and
can be approximated by a dichotomous step-function [16,18].

In recent years, a subfamily of Boolean networks emerged from
control theory. In so-called Boolean control networks (BCN), the set
of variables Xis redefined and subdivided into three categories: (1)
a set of input nodes Y . A node in this set is not regulated by other
components of the system. (2) a set of output nodes U. This set
comprises components which are not regulating other components
of the system, and (3) the inner components X. All components in
this set have a regulatory effect on other components and are reg-
ulated by other components as well [19].

BNs can be considered as a directed graph. Each regulatory
component is represented by one node of the graph. The directed
edges between these components represent their regulatory inter-
actions. These regulatory dependencies between the different com-
ponents of the modeled system are expressed by Boolean
functions. The value of each variable is determined by these Boo-
lean functions. The state of a BN at one point in time t is defined
by a vector x! tð Þ ¼ ðx1 tð Þ; � � � ; xnðtÞÞ. Considering all possible combi-
nations of assignments to the n component this leads to a total
number of 2n possible states in the network.

In BN models, time is considered as discrete, meaning that, at
each discrete t time, a new state of the network is updated by
applying the defined Boolean functions [20].

The transition of one variable from one point in time to the next
xi tð Þ#xiðt þ 1Þ is done by a corresponding Boolean function

xi t þ 1ð Þ ¼ f i x! tð Þ
� �

; f i : Bn ! B [21].
2.1. Updating schemes of Boolean network models

There are three major paradigms of how BNs transit from one
state to its successor (Fig. 2). When using synchronous updates,
each Boolean function is applied to compute a state transition from
t to t þ 1. The underlying assumption is that all components of the
system take an equivalent amount of time to change their value
[22]. Consequently, the dynamics of the BN are deterministic,
and each state of the BN has one successor.

The asynchronous update paradigm assumes that only one ran-
dom component is updated at each single time step [22]. This
update mechanism is stochastic and leads to n possible successor
cascade. The sketch-plot gives a static view on the different biological components
m this representation. (B) Shows the Boolean network model of the cascade in (A)
interactions between the different components. These functions are translated to a
to t + 1 is evaluated in this circuit. (C) The complete dynamics of the given network
nent (here denoted as binary string). Arrows represent the transition from one state
raph which correspond to three different phenotypical patterns. (For interpretation
n of this article.)
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states of each state, depending on the selected component. Asyn-
chronous updating was thought to be more representative for bio-
logical systems. However, due to one single update per transition,
matching the timing of the model to the real biological system
leads to unrealistic durations of biological processes. For instance,
if the process requires minutes in a real system, a set of down-
stream regulated genes may not be updated for days according
to the asynchronous simulation. Furthermore, it should be kept
in mind that biological processes depend on each other, e.g. a pro-
tein can never be active without being previously transcribed.
Besides discussions on realistic representation of biological tim-
ings, it should be underlined that studies considering different
variants of asynchronous updating revealed that synchronous
updating may be more relevant for evaluating robustness of the
system. In this perspective, synchronous as well as asynchronous
updating lead to the same stable biological meaningful dynamic
behavior [23–26]. Moreover, when dealing with large BN, the run
time for asynchronous simulation can become a strong limitation
[22]. On these grounds, there are several sub-classes of BNs, aiming
to bridge the gap between these different update strategies. The
temporal BN extension allows modeling on different interactions
and time scales while maintaining the deterministic nature of syn-
chronous BNs [27]. Furthermore, a variety of different update
strategies for asynchronous BNs [28] aim to limit the burst of dif-
ferent dynamics emerging from the asynchronous paradigm e.g.
random order asynchronous or deterministic asynchronous updat-
ing [22,23].

