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Human influence on sub-regional 
surface air temperature change 
over India
R. Dileepkumar1, Krishna AchutaRao   1 & T. Arulalan   1,2

Human activities have been implicated in the observed increase in Global Mean Surface Temperature. 
Over regional scales where climatic changes determine societal impacts and drive adaptation related 
decisions, detection and attribution (D&A) of climate change can be challenging due to the greater 
contribution of internal variability, greater uncertainty in regionally important forcings, greater errors 
in climate models, and larger observational uncertainty in many regions of the world. We examine the 
causes of annual and seasonal surface air temperature (TAS) changes over sub-regions (based on a 
demarcation of homogeneous temperature zones) of India using two observational datasets together 
with results from a multimodel archive of forced and unforced simulations. Our D&A analysis examines 
sensitivity of the results to a variety of optimal fingerprint methods and temporal-averaging choices. 
We can robustly attribute TAS changes over India between 1956–2005 to anthropogenic forcing mostly 
by greenhouse gases and partially offset by other anthropogenic forcings including aerosols and land 
use land cover change.

Despite the problems of attributing changes at regional scales, numerous studies provide evidence of an anthro-
pogenic influence on surface temperature at continental and subcontinental scales1–7. Temperature changes over 
the Indian subcontinent during the 20th Century have been documented8–10 but have not been subject to formal 
D&A analysis. The Indian subcontinent contains many sub-regions with vastly different climatic conditions and 
each of these have witnessed changes to different extents. It is critical for the mitigation and adaptation policy 
responses of a large developing economy with a population of more than a billion to be informed of the extent 
to which anthropogenic and natural factors have caused the observed climate changes. In this study we attempt 
to detect statistically significant changes in surface air temperature (TAS) over sub-regions of India and when 
detected, quantify contributions of natural (NAT) and anthropogenic (ANT) forcings using formal D&A meth-
ods11. We also examine whether the anthropogenic forcings due to Greenhouse Gases (GHG) can be isolated 
from Other Anthropogenic (OA) factors. We use climate model simulations that include individual and combi-
nations of forcings as prescribed in the standard experimental protocols of the Coupled Model Intercomparison 
Project Phase-5 (CMIP5)12. We also use two publicly available long-term datasets of observed temperature over 
India; i) the CRU-3.22 gridded temperature dataset (0.5° × 0.5° resolution) available from 1901 to 201313, and ii) a 
monthly mean temperature time-series from 1901 to 2007 for seven “homogeneous temperature zones” obtained 
from the Indian Institute of Tropical Meteorology (IITM)14. The IITM dataset includes observations from many 
more stations than the CRU dataset over the Indian region. The Indian region (ALLIN) is further divided into 
seven homogenous temperature zones West Coast (WCIND), East Coast (ECIND), Interior Peninsula(IPIND), 
North East (NEIND), North Central(NCIND), North West (NWIND), and Western Himalaya (WHIND) based 
on geographical, topographical and climatological features. The CRU data is regridded to a 1° × 1° grid and 
masked over each homogeneous temperature zone (see Fig. 1i) before being spatially averaged to produce a 
monthly time-series analogous to the IITM data. The monthly mean TAS data from the piControl’, ‘historical’, 
‘historicalNat’, ‘historicalAnt’, ‘historicalGHG’, and ‘historicalAA’ experiments were obtained from 7 models in 
the CMIP5 database and treated in the same way as the CRU data (see Table S1 and details of data processing in 
Supplementary Information). Figure 1a–h shows the annual mean anomaly time series for each of the 8 regions 
from the two observed datasets as well as the historical and historicalNat simulations (5–95% confidence inter-
vals shown in pink and light-blue shading respectively). The historical and historicalNat simulations are similar 
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for most of the record but diverge from each other after about 1990. Clearly seen in both observations and in the 
model simulations are the sharp decreases in temperature resulting from volcanic eruptions of the 20th Century.

