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ABSTRACT
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality 
rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent 
advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC 
epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new 
drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small 
noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities 
for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and 
that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal sur-
rounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their 
potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and chal-
lenges to miRNA therapy are also explored.
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Introduction

Prostate cancer (PC) is one of the leading causes of mortality in 
male cancer patients worldwide.1 Effective PC management 
remains an ongoing challenge, with androgen deprivation 
therapy (ADT) the current standard PC treatment.2 Although 
this course of treatment improves the survival and quality of 
life for individuals with PC, most men eventually progress to 
metastatic castration-resistant PC (mCRPC).3 Advanced PC 
(including castration-sensitive and castration-resistant disease) 
is commonly managed with androgen axis – targeted therapies, 
such as abiraterone acetate and enzalutamide, docetaxel-based 
chemotherapy, or radium Ra-223 dichloride.4 Unfortunately, 
only approximately 50% of patients with advanced disease 
respond favorably to these therapies, with the other 50% devel-
oping resistance and exhibiting survival rates of only 5% −  
30%.2 There are many reasons for treatment failure: Factors 
such as a mutation in the androgen receptor (AR) drug- 
binding domain, tumor heterogeneity, and vascular permeabil-
ity all negatively affect efficient drug delivery to tumor sites. 
Moreover, many currently used drugs exhibit limited specifi-
city and often produce deleterious effects on healthy peripheral 
tissues.5,6 Therefore, targeted drug delivery holds immense 
potential to improve cancer treatment by selectively providing 
effective therapies at tumor sites. Ideally, these therapies not 
only specifically recognize tumors but also target survival path-
ways that the tumor has leveraged to achieve drug resistance.

PC cells within prostate tumors express many tumor- 
associated antigens that can be potentially targeted for cancer 
diagnosis, treatment, and selective drug delivery.7,8 Prostate- 
specific membrane antigen (PSMA), a type II transmembrane 
protein found predominantly on the surface of prostate 

epithelial cells, is among these,,9–11 PSMA is expressed on the 
epithelium of nearly all PCs, and its increased expression 
correlates with progression to castration resistance and meta-
static disease.12–14 The cytoplasmic domain of PSMA contains 
a motif that signals the internalization of PSMA via clathrin- 
coated pits,15,16 and clinical technologies utilize this pathway to 
enhance the delivery of radiopharmaceuticals into the tumor, 
with 17Ga-PSMA-11 PET/CT and 177Lu-PSMA-61718–20 lead-
ing the way. Studies with both antibody-drug conjugates 
(ADCs) and small-molecule drug conjugates (SMDCs) have 
demonstrated encouraging results.21–27 thus highlighting the 
continued interest in PSMA in biomedical, translational med-
icine, and pharmaceutical fields.28

microRNAs (miRNAs) are conserved 21–25-nucleotide- 
long noncoding molecules that play essential roles in regulating 
gene expression and participate in various biological 
processes,29 including roles in cancer 30,31 by functioning as 
a tumor suppressor 32 or as an onco-miRNA that represses the 
expression tumor suppressor genes such as p53.32 Each miRNA 
has the potential to target many genes. By using a single 
microRNA to silence multiple genes, several signaling path-
ways can be simultaneously regulated, which may minimize 
compensatory mechanisms that cause therapeutic resistance. 
Therefore, manipulating cellular miRNA levels with modified 
oligonucleotides that mimic or inhibit miRNA function has led 
to the extensive research and development of miRNAs as 
therapeutics.33 Loss-of-function approaches have led to super-
ior research results, as they reveal processes dependent on 
physiological miRNA levels; in contrast, exogenous miRNA 
added to the system can lead to repressed activity of targeted 
mRNAs in nonphysiological contexts since miRNA – target 
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interaction is highly concentration dependent. The expression 
of many miRNAs is tissue-specific and altered in different 
diseases, including PC. These alterations can significantly affect 
tumor cell growth and survival.34,35 Furthermore, miRNAs are 
considered valuable diagnostic biomarkers and potential ther-
apeutic targets in cancer;36 for example, miRNA-15a, miRNA- 
21, miRNA-34a, miRNA-153, and miRNA-17 have been con-
nected with PC pathogenesis.37,38 Therefore, miRNAs that 
perturb human disease pathways are potentially powerful can-
didates for therapeutic intervention against various pathologi-
cal conditions, including PC.

Although the understanding of miRNA biology has grown 
exponentially since its discovery in 1993 by Lee and 
colleagues,39 a more comprehensive assessment of the 
strengths and limitations of miRNA-based approached for 
PC therapy is still necessary. In this review, we discuss potential 
therapeutic strategies of targeting PSMA to deliver specific 
miRNA payloads exclusively to PC tumors as well as provide 
insight into various delivery systems for miRNAs and the 
challenges to using these systems for therapy.

miRNA biogenesis and mechanisms of action

miRNA biogenesis is a complex process that begins with 
nuclear transcription mediated by RNA polymerase II forming 
a primary transcript known as primary miRNA (pri-miRNA) 
.40 Pri-miRNAs contain a unique hairpin stem‒loop structure 
and a single-stranded sequence of differing lengths that can 

potentially harbor hundreds of kilobases.41 The nuclear com-
plex contains the ribonuclease III enzyme Drosha as well as 
a double-stranded RNA (dsRNA)-binding protein (DiGeorge 
syndrome critical region 8 protein (DGCR8)), which facilitate 
Drosha removal of approximately 11 bp from each side of the 
hairpin stem of a pri-miRNA, resulting in precursor miRNA 
(pre-miRNA).41,42 A pre-miRNA is an approximately 70- 
nucleotide stem‒loop structure that is transported from the 
nucleus to the cytoplasm by exportin-5 (×PO5), a Ran-GTP- 
dependent dsRNA-binding protein.43 Once in the cytoplasm, 
the pre-miRNA is processed by the ribonuclease III enzyme 
Dicer to form a mature, 22-nucleotide miRNA duplex.44 The 
mature miRNA is then incorporated into the miRNA-induced 
silencing complex (RISC),45,46 through which it regulates gene 
expression through translational repression mediated by 
mRNA deregulation (Figure 1).45