Probabilistic BNs allow for alternative Boolean functions for
each component (each with a certain probability). The update
mechanism is synchronous, and the Boolean function of each com-
ponent is drawn according to its probability before each state tran-
Fig. 2. Paradigms of state transition in Boolean network models. There are three
major paradigms of state transition from state x(t) to its successor state x(t + 1). In
synchronous models all Boolean functions are applied at the same time while in
asynchronous models only one randomly chosen function (fat arrow) is updated per
step. Probabilistic models can have multiple functions with a predefined probabil-
ity. One function per variable xi is randomly chosen in each time step and then
synchronous updating is performed.
sition. This class of BNs was introduced to incorporate the
uncertainty in gene expression data [29,30].
3. Properties of Boolean network models

Biological systems have some dominant patterns regarding
their topology and dynamic behavior. These properties can also
be observed in BN models of these systems.

3.1. Static characteristics

The regulatory dependencies inside biological systems form a
static interaction graph with typical properties. The topology of
a Boolean network emerges from the interaction of its compo-
nents. There are various types of different topologies. The first
Boolean networks which were analyzed had a random topology,
as the networks interactions were created randomly [8]. Further-
more, often biological networks are organized in modules [31].
Modules are sets of genes which are strongly interconnected,
and their function is separable from genes of other modules
[31]. A modular network topology is well organized and promotes
stability and evolvability at the same time [32]. Studies revealed
that a variety of biological networks also exhibit a scale-free
topology [33]. Gene regulatory networks, metabolic networks,
and protein interaction networks show this kind of topology
[34–37]. Within scale-free topology, the degree of regulatory con-
nections follows the power law distribution (PðxÞ / x�a). Funda-
mental properties of scale-free networks are that most of the
networks’ components are lowly connected, while some of them,
called ‘‘hubs”, are highly connected [33,38]. This topology has sig-
nificant effects on the robustness of a modeled system [38] mak-
ing it resistant against accidental failures [39]. Regulatory
components in biology usually act either as activator or inhibitor
inside one particular context. Increasing concentration of an acti-
vator will lead to an increased but never decreased concentration
of the target and vice-versa for repressors [40,41]. Consequently,
regulatory functions in biological networks are monotone or at
least close to monotonicity [42]. Monotonicity of regulatory
mechanisms can also be investigated for Boolean functions [40].
Additionally, there are other related classes of Boolean regulatory
functions, such as canalyzing functions [40]. Canalyzing functions
have at least one input such that for at least one input value, the
output value is fixed [43]. Nested canalyzing functions are an
extension of this concept where multiple variables dominate a
function [44], e.g. A OR (B AND C). In this function, A = 1 domi-
nates the assignment of the other variables. If A = 0, the second
part of the function is dominated by B = 0 or C = 0, exhibiting
a nested canalyzing behavior. It could be shown that biological
regulation behaves similarly to canalyzing functions [45–47],
leading to more robust networks compared to random regulatory
functions [43,48] and also to networks which are more robust to
perturbations [49].

Analysis and investigation of these properties can give insights
into the complex function of regulatory systems in biology. Study-
ing the topology and constitution of modeled functions may reveal
vulnerabilities in these robust systems or their degree of redun-
dancy [50]. Findings like these, allow hypothesizing about the ori-
gins of certain diseases or druggable candidates.

3.2. Dynamic characteristics

3.2.1. State graph
Following the idea of moving from a static network picture to a

dynamic one, the first point to assume is the implementation of
time. As for the static interactions, the dynamics can be



Fig. 3. State graphs. The dynamics of Boolean network models can be depicted in state graphs showing the transition (arrows) between states (circles with activity of each
component) and the progression towards attractors (bold cycled states). Here, state graphs of three interacting compounds are shown, the three-digit binary number shows
the state of the network. Attractors are single states or a reoccurring sequence of states that describe the long-term behavior of the model. States that have no successor state
are called Garden-of-Eden states. By synchronous updating (A) each state has a unique successor state. This is no more the case by asynchronous (B) or probabilistic (C)
updating of Boolean functions. Here, updating functions (f10 , f20 , f30) or probabilities are shown above the state transition [29].
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represented in directed state graphs (Fig. 3). Here, each node cor-
responds to one state of the network, while edges represent tran-
sitions from one state to its successor. The update strategy of the
underlying BNs affects the constitution of the resulting state graph
strongly (Fig. 3). In synchronous BNs, each state has only one out-
going interconnection and consequently only one possible succes-
sor state (Fig. 3A).