Results
Comparison of observed and model datasets.  We first examine the suitability of the available models 
to carry out D&A by comparing the decadal-frequency variability simulated by individual model historical exper-
iment realisations with observations. The individual monthly anomaly time series for 1906–2005 were filtered 
with a 5–20 year band-pass filter (see details in Supplementary material) and the standard deviation of filtered 
anomaly for ALLIN and the seven homogeneous regions is plotted against the linear trend of the unfiltered time 
series (Fig. 2). The linear trend for each of the observations with its 5–95% uncertainty range shows that the 
two datasets are in very good agreement for all the regions except ECIND (Fig. 2d). The CRU time series con-
sistently shows much higher variability than the IITM data in all regions though the standard deviations in the 
two coastal regions ECIND and WCIND are more in agreement. The discrepancies are mainly due to the larger 
number of stations included in the IITM dataset and possibly also differences in the homogenization and area 
averaging/gridding procedures. We note that these differences in variability between the two datasets could have 
a bearing on the results of D&A analysis. In terms of the variability, most model simulations are clustered around 
the IITM value in all the regions. The WHIND region (Fig. 2h) stands out as the one region where model simu-
lated variability is lower than observed for most models and to a lesser extent the NCIND and NWIND regions 
where the GISS-E2-R, GISS-E2-H and CSIRO-MK3-6.0 have lower than observed variability. Taylor Diagrams15 
comparing CRU and the different experiments and realizations against the IITM reference dataset are shown 
in Fig. S1 (Supplementary Information). Among the five experiments, the historicalNat simulations are least 
correlated with observations and the historical and historicalGHG simulations have the highest correlation with 
observations. The standard deviations in this figure reveal that historicalNat simulations have less than observed 
variability whereas historicalAA, historicalAnt, historical, and historicalGHG simulations have higher standard 
deviation than observations. Note that this standard deviation includes variations on all time-scales and trends in 
the data as they were computed using unfiltered annual mean time-series. On the whole given the small areas of 
the regions, the CMIP5 simulations perform quite well and the realistic simulation of low-frequency variability 
is encouraging for carrying out the D&A analysis. While carrying out the D&A analysis using individual models 
may give different results, we include all the models in our analysis by averaging across models (after averag-
ing each across realisations) thereby giving each model equal weightage rather than weighting each realisation 
equally (see Supplementary Information for details).

In order to examine the sensitivity of our results to D&A methodology, we used three variants of regression 
based optimal fingerprint approaches in our analysis of TAS over the Indian region - Ordinary Least Squares 

Figure 1.  Annual Mean Temperature Anomaly (from 1906–2005 mean) in the observed datasets; IITM 
(black) and CRU (gray), and in the historical (red) and historicalNat (light-blue) simulations with their 
5–95% confidence bounds (calculated as in Jones et al. ref.21) for (a) All India (ALLIN), and the individual 
homogeneous zones (b) West Coast (WCIND), (c) Interior Peninsula (IPIND), (d) East Coast (ECIND),  
(e) North East (NEIND), (f) North Central (NCIND), (g) North West (NWIND), and (h) Western Himalaya 
(WHIND). The vertical lines in panels a-h indicate timings of major volcanic eruptions during the 1906–2005 
period.The demarcation of homogeneous temperature zones (based on ref.14) is shown in (i). The map was 
generated using UVCDAT 2.12 (https://uvcdat.llnl.gov/).

https://uvcdat.llnl.gov/
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(OLS)16, Total Least Squares (TLS)17, and Regularized Optimal Fingerprinting (ROF)18. In all three methods 
we regress the observations on to the model simulated signals. We calculate the scaling factors for time-series 
of individual regions and for a combined “All Region” where we retain the spatial information from the seven 
homogeneous zones (See Supplementary Information for further details). Note that “All Region” is different from 
ALLIN we have used previously to denote a spatial average over India. We estimate these regressions separately 
for three time periods (the 50-year periods 1906–1955 and 1956–2005, and the full 100-year period 1906–2005) 
and two averaging time-lengths (non-overlapping decadal and pentadal averages).

The two-signal analysis: Natural and Anthropogenic Forcings.  In order to estimate the contribution 
of Natural and Anthropogenic forcings to changes in TAS, we implemented a two-signal optimal fingerprinting 
analysis in which observations are regressed on to historicalAnt and historicalNat19 to yield estimates of the scal-
ing factors βANT and βNAT with their 5–95% uncertainty ranges (See Data and Methods section and Supplementary 
Information for further details). In Fig. 3a the “All Region” scaling factors for annual mean temperatures from 
three different regression methods, two observational data sets, and two averaging time-lengths are shown for the 
1956–2005 period. We note that for both the decadal and pentadal analysis, the ANT signal amplitudes from all 
three methods for both the CRU and IITM reference data are consistent with unity. In all three decadal analyses 
the amplitude of the NAT signal is consistent with unity for the IITM dataset but consistent with zero for CRU. 
However, for the pentadal analysis, the NAT signal is consistent with unity only for the ROF method using IITM. 
The best estimate scaling factors for ANT and NAT in two-signal decadal analyses of “All Region”, together with 
their marginal confidence intervals and joint confidence regions for each of the observed data sets are shown in 
Fig. S2 (Supplementary Information). The ANT scaling factors are consistent with one for OLS, TLS, and ROF 
methods while the NAT scaling factors are not significantly different from zero. This indicates that the simulated 
ANT response is consistent with observed changes while the NAT forcings are not substantially contributing to 
observed changes.