miRnas in PC progression

miRNAs play crucial roles in critical cellular processes such as 
cell proliferation, differentiation, cell cycle progression, apop-
tosis, angiogenesis, the epithelial-mesenchymal transition 
(EMT), and metastasis during cancer progression.47 Hao 
et al. showed that miRNA-101 inhibited PC cell proliferation 
by inhibiting cyclooxygenase-2 (COX-2) gene expression, inhi-
biting the activation of the COX-2/PGE2/EGFR pathway, 
which mediates cell proliferation during inflammation.48 

COX-2 is an inducible isozyme of COX, a key enzyme in 

Figure 1. miRNA biogenesis and mechanisms of action in posttranscriptional gene regulation. miRNA biogenesis begins with miRNA transcription from DNA via the 
action of RNA polymerase II to generate primary hairpin miRNA (pri-miRNA). Then, pri-miRNA is cleaved by the RNase III drosha and its binding partner DiGeorge 
syndrome critical region gene 8 (DGCR8), which recognizes the hairpin structures in pri-miRNA and processes them to form precursor miRNA (pre-miRNA). The resulting 
pre-miRNA is exported to the cytoplasm by Exportin-5, a Ran-GTP-dependent dsRNA-binding protein. In the cytoplasm, another RNase III enzyme, dicer, further 
processes pre-miRNA, cleaving its hairpin and thus producing a mature miRNA duplex. Then, one strand is loaded into an argonaute (AGO) family member to form the 
miRNA-induced silencing complex (RISC) that recognizes the mRNA target via sequence complementarity, resulting in mRNA degradation or translation inhibition.
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converting arachidonic acid to prostaglandins and other eico-
sanoids. COX-2 is highly expressed in several human cancers 
and cancer cell lines, including PC tumor cells, and activates 
the PGE2/EGFR pathway, leading to cell proliferation via 
extracellular signal-regulated kinase 2 (ERK2) activation.49,50 

A study by Zhu et al. demonstrated that miRNA-136 sup-
pressed PC cell proliferation and invasion by targeting mito-
gen-activated protein kinase 4 (MAP2K4a) in vitro 51. 
MAP2K4a can increase androgen receptor expression/activa-
tion and promote PC tumor progression via noncanonical 
activation of AKT.51 Moreover, Wang et al. showed that 
miRNA-182 upregulation increased the expression of impor-
tant regulators of cell cycle progression, namely c-MYC and 
cyclin D1, leading to uncontrolled proliferation of the LNCaP 
and PC3 immortalized human PC cell lines.52 As miRNAs 
control the expression of cell cycle-related genes, identifying 
critical miRNAs involved in the cell cycle can lead to better 
treatment opportunities for cancers, including PC.53 For 
instance, miRNA-193a functions as a tumor suppressor, and 
its expression is lower in PC tissues compared to that in 
benign prostatic hyperplasia.54 In addition, Liu et al. demon-
strated that miRNA-193a overexpression inhibited cell 
growth by targeting cyclin D1 and promoting G1-phase cell 
cycle arrest in the DU-145 immortalized human PC cell line 
as well as in PC3 cells.

Apoptosis is a complex process that involves many signaling 
pathways that can be modulated by miRNAs. Ma et al. showed 
that miRNA-143 decreases the proliferation and induces the 
apoptosis of LNCaP cells by suppressing the expression of the 
integral outer mitochondrial membrane protein BCL2, which 

inhibits cell death.55 A study by Ostadrahimi et al. demon-
strated that miRNA-185, miRNA-30c, and miRNA-1266 were 
downregulated in PC tissues compared to healthy control 
tissues,56 resulting in antiapoptotic BCL2 and BCL2-XL gene 
upregulation and a reduced apoptosis rate.56

Among the crucial outcomes of cancer cell progression to 
metastatic phenotype acquisition is the EMT.57 Several 
miRNAs have been suggested to regulate the expression of 
genes involved in the EMT, and a reduction in their expression 
leads to cancer invasion and metastasis.58 For example, 
miRNA-200b targets the zinc-finger E-box-binding homeobox 
1 and 2 genes (ZEB1 and ZEB2), Bim1, and E-cadherin. ZEB1/ 
ZEB2 directly bind to the E-box in the promoter of the adhe-
sion molecule E-cadherin, recruiting transcriptional corepres-
sors and inducing the EMT in PC.59–62 miRNA-200b action is 
crucial for cells to maintain their epithelial phenotype and 
prevent the EMT and tumor metastasis.63 Yu et al. showed 
that administration of miRNA-200b downregulated the 
expression of ZEB1 and ZEB2 in PC3 cells and reversed the 
EMT, attenuating EMT phenotype acquisition.63 A study by 
Gandellini et al. demonstrated that miRNA-205 plays a vital 
role in the EMT by targeting integrin-β4, laminin, and matrix 
metalloproteinase 2 (MMP2), which are necessary for interac-
tions between the PC cell cytoskeleton and the extracellular 
matrix.17,64,65 A decrease or loss in miRNA-205 expression 
results in increased cell proliferation and invasion and changes 
to prostate cell characteristics, moving them toward 
a mesenchymal phenotype.66 The essential miRNAs