When using the asynchronous update strategy, the state graph
becomes more complex. Each node of the graph has up to n differ-
ent outgoing edges from each state, depending on the node which
is selected for an update [16,51,52] (Fig. 3B).

Within the probabilistic scheme, a node in the state graph
potentially has multiple outgoing edges, which depends on the dif-
ferent combinations of transition functions selected. However, a
probabilistic BN behaves like a synchronous BN until the network
function is changed due to a varied selection of transition func-
tions. This leads to a switch from the state graph of one syn-
chronous BN to another [53] (Fig. 3C).

3.2.2. Long-term behavior
A trajectory through the state graph always describes the net-

works’ behavior over time [16,18,21]. State graphs contain peri-
odic sequences of states, called attractors. Once reached, they
cannot be left unless an external perturbation occurs [8,20].
Attractors represent the long-term behavior of BNs and have been
linked to biological phenotypes, making them a crucial point of
interest in the analysis of BNs [18,20,54]. They can be subdivided
into different classes. Steady-state attractors comprise only one
state. These attractors occur in both synchronous and asyn-
chronous BNs [22]. Additionally, there are attractors with more
than one state. Synchronous networks may also exhibit simple
cycles. Simple cycles are attractors which are formed by a
sequence of states of a certain length which are periodically
repeated [8,16].

The asynchronous update strategy reveals the so-called com-
plex attractors. Complex attractors are formed by overlapping
loops which origin from the possibility of reaching more than
one successor state in the asynchronous update scheme
[16,21,51,52]. For the one special case with an asynchronous net-
work of size n = 1, the system cycles between 0 and 1, complex
attractors and simple cycle are the same.

Probabilistic BNs allow the same attractor constructs as syn-
chronous BNs. However, depending on the selected set of transi-
tion functions the attractors might be instable. For this reason,
the dynamics of probabilistic BNs do not necessarily contain
attractors [29].
3.2.3. Basin of attraction
The basin of attraction comprises all states which lead to a cor-

responding attractor. Thus, the larger the basin of attraction is the
more the attractor is likely to be biologically meaningful [24]. Fur-
thermore, from a wet-lab point of view, the analysis of basins of
attraction allows hypothesizing about the underlying decision pro-
cess in the modeled regulatory system [55]. In synchronous net-
works, each state will eventually end up in only one attractor
[8,16,21]. Consequently, the basins of attraction are disjunct and
cannot overlap.

Due to the non-deterministic nature of asynchronous BNs indi-
vidual states may reach multiple attractors depending on the
selected successor states, and basins of attraction are not that
well-defined. Klarner et al. [55] distinguish between strong and
weak basins of attraction in asynchronous BNs. States which
belong to a strong basin of attraction lead to only one possible
attractor. In contrast, states in the weak basin of attractor may lead
to a certain attractor but also another one.

3.2.4. Spreading of information
Regulatory systems can be seen as information processing units.

Each regulatory system is capable of processing a certain amount
of information. Consequently, information-theoretic measures are
frequent tools to study the regulatory mechanisms inside BNs.

The complexity of the information, that a system can process
highly depends on the partitioning of the state graph [56]. Entropy
[56] was introduced as a measure of uncertainty about the
dynamic behavior of BNs. The higher the entropy, the more infor-
mation is required to determine the future behavior of the network
[56]. Mutual information is used in BNs [57] to measure the prop-
agation of information through the regulatory network [58]. In the
REVEAL algorithm, this measure is used to reconstruct BNs from
time-series of biological data [59]. In another study, it was shown
that canalyzing functions maximize the mutual information in
Boolean networks [60].

4. Modeling Boolean networks

4.1. Literature based modeling

One approach to model Boolean networks is based on user
knowledge and literature research. This bottom-up approach usu-
ally starts with the selection of components which are critical to
describing the system of interest. Boolean network models allow
for integrating different biological components and even non-
physical components such as complete processes or other events.