Figure 2.  Comparison of observed and modelled linear trend of unfiltered TAS anomaly and standard 
deviation of 5–20 year bandpass filtered detrended TAS anomaly from CMIP5 historical simulations for the 
1906–2005 period over (a) ALLIN, (b) WCIND, (c) IPIND, (d) ECIND, (e) NEIND, (f) NCIND, (g) NWIND, 
and (h) WHIND. The numbers inside the brackets next to the model names indicate the total number of 
realisations used in this study. The trend uncertainty (5–95%) for observations was calculated as in ref.30.
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In Fig. 3b the linear trends of scaled reconstructed TAS over the 1956–2005 period are shown, revealing 
that the observed and reconstructed total linear change are in good agreement in the Decadal ROF and all the 
Pentadal analyses. Furthermore, the reconstructed trends are almost entirely as a result of the ANT forcing with 
negligible contribution of NAT forcings to the trends. Examining the trends from the decadal ROF analysis over 
the 1956–2005 period gives attributable trends (in °C per 50 years given as 5–95% range) for ANT of (0.44, 0.86), 
for NAT of (−0.01, 0.03), and the best estimate reconstructed trend of (0.43, 0.89) with the CRU observed trend 
of (0.45, 0.60). For the same period, pentadal averages reveal attributable trends for ANT of (0.36, 0.77) and NAT 
of (0.0, −0.01) with the CRU observed trend of (0.35, 0.64). Table 1 shows the trends attributable to ANT and 
NAT forcings for the different time-periods, temporal averaging lengths, and observed trends for both observa-
tions and clearly reveals that where analysis period includes the 1956–2005 half-century, when ANT forcing is 
strongest, ANT response dominates over NAT response.

When we analyse the individual homogeneous zones, we can detect the influence of ANT forcing over the 
WCIND, IPIND, and ECIND regions for both observational datasets. Additionally, the magnitude of observed 
trend is almost entirely due to ANT trend in each of these cases (see Fig. S3a in the Supplementary Information). 
The Western Himalayan region (WHIND) has seen the largest rates of warming among all the regions and 
although responses to ANT and NAT forcings are detected (only for the IITM dataset), ANT forcing contributes 
to nearly all of the trend. These are robust except for the decadal analysis using the ROF method which fails the 
residual consistency check. The Residual Consistency Check (RCC; see Supplementary Material for details) - car-
ried out for all 3 methods in each of the individual regions and seasons - tests the hypothesis that model simulated 
internal variability is consistent with observed (similar to what Fig. 2 shows). Unlike the “All Region” case (which 
includes the spatial dimension also) the individual regions only have 5 decadal time points leading to a situation 
where there is very little information left to estimate the residual’s variance. When we consider the 100-year 
long 1906–2005 period also (see Fig. S3b in Supplementary Information) we see similar detection of ANT sig-
nals in the WCIND, IPIND, ECIND, and WHIND regions. Between 1906–1955 (see Fig. S3c in Supplementary 
Information), the observed trends in each of the regions are smaller and we were unable to attribute these changes 
to either NAT or ANT forcings. It is therefore clear that most of the changes in annual mean TAS seen in the 100 
year period have occurred over the second 50-year period (1956–2005), and that ANT forcing is responsible for 
almost all of the change.

Figure 3.  (a) The two signal scaling factors and their 5–95% uncertainty levels for “All Region”, estimated 
for Decadal and Pentadal annual averages between 1956–2005 using OLS, TLS, and ROF methods. (b) Best 
estimate and 5–95% uncertainty range of individual forcing contributions and total linear change of “All 
Region” annual mean temperature (°C) for 1956–2005 shown for Pentadal and decadal analysis. Best estimates 
are shown with central 90% uncertainty range. The two solid black symbols indicate cases where Residual 
Consistency Check (RCC) fails for the corresponding observed datasets and the asterisk indicates cases where 
the influence of a particular forcing has been detected. It may be noted that no cases fail the RCC. Observed 
trend uncertainties (5–95%) were calculated as in ref.30.



www.nature.com/scientificreports/

5SCIeNTIFIC REPOrTs |  (2018) 8:8967  | DOI:10.1038/s41598-018-27185-8

We now focus our attention on WCIND and WHIND regions to delve into the seasonality of changes. 
Figure 4a shows that, over the WCIND region, ANT forcing is detected for each of the seasons and annual mean 
irrespective of observed dataset used. Moreover, the effects of NAT forcings are not detected. This is robust across 
the different methods - except the decadal ROF analysis where the RCC fails for reasons noted earlier. The effects 
of ANT forcings are detected in the DJF season over the WHIND in the pentadal analysis (Fig. 4b). The effects 
of NAT forcings are also detected but do not make a significant contribution to the annual mean trends and con-
tribute to a slight warming during the MAM and SON seasons. This is also revealed in the reconstructed pentadal 
time series (see Fig. S4 in Supplementary Information). The NEIND, NCIND, and NWIND regions have smaller 
observed trends when compared to the other regions and we were able to detect the ANT forcing effects only 
when using the CRU dataset (see Fig.S3a in Supplementary Information).

Decomposing the Anthropogenic forcing.  Since anthropogenic forcings include the effects of green-
house gases, anthropogenic aerosols, and land-use land-cover changes (LULC) we explore the possibility of 
decomposing the ANT signal into these signals. The treatment of anthropogenic aerosols and LULC are quite 
different from model to model with some models not including the indirect effects of aerosols (see Table S1 in the 
Supplementary Information for details). One of the models considered (CSIRO-MK3-6-0) did not include 
changes in LULC and neither the CMIP5 experimental setup nor the specific models chosen included an LULC 
only set of runs. It is not always possible to decompose the signals as a simple linear addition of forcings - for 
instance, the combination of greenhouse gases and indirect effects of aerosols20. We therefore decompose the 
ANT signal into a GHG forcing driven signal and an “Other Anthropogenic” (OA) signal (as in ref.21) which 
subsumes all non-GHG anthropogenic forcings under the “OA” forcing. For this the historical, historicalGHG, 
and historicalNAT simulations were used to construct the transformation equation for deducing the scaling fac-
tors βGHG, βNAT, and βOA corresponding to GHG, NAT, and OA forcings respectively (See Data and Methods 
section for details).

Figure 5 shows the results of the three-signal analyses of annual mean TAS over “All Region” for the 1956–
2005 period. The scaling factors in Fig. 5a show that the influence of GHG forcing can be detected over “All 
Region” for both observations and in all cases except pentadal TLS analysis with CRU observations. The effect of 
OA forcings can be detected in all cases where IITM observations are used but in none of the cases when CRU is 
used. Although the analysis reveals a detectable NAT signal for many cases, the trend contribution from NAT is 
minimal as seen in Fig. 5b. The dominant signal in all the cases seen is the positive trend from GHG forcing with 
the negative trend produced by OA forcings counteracting it. This results in a net positive trend in the recon-
structed TAS that closely matches the observed trends. The uncertainty range of scaling factors and trends for 
GHG forcing are smaller than those for OA and NAT forcings. Moreover the amplitudes of the two anthropogenic 
signals (GHG & OA) are highly correlated as evidenced by the strong tilt in the marginal uncertainty ellipse (see 
Fig. S5 in Supplementary Information).

Period
Ref. 
Dataset

Decadal Trends Pentadal Trends

Observed OLS TLS ROF Observed OLS TLS ROF

1956–2005

IITM (0.30, 0.49)

B. Est. (0.62, 1.06) (0.62, 1.09) (0.46, 0.92)

(0.18, 0.54)

B. Est. (0.53, 0.93) (0.55, 0.96) (0.42, 0.82)

ANT (0.61, 1.03) (0.62, 1.05) (0.45, 0.88) ANT (0.53, 0.94) (0.55, 0.97) (0.42, 0.83)

NAT (0.00, 0.03) (0.00, 0.04) (0.00, 0.04) NAT (−0.01, 0.00) (−0.01, 0.00) (−0.01, 0.00)

CRU (0.45, 0.60)

B. Est. (0.55, 0.99) (0.56, 1.02) (0.43, 0.89)

(0.35, 0.64)

B. Est. (0.43, 0.83) (0.44, 0.85) (0.36, 0.76)

ANT (0.55, 0.97) (0.56, 0.99) (0.44, 0.86) ANT (0.43, 0.84) (0.44, 0.86) (0.36, 0.77)

NAT (0.00, 0.03) (0.00, 0.03) (−0.01, 0.03) NAT (−0.01, 0.00) (−0.01, 0.00) (−0.01, 0.00)

1906–2005

IITM (0.29, 0.53)

B. Est. (0.61, 0.86) (0.63, 0.87) (0.40, 0.59)

(0.23, 0.60)

B. Est. (0.56, 0.85) (0.52, 0.78) (0.32, 0.56)

ANT (0.63, 1.00) (0.66, 1.04) (0.41, 0.72) ANT (0.55, 0.93) (0.52, 0.89) (0.33, 0.67)

NAT (−0.14, −0.02) (−0.17, −0.03) (−0.13, −0.01) NAT (−0.08, 0.02) (−0.11, 0.00) (−0.10, −0.01)

CRU (0.41, 0.68)

B. Est. (0.73, 0.98) (0.77, 1.01) (0.54, 0.73)

(0.36, 0.73)

B. Est. (0.56, 0.85) (0.63, 0.91) (0.43, 0.67)

ANT (0.70, 1.08) (0.75, 1.13) (0.53, 0.84) ANT (0.54, 0.93) (0.59, 0.99) (0.44, 0.77)

NAT (−0.09, 0.03) (−0.12, 0.02) (−0.11, 0.02) NAT (−0.08, 0.02) (−0.08, 0.04) (−0.10, −0.01)

1906–1955

IITM (0.21, 0.28)

B. Est. (−0.22, 0.71) (−0.36, 0.88) (−0.53, 0.90)

(0.20, 0.35)

B. Est. (−0.13, 0.58) (−0.23, 0.79) (−0.29, 0.73)

ANT (−0.16, 0.38) (−0.27, 0.44) (−0.30, 0.51) ANT (0.03, 0.45) (0.06, 0.67) (−0.06, 0.55)