Table 1
BN analysis tools. Summary of available tools and their scopes.

Construction Dynamic
properties

Static
properties

Interventions Tool Main features Construction Dynamic
properties

Static
properties

Interventions Tool Main features

X ChemChains
[90]

– implemented in C++
– command-line driven

simulation
– synchronous updating, asyn-

chronous updating for user-
selected nodes

X X Polynome [99] – web service
– reverse-engineering of Boo-

lean network models from
experimental time series

– attractor search
– parameter estimation for

continuous models
X SimBoolNet

[92]
– Java plugin for Cytoscape
– graphical interface
– visualization of dynamic

changes

X X X SQUAD &
BoolSim [100]

– graphical interface
– conversion of logical into

continuous models
– attractor identification

(stable states and cyclic
attractors)

– continuous simulation
– perturbation experiments

X MaBoSS[95] – C++ implementation
– simulation of continuous time

Markov processes based on BN
– definition of transition rates

and time trajectories
– evolution of probabilities over

time is estimated

X X X ViSiBooL [27,91] – graphical interface
– construction and analysis of

synchronous and asyn-
chronous BN-visualization
of attractors

– extension: intervention
screening

X Pint [96] – command line or Phython tool
– very large-scale networks

including BN and multi-valued
networks ranging

– lists fixed points, successive
reachability properties

– cut sets and mutations for
reachability

– model reduction preserving
transient dynamics

X X X CellNetAnalyzer
[94]

– Matlab tool
– graphical interface
– BN, multivalued logic, ODE

models
– stoichiometric and con-

straint-based formalization
and analysis, interaction
graphs, steady state
analysis

– computation of minimal
intervention sets

X X The Cell
Collective
[97]

– web based platform imple-
mented in Java

– graphical interface
– probability of being active can

be assigned to external
regulators

– platform to distribute pub-
lished BN

X X X GINsim [93] – JAVA application
– graphical interface
– multi-valued logical mod-

els-state transition graphs
for synchronous and asyn-
chronous updating

– determination of stable
states

X X CellNOpt
[98]

– for R, Matlab, Python and
Cytoscape

– graphical interface for Cytos-
cape (plugin CytoCopter)

– creation of logic-based models
(BN, Fuzzy or ODE) based on
prior knowledge and training
against experimental data

– extension CNORdt allows to
train a BN against time-courses
of data

X X X X BoolNet [85] – R-package
– construction and analysis of

synchronous, asyn-
chronous, probabilistic and
temporal BN

– reverse-engineering form
time series

– simulation and visualiza-
tion of attractors, transition
graphs and basins of
attractions

(continued on next page)
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The definition of interactions between these components relies on
literature research. For modeling interactions between several ele-
ments of the system, it is required to specify Boolean functions that
represent the given interaction. Typically, an expert extracts natu-
ral language statements that explain specific interactions from lit-
erature which are then manually transferred to Boolean functions
[61]. Logical connectives among interaction partners can be used to
estimate these functions. Different tools have been developed to
support the final network construction (Table 1).

4.2. Data-driven modeling

Alternatively, data-driven top-down approaches can be applied.
Numerous approaches to reconstruct Boolean networks have been
published. In most cases binarization of high-throughput data e.g.
gene expression is required in order to infer the Boolean functions
[62,63]. Reconstruction algorithms are then used to predict regula-
tory interactions [40,41] or complete Boolean functions [64].

4.3. Random Boolean networks

In contrast to models which represent specific regulatory sys-
tems of interest, random Boolean networks are one helpful tool,
which allows investigating a variety of different dynamic proper-
ties of BNs and regulatory systems. Random BNs are typically
based on three different parameters n; k; p [65,66]. The parameter
n defines the number of components in the system. k represents
the number of inputs of each regulatory function, and p indicates
the probability of a regulatory function to return 1 [16,65]. Net-
work nodes, regulatory interactions, and the underlying Boolean
functions are then generated randomly according to these param-
eters. Classic random Boolean networks are updated syn-
chronously [65]. Random Boolean networks are useful tools to
investigate general concepts of regulatory mechanisms. Then, the
latter can be applied to specific biological contexts. Kauffman
and others applied this concept to the yeast cell cycle model
[48,67–71]. Further extensions of the random BNs paradigm are
given by Darabos and Tommasini [72] and Graudenzi et al. [73].
They used a semi-synchronous update scheme and studied the
influence of ‘‘memory”, i.e. decay time of gene products, robustness
and impact of perturbations in random BN systems.

4.4. Ensemble approach

Another approach to model Boolean networks is the ensemble
approach. Contrasting the modeling and investigation of a particu-
lar set of regulatory components and their dynamics, ensembles
are used to study generic properties of biological systems. In the
ensemble approach, sets of BNs which match to properties of real
systems are used to gain new insights into the dynamics of real
systems [74]. Originally, an ensemble of networks is sampled from
all possible random BNs with a certain assignment for n; k. All
these BNs in the ensemble have certain properties of interest
which match the real system [75]. This ensemble can then help
to understand the organizing principles which explain the generic
behaviors of its members [76]. This approach has been used to ana-
lyze the stability of the yeast transcriptional network [48] and the
ordered behavior of hierarchical canalyzing functions [45].

4.5. From theory to model

Up to this point, different BN modeling approaches have been
presented. However, the question that still arises is how to actually
translate all this theoretical information into a model. The first task
is to clarify the biological question behind the modeling approach.
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If the investigator is interested in general properties, such as topo-
logical features that confer certain behaviors, then random BNs
and/or the ensemble approach are suitable modeling strategies.

If one is interested in investigating a certain biological pathway
or set of pathways one would have to check howmuch information
is available on the biological phenomena of interest. Starting with
literature-based modeling is definitely a first approach, as existing
knowledge needs to be included in the model. If additionally mea-
surement data in the form of time-series is available one could
augment the initial models with the data driven reconstruction.
Note that this strategy does not necessarily reveal a single model
variant [77]. Multiple regulatory interactions are possible to reca-
pitulate the given dynamics and not all interactions may represent
biological reality. However, also the sole construction of literature-
based models might have some critical points to consider. The first
challenge is the construction of the model itself and, in particular,
of the Boolean functions. Assuming the impact of canalyzing func-
tions in biological networks [45–47], Boolean functions can be
modeled using a certain pattern: multiple activators are supposed
to have equal contribution and are thus connected by the OR-
operator. Conversely, inhibitors are connected using the AND-
operator. Therefore, the node of interest will be active only when
at least one of the activators is present and none of the inhibitors
is active [78]. From this simple basic construct, Boolean functions
can become more and more complex depending on the specific
cases.

Moreover, not always there is only one unique function to
describe a specific interaction. In this case the investigator can
try different options and choose the best representing the final
behavior of the real biological system [78]. Also, in the case that
independent possible functions are identified, a probabilistic
updating scheme is suggested [29,30]. Instead, if only one final
Boolean function is present for each node the most suitable update
schemes are synchronous or asynchronous ones. Again, the deci-
sion between one or the other may be guided by the biological
question itself. For example, differentiation is a continuous
decision-making process towards one lineage or the other starting
from stem cells, to progenitors until differentiated cells. Therefore,
an approach that allows multiple trajectories within the state
space could give a good representation of the biological scenario.
Based on this idea, Krumsiek et al. modeled hierarchical differenti-
ation of myeloid progenitors by means of asynchronous Boolean
network models [79].

To sum up, it is possible to apply different modeling approaches
and knowledge in BN models to tackle different biological ques-
tions. Once a model is constructed with a desired modeling
approach, simulation and analysis of the dynamic behavior of the
system can be performed.
5. Simulation and analysis of Boolean network models

The simulation of mathematical models allows investigating
the long-term behavior of a system in a cost-efficient manner
[7,80,81]. These models can be used to recapitulate normal behav-
ior or to generate hypotheses about the impact of interventions.
Promising model simulations can later be studied in laboratory
experiments [13,80].