NAT (−0.06, 0.33) (−0.09, 0.44) (−0.23, 0.39) NAT (NA, NA) (NA, NA) (NA, NA)

CRU (0.25, 0.33)

B. Est. (−0.33, 0.60) (−0.43, 0.70) (−0.45, 0.77)

(0.25, 0.40)

B. Est. (−0.22, 0.50) (−0.32, 0.64) (−0.32, 0.71)

ANT (−0.27, 0.28) (NA, NA) (NA, NA) ANT (−0.16, 0.26) (−0.22, 0.36) (−0.25, 0.37)

NAT (−0.07, 0.32) (−0.07, 0.41) (−0.09, 0.44) NAT (−0.06, 0.24) (−0.11, 0.28) (−0.07, 0.34)

Table 1.  Observed and attributable trends (°C per period length given as 5–95% ranges) over “All Region” from 
the two-signal analysis of TAS change. Results are shown for the three periods analysed 1956–2005, 1906–2005, 
and 1906–1955. The ANT and NAT attributable trends are shown along with the Best Estimate from the two 
forcings. Observed trends and 5–95% confidence interval are calculated as in ref.30. The cells marked (NA, NA) 
represent cases where the residual consistency check (RCC) fails or there was no detection (β < 0).
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When we analyse the “All Region” changes for individual seasons, there are numerous cases where we detect 
the effects of GHG and OA forcings (Fig. S6a in Supplementary Information). However, these are not consistent 
across seasons or observational datasets. The effects of NAT forcings are detected in a handful of cases but do not 
contribute significantly to the trends. The 100-year 1906–2005 period on the other hand provides the strongest 
evidence of the combined influence of the GHG and OA forcings irrespective of observational dataset used, par-
ticularly through the decadal analysis for all the seasons and the pentadal ROF analysis of the Annual, DJF, MAM, 
and SON seasons (see Fig. S6b in Supplementary Information). The NAT forcings are also clearly detected in the 
MAM and JJA (decadal analysis only) seasons although they contribute only a very small negative trend. Over the 
1906–1955 period, the small observed trends were found to be due to NAT forcings in the MAM season but are 
otherwise not detected in any season (Fig. S6c).

In the analysis of individual homogeneous regions, we detect the effects of GHG forcing in the WCIND region 
with the pentadal analysis for all seasons except the MAM season with some sensitivity to observational dataset 
used (Fig. S7a in Supplementary Information). Barring one case, the effects of OA are not detected at all in this 
region. Over the WHIND region, the effects of GHG and OA forcings are detected in the DJF season for pentadal 
analysis only (Fig. S7b in Supplementary Information). The WHIND region also indicates a detectable influence 
of NAT forcings in the pentadal analysis of Annual, MAM and SON seasons which results in a very small negative 
trend. The MAM season decadal analysis shows clear detection of the influence of GHG, OA, and NAT forcings 
for the WHIND. Analysis of the Annual mean TAS in the ECIND region shows that the effect of GHG forcings is 
detected, but not that of OA or NAT (not shown). In the IPIND, NEIND, NCIND, and NWIND regions we were 
not able to detect the effects of GHG or OA forcings except in one or two cases.

Recognising that the forcings under “OA” predominantly include the effects of anthropogenic aerosols and 
LULCC, the inclusion/omission of indirect effects of aerosols is likely an important factor that determines the 
amount of cooling produced by aerosol effects21. To investigate this further, we ran the three signal analysis with 
only the subset of models that include the indirect effects of models and land use changes (i.e by dropping the 
GFDL-ESM2M, CCSM4, and CSIRO-MK3-6-0 models from our analysis). The results thus obtained were not 
very different from the analysis that included all the models except for a reduction in the uncertainty ranges 
around the β values.