Based on the concept of BN models, investigating long-term
behavior is associated to search for attractors and analysis of the
transition or path towards an attractor. Various analysis methods
are available for this purpose. One can either search for all attrac-
tors of the network [10,12], or only for special attractors, which
result from a known initial state [11,13]. However, the identifica-
tion of all attractors by exhaustively calculating all 2n successor
states of a network is computationally demanding and could be
shown to be NP-hard [82]. Already determining whether a given
BN has one attractor is NP-hard, while finding on singleton attrac-
tor takes O 1:587n� �

time even for AND/OR BNs [83]. As a conse-
quence, this procedure is only feasible for small networks [16].
Model-checking algorithms can help to determine the attractors
of larger network models. The attractor search can be converted
into a satisfiability problem [84] for which heuristics exist, but
without revealing state transitions [84,85]. Additionally, simulat-
ing BN models can unravel mechanistic regulations by studying
transition from an initial state towards the attractor of interest
[13].

A recent approach aims at converting Boolean control networks
(BCN) into discrete time bi-linear systems. This allows to investi-
gate the dynamics of Boolean control networks using standard
matrix analysis [86]. The semi-tensor product of matrices [87]
was introduced as new matrix product and enables to express a
BCN in algebraic form [88]. This approach can shed light on various
challenges. Stability problems, controllability, and fault detection
could be investigated using the semi-tensor-product. However, as
for other BN approaches, the exponential time complexity limits
semi-tensor-product approaches to focus on networks with a rela-
tively small number of components [89].

Multiple toolboxes have been developed to simulate and visual-
ize the dynamics of BN models. While tools like BoolNet [85], Boo-
leanNet [15] or ChemChains [90] require some programming skills,
there are also tools such as ViSiBooL [27,91], SimBoolNet [92], GIN-
sim [93] or CellNetAnalyzer [94] that use a graphical user interface
(for a more detailed description see Table 1).
5.1. Identification of biologically meaningful attractors

A characteristic of BN models is that the number of attractors is
relatively small in comparison to their state space [25]. Due to the
finite state space and their deterministic nature, BN models with
synchronous updating scheme have at least one attractor [102].
Indeed, many BNs have more attractors, and not all may be biolog-
ically meaningful [81]. For instance, attractors with small basins of
attractions are considered to be less relevant [25,102]. Based on
this assumption, the basin of attraction can be an indicator of bio-
logical relevance [11,102].

Moreover, the stability of attractors is one vital property to
interpret their biological plausibility and relevance. Stability anal-
ysis of attractors in synchronous Boolean networks showed that
many of them are artefacts from the synchronous update scheme
[24]. The remaining attractors, in contrast, are stable towards
delays and other noise [103]. Attractors which are stable towards
internal noise such that state fluctuations caused by that noise
are not sufficient to make the system change are called ergodic
state sets [103–105]. Since biological systems can be viewed as
being persistently perturbed, ergodic attractors were proposed by
Kauffman as the subset of attractors connected to cellular pheno-
types [103]. In particular, ergodic sets have been applied to study
the role of noise during cellular differentiation and cell reprogram-
ming [103,105].
5.2. Robustness analysis

Biological systems are exposed to environmental changes or
genetic mutations that might result in physiological changes [1].
These alterations are comparable to state changes or structural
modifications [102]. Nevertheless, biological systems are relatively
impervious against random variations [1,106]. Reasons for these
robustness properties are feedback regulations and the redundan-
cies of nodes [1,106,107], which lead to the previously described
scale-free topology. Therefore, robustness measurements can be
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taken into account for the identification of biologically meaningful
attractors or networks, as suggested by Kauffman [20,81]. In total,
there are two standard classes of perturbations in BN models. They
can be perturbed on a structural level or a dynamical level (Fig. 4)
[108].

Structural alterations can be changes of inputs or operators in
the regulatory functions. Exemplarily, the removal of canalyzing
functions by perturbation can lead to a loss of robustness [48]. A
prominent structural disruption, applied in different studies of
BNs [11,13,77], is fixing a compound of the system to either false
or true. This kind of perturbation corresponds to in silico knock-
out or overexpression experiments [22]. All these perturbations
may change the structure of the state graph and can lead to an
altered attractor landscape (Fig. 4A). Therefore, a comparison of
attractors between the original and the perturbed network can
be considered as a readout to determine the effect of the applied
perturbation. This kind of simulation gives insights into the regula-
tory mechanisms of the modeled system.

In contrast to structural changes, dynamic alterations do not
affect the underlying BN functionality. One kind of perturbation
is to apply bit-flip mutations that may perturb the system tempo-
rally (Fig. 3B). Usually, some bits in the bit string which define a
particular state of the network are flipped at random. This pertur-
bation corresponds to a switch from one node in the state graph to
another. However, the structure of the state graph and, thus, the
attractor landscape is kept intact. Depending on the robustness
of the network, this kind of perturbation may have only temporal
effects. If the perturbed state is still part of the same basin of
attraction as the original state, there are no long-term effects.
However, path lengths and state transition towards the attractor
may change [77]. Alternatively, the applied bit-flip may also lead
to different long-term outcomes. In this case, the applied tempo-
rary perturbation leads to a switch from one basin of attraction
to another. The resulting effects can be quantified by comparing
the original trajectory and the trajectory after perturbation. A mea-
sure that can be applied for this purpose is the Hamming distance,
as suggested by Gershenson et al. [107]. The smaller the effect of
the applied perturbation, the lower is the Hamming distance
Fig. 4. Perturbation of Boolean network models. Boolean network model can be alter
alterations can change transitions between states (arrows) and can lead to different a
attractors between the original and the perturbed network can be used as readout. Ad
Comparing the sequences of the successor states of the original and the perturbed netwo
between the two sequences.
between the two trajectories. A lower Hamming distance can indi-
cate a more robust network [77].

Already in the first works of Kauffman [20,109] and carried on
by others [110,111] it was stated that random BN models could
be found in different regimes, e.g., ordered/frozen, chaotic, and
critical state. In this landscape, living systems have been placed
at the so-called ‘‘edge of chaos” [20,104,105,109,112,113]. In this
regime, a network is stable enough to keep information but also
flexible enough to explore the state space and spread perturbations
to allow evolvability [65]. The simultaneous property of stability
and evolvability in biological networks was also confirmed by
Aldana et al. by studying the effects of gene duplication on the
attractor landscape [114]. Various approaches using Hamming dis-
tance such as Derrida plots [115–117] and Lyapunov exponent
[118–120] can be used to investigate the spread of damage
through the network. In particular, Derrida proposed a numerical
analysis of Kaufmann’s simulation, inferring the critical regimes
for random networks with different p parameters, introduced in
the previous sections. In general, the more extreme the p parame-
ter is, the more the system resides in a frozen regime [115–
117,119–121]. Vice versa chaotic regimes arise in networks with
lower p parameter (Fig. 5). Moreover, k for critical regimes can
be expressed in function of p 2 � k � p � 1� pð Þð Þ. In Kaufmann’s ran-
dom networks, p is equal to 0.5, which describes so-called unbi-
ased functions. In this case, as shown by Kaufmann’s simulations,
the k of the critical regime can be calculated and is equal to 2
[115–117,119–121]. Derrida’s analysis has then been applied to
study the spread of perturbation characteristic of networks with
different regimes giving the final observation that in frozen
regimes there will be a minimal spread of noise and in chaotic ones
maximal. This information can be represented in Derrida plots,
where Hamming distances at t and t + 1 time points are shown
[115,122].