Figure 4.  The two-signal total linear change of observed and scaled reconstructed simulated forcings of TAS 
using best signal amplitude (β) from OLS, TLS and ROF methods for Pentadal and Decadal analysis of annual 
and seasonal means over 1956–2005 period for (a) West Coast (WCIND) and (b) Western Himalayas 
(WHIND). The hatched bars and non-hatched bars represent the analysis using IITM and CRU as observed 
dataset respectively. Red(ANT), blue(NAT), green(Best Estimate), and gray(Observed) bars represent the total 
linear change of simulated response and observations. The cases where effects of ANT (NAT) forcings were 
detected are marked using red (blue) symbols with circles representing IITM dataset and triangles representing 
CRU. The black symbols represent cases where the residual consistency check (RCC) failed. Where bars are 
missing, either the RCC fails for the corresponding signal or there was no detection (β < 0). Observed trend 
uncertainties (5–95%) were calculated as in ref.30.
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Conclusions
Using three regression based optimal fingerprint methods, two observed datasets, and two temporal-averaging 
choices we are able to robustly attribute TAS changes over India between 1956–2005 and 1906–2005 to anthro-
pogenic forcing. The contributions of natural forcings to the observed trend during 1956–2005 period is minimal 
with a comparatively larger contribution during 1906–1955. We also find that the observed increases in TAS 
over WCIND, IPIND, ECIND, and WHIND cannot be explained by natural forcings or internal climate varia-
bility alone. The largest warming rates are seen in the Western Himalayas - a mountainous region that is likely 
experiencing elevation enhanced warming22. This has implications for the health of glaciers in this region with 
continued anthropogenic forcing leaving them more prone to mass loss and resulting downstream effects23. The 
influence of anthropogenic forcing is also detected in NEIND, NCIND, and NWIND, but only with the CRU 
dataset. However, the two observational datasets are different in the number of observing stations they include 
and this influences results to some extent. Using a three-signal analysis, we find that GHG forcing is the dominant 
contributor to the positive trends over India with OA forcings exerting a cooling influence. Over the individual 
sub-regions however, we were not able to consistently detect the influence of GHG and OA. The influence of aero-
sols24 and land use (that are the main constituents of OA) cannot be separated using these methods which assume 
that signals can be decomposed as a simple linear addition of forcings. The impact of observational uncertainty 
(to the extent evident in the two datasets used) is clearly seen in our results for individual regions. Concerted 
efforts to quantify observational uncertainty at these smaller spatial scales are necessary to have better confidence 
in D&A results and also to enable climate model improvements25.

Data and Methods
Observed data.  We used surface air temperature (TAS) data from the CRU 3.22 and IITM observational 
datasets. The CRU- 3.2213 is a gridded temperature dataset at 0.5 × 0.5 resolution downloaded from https://cru-
data.uea.ac.uk/cru/data/hrg/cru_ts_3.22/. Spatially averaged monthly temperature data (1906–2005) for seven 
homogeneous temperature zones14 and ALLIN region were downloaded from http://www.tropmet.res.in/static_
page.php?page_id = 54.

Model data.  We utilize climate model output from the Fifth Phase of the Coupled Model Intercomparison 
Project CMIP512. While output from nearly 60 coupled atmosphere-ocean general circulation models (AOGCMs) 
are available in the CMIP5 archives, we utilize output from models that performed piControl (Pre-Industrial 

Figure 5.  (a) The three signal scaling factors and their 5–95% uncertainty levels for “All Region” estimated  
for both decadal and pentadal annual averages between 1956–2005 using OLS, TLS, and ROF methods.  
(b) Best estimate and 5–95% uncertainty range of individual forcing contributions and total linear change of  
“All Region” annual mean temperature (°C) for 1956–2005 shown for pentadal and decadal analysis. Best 
estimates are shown with central 90% uncertainty range. The two solid black symbols indicate cases where 
Residual Consistency Check (RCC) fails for the corresponding observed datasets and the asterisk indicates 
cases where the influence of a particular forcing has been detected. It may be noted that no cases fail the RCC. 
Observed trend uncertainties (5–95%) were calculated as in ref.30.

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.22/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.22/
http://www.tropmet.res.in/static_page.php?page_id=54
http://www.tropmet.res.in/static_page.php?page_id=54
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control), historicalGHG (GHG forcings only), historicalNat (Natural forcings only), historicalAA (forcings due 
to anthropogenic aerosols only) and historicalAnt (all forcing due to anthropogenic activities) and historical 
(combination of all forcings) experiments. The AOGCMs used in this study span a wide range of resolutions 
and sophistication of physical modeling. Each model experiment may have more than one ensemble member 
typically generated by initializing a set of runs with different, but equally realistic initial conditions that are dis-
tinguished by a unique realization number. We use the subset of models that performed all the experiments listed 
above and whose output fields included surface air temperature (TAS) and -although these were not analyzed 
for this study, minimum and maximum surface air temperature (TASMIN and TASMAX respectively) - in order 
to avoid changing sample sizes. Table S1 in the Supplementary Information shows details of the models, experi-
ments, and realizations used in this study.

Details of Detection & Attribution methods used.  Optimal fingerprinting is generalized multivariate 
regression adapted to the detection of climate change and the attribution of change to externally forced climate 
change signals26,27. We implemented Ordinary Least Squares (OLS)16 and Total Least Squares (TLS)17 methods to 
carry out the detection analysis. In both methods observations Y  are regressed on to m model simulated signals 
Xi. The TLS regression model is of the form

∑ β= − +=Y X v v( ) (1)i
m

i i i1 0

where v0 represents the residual variability that is generated internally in the climate system and υi is an additional 
noise term included to account for the finite model sample Xi (see ref.17). In the OLS case we assume the noise 
vi = 0. We assert detection when βi is significantly greater than zero and if it is consistent with unity we attribute 
observed changes to forcing i (such cases are denoted by asterisks in Figs 3 and 5). We used two noise covariance 
matrices CN1 and CN2 for estimating the signal amplitude βi and for the residual consistency check respectively 
(see the Supplementary Information for details of constructing CN1 and CN2).

In both OLS16 and TLS17 methods −CN1
1 is constructed from the reduced dimension of EOF and this requires a 

truncation value κ. Using the regularization method in ref.28, Ribes et al. (ref.18) developed the Regularized 
Optimal Fingerprinting (ROF) method that uses an inverse of the covariance matrix avoiding the use of a trun-
cated EOF projection. Using Monte Carlo simulations, Ribes et al. (ref.29) showed that the ROF method yields 
more accurate (in terms of the mean squared error) results. We implement the ROF method with Total Least 
Squares regression. Using these three methods (OLS, TLS, and ROF) we applied two regression based models; 
two-signal and three-signal, for carrying out the detection and attribution study. The transformation of two- and 
three-signal regression models are as follows:

Two Signal Regression Model.  In this model we estimate the contribution of natural (NAT) and anthro-
pogenic (ANT) forcings to changes in TAS. The two-signals XANT and XNAT are derived using historicalAnt and 
historicalNat simulations (see Supplementary Information for further details on simulations) and the corre-
sponding scaling factors (from Eq. 1) are βANT and βNAT.

Three Signal Regression Model.  We analyze the contributions from greenhouse gas forcing (XGHG), other 
non-greenhouse gas anthropogenic forcings (XOA) and natural forcings (XNAT) with corresponding scaling fac-
tors βGHG, βOA, and βNAT. Since we only have the historical, historicalGHG, and historicalNat experiments we 
deduce the scaling factors from a transformation on the historical, historicalNat, and historicalGHG scaling fac-
tors βhistorical, βhistoricalGHG, and βhistoricalNat as in Tett et al. (ref.19) and Jones et al. (ref.21):

β
β

β

β
β

β
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Further details on the implementation can be found in the Supplementary Information.

Data availability.  Data for CMIP5 models are available at https://esgf-node.llnl.gov/projects/esgf-llnl/. The 
CRU- 3.22 dataset is available from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.22/. The IITM dataset are 
available from http://www.tropmet.res.in/static_page.php?page_id = 54. The datasets generated during the cur-
rent study are available from the corresponding author (KAR) on reasonable request.

References
	 1.	 Zhang, X., Zwiers, F. W. & Stott, P. A. Multimodel multisignal climate change detection at regional scale. J. Climate 19, 4294–4307 

(2006).
	 2.	 Santer, B. D. et al. Forced and unforced ocean temperature changes in atlantic and pacific tropical cyclogenesis regions. Proceedings 

of the National Academy of Sciences 103, 13905–13910 (2006).
	 3.	 Gillett, N. P., Stott, P. A. & Santer, B. D. Attribution of cyclogenesis region sea surface temperature change to anthropogenic 

influence. Geophys. Res. Lett. 35, L09707+ (2008).
	 4.	 Xu, Y., Gao, X., Shi, Y. & Botao, Z. Detection and attribution analysis of annual mean temperature changes in china. Climate Research 

63(61–71), 2015 (2015).
	 5.	 Dean, S. M. & Stott, P. A. The effect of local circulation variability on the detection and attribution of new zealand temperature 

trends. J. Climate 22, 6217–6229 (2009).
	 6.	 Ribes, A., Azaïs, J.-M. & Planton, S. A method for regional climate change detection using smooth temporal patterns. Climate 

Dynamics 35, 391–406 (2010).

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.22/
http://www.tropmet.res.in/static_page.php?page_id=54


www.nature.com/scientificreports/

9SCIeNTIFIC REPOrTs |  (2018) 8:8967  | DOI:10.1038/s41598-018-27185-8

	 7.	 Knutson, T. R., Zeng, F. & Wittenberg, A. T. Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 
Twentieth-Century simulations. J. Climate 26, 8709–8743 (2013).

	 8.	 Kothawale, D. R. & Kumar, K. R. On the recent changes in surface temperature trends over india. Geophysical Research Letters 32, 
L18714+ (2005).

	 9.	 Kothawale, D. R., Munot, A. A. & Krishna Kumar, K. Surface air temperature variability over India during 1901–2007, and its 
association with ENSO. Climate Res. 42, 89–104 (2010).

	10.	 Basha, G. et al. Historical and projected surface temperature over india during the 20th and 21st century. Scientific Reports 7 (2017).
	11.	 Bindoff, N. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.)(IPCC, Cambridge Univ. Press, 2013).
	12.	 Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498 

(2011).
	13.	 Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU 

TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
	14.	 Kothawale, D. R. & Rupa Kumar, K. On the recent changes in surface temperature trends over india. Geophys. Res. Lett. 32, L18714+ 

(2005).
	15.	 Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192 (2001).
	16.	 Allen, M. R. & Tett, S. F. B. Checking for model consistency in optimal fingerprinting. Climate Dynamics 15, 419–434 (1999).
	17.	 Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: theory. Climate Dynamics 21, 477–491 

(2003).
	18.	 Ribes, A., Azaïs, J.-M. & Planton, S. Adaptation of the optimal fingerprint method for climate change detection using a well-

conditioned covariance matrix estimate. Climate Dynamics 33, 707–722 (2009).
	19.	 Tett, S. F. B. et al. Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res. 