5.3. Identification of intervention targets

Robustness of a system is a double-edged sword [1]. Cancer
cells, for example, acquire a high degree of robustness against
ed on a structural level (A) by changing operators or edges (thick arrows). These
ttractors (thick cycles in the state graphs). Thus, comparing the number of same
ditionally, state changes by bit flipping can perturb Boolean network models (B).
rk can be used as readout. The Hamming distance counts all alterations of elements



Fig. 5. Regimes of random Boolean networks. The three different regimes of random Boolean networks depending on the two parameters k and p. If 2 � k � p � ð1� pÞ > 1 the
networks belong to the critical regime, if < 1 to the ordered regime. Networks in between are in the critical regime or at the ‘‘edge of chaos”. For p ¼ 0:5 networks with k ¼ 2
are considered to be at the ‘‘edge of chaos”.
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induction of apoptosis [123]. Therefore, the identification of
promising intervention targets that change the dynamics of degen-
erated cells is of special interest. In this direction several modeling
approaches have been proposed to suggest new therapeutic target
candidates [13,124–131]. Moreover, even if single targets are iden-
tified, they may result in ineffective long-term inhibition due to
insurgence of resistances [132–135]. For this reason, selections of
combined therapeutic approaches become of central interest. In
this perspective, dynamic analyses of BN can provide suggestions
for promising candidates, avoiding expensive and long inhibitor
screenings [136]. Exemplarily, Flobak et al. set up a model to pre-
dict drug synergies in gastric cancer cells. Here, they integrated
pathway knowledge from databases and literature known to be
involved in gastric cancer. Each node state in the resulting attrac-
tors was then calibrated against baseline markers in gastric cancer
cells. The established model was afterwards used for perturbation
screening on seven known inhibitors available for targeting cancer
cells, and all possible combinations were screened in silico. Thereby
they identified two new synergistic targets that were further suc-
cessfully tested in cell assays showing the prediction power of in
silico approaches in preclinical studies [136]. Different tools and
algorithms are available to perform these alteration screenings
(Table 1).

6. Conclusion

Traditionally, life science applies a reductionistic approach and
focuses on a single compound and its effect in a specific process or
pathway of interest [137,138]. This approach has successfully iden-
tified many components, their interactions, and the underlying
molecular mechanisms [139]. However, it does not describe the
properties of a complete system which emerges from the interac-
tions of its components. Mathematical models of biological sys-
tems, in contrast, can be applied to close this gap and guide
laboratory experiments. Multiple kinds of models vary in their
complexity. The choice of the right model depends mainly on the
availability of the required information. BN models are attractive
models to study the complex dynamic behavior of processes with
limited knowledge. The underlying regulatory functions to model
a BN can usually be extracted directly from natural language state-
ments in the literature. No further quantitative information, such
as kinetic parameters is required.

Despite this rough approximation, BNs proved to be valid tools
to simulate the qualitative behavior of a modeled system
adequately.

Synchronous BNs have a deterministic nature which is suit-
able for interpretation, but the synchronous update is a rough
approximation of the different temporally regulated mechanisms
in a system. Asynchronous BNs introduce another degree of free-
dom by allowing for modeling on regulatory interactions on dif-
ferent time scales. However, the stochastic nature of this update
paradigm leads to complicated and hard to interpret dynamics
with biologically irrelevant state transitions [140]. Probabilistic
BNs introduced an update strategy which can cope with uncer-
tainty in regulatory mechanisms. This type of model heavily
relies on the estimated probabilities and thus may be prone to
errors if these parameters are not estimated correctly. Addition-
ally, there is a variety of different sub-classes of paradigms
available.

In summary, the type of update strategy depends on a user’s
intentions and the available information.

Besides, random BN models have been proven to be a valuable
tool for investigating general properties of biological networks,
such as topologies that confer robustness.

For each of those paradigms, there are numerous algorithms
and tools available which allow simulating the dynamics of a mod-
eled regulatory system. Each of these approaches aims to give
insights into the mechanics and dynamic structure of a network
of interest. In this review, we summarized different properties of
BN models and their importance for a better understanding of a
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system under investigation. Additionally, we named several tools,
which are available for BN modeling and simulation.
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