107, 10-ACL 10–24 (2002).
	20.	 Marvel, K. et al. Do responses to different anthropogenic forcings add linearly in climate models? Environmental Research Letters 10, 

104010+ (2015).
	21.	 Jones, G. S., Stott, P. A. & Christidis, N. Attribution of observed historical near‒surface temperature variations to anthropogenic and 

natural causes using CMIP5 simulations. J. Geophys. Res. Atmos. 118, 4001–4024 (2013).
	22.	 Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).
	23.	 Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences 

114, 9770–9778 (2017).
	24.	 Padma Kumari, B., Londhe, A. L., Daniel, S. & Jadhav, D. B. Observational evidence of solar dimming: Offsetting surface warming 

over india. Geophys. Res. Lett. 34, L21810+ (2007).
	25.	 Collins, M. et al. Observational challenges in evaluating climate models. Nature Clim. Change 3, 940–941 (2013).
	26.	 Hasselmann, K. 1979: On the signal-to-noise problem in atmospheric response studies. In: Meteorology of Tropical Oceans [Shaw, 

D. B. (ed.)]. Royal Meteorological Society, Bracknell, UK, pp. 251–259.
	27.	 Hasselmann, K. 1997: Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dyn. 13, 601–612.
	28.	 Ledoit, O. & Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88, 365–411 

(2004).
	29.	 Ribes, A., Planton, S. & Terray, L. Application of regularised optimal fingerprinting to attribution. Part I: method, properties and 

idealised analysis. Clim. Dyn. 41, 2817–2836 (2013).
	30.	 Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. 

Geophys. Res. 105, 7337–7356 (2000).

Acknowledgements
We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is 
responsible for CMIP, and we thank the climate modelling groups (Table S1 in Supplementary Information) 
for producing and making available their model output. For CMIP, the US Department of Energy’s Program 
for Climate Model Diagnosis and Intercomparison provides coordinating support and leads development of 
software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank 
the modelers, data processors, and those who developed and maintain the gateways at various institutions that 
enabled sharing the model data. The model data used in this study were obtained from http://cmip-pcmdi.llnl.
gov/cmip5/ and associated CMIP5 gateways. We also acknowledge the R code ECOF-V1.r, an R translation of a 
SciLab code by Yang Feng of Environment and Climate Change Canada. The original SciLab code was written by 
Aurélien Ribes.

Author Contributions
R.D. and K.A.R. initiated the study. R.D. carried out the analysis together with T.A. and produced the figures. 
K.A.R. led the writing and R.D. and T.A. contributed to the writing of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27185-8.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/
http://dx.doi.org/10.1038/s41598-018-27185-8
http://creativecommons.org/licenses/by/4.0/

	Human influence on sub-regional surface air temperature change over India

	Results

	Comparison of observed and model datasets. 
	The two-signal analysis: Natural and Anthropogenic Forcings. 
	Decomposing the Anthropogenic forcing. 

	Conclusions

	Data and Methods

	Observed data. 
	Model data. 
	Details of Detection & Attribution methods used. 
	Two Signal Regression Model. 
	Three Signal Regression Model. 
	Data availability. 

	Acknowledgements

	Figure 1 Annual Mean Temperature Anomaly (from 1906–2005 mean) in the observed datasets IITM (black) and CRU (gray), and in the historical (red) and historicalNat (light-blue) simulations with their 5–95% confidence bounds (calculated as in Jones et al.
	Figure 2 Comparison of observed and modelled linear trend of unfiltered TAS anomaly and standard deviation of 5–20 year bandpass filtered detrended TAS anomaly from CMIP5 historical simulations for the 1906–2005 period over (a) ALLIN, (b) WCIND, (c) IPIND
	Figure 3 (a) The two signal scaling factors and their 5–95% uncertainty levels for “All Region”, estimated for Decadal and Pentadal annual averages between 1956–2005 using OLS, TLS, and ROF methods.
	Figure 4 The two-signal total linear change of observed and scaled reconstructed simulated forcings of TAS using best signal amplitude () from OLS, TLS and ROF methods for Pentadal and Decadal analysis of annual and seasonal means over 1956–2005 period fo
	Figure 5 (a) The three signal scaling factors and their 5–95% uncertainty levels for “All Region” estimated for both decadal and pentadal annual averages between 1956–2005 using OLS, TLS, and ROF methods.
	Table 1 Observed and attributable trends (°C per period length given as 5–95% ranges) over “All Region” from the two-signal analysis of TAS change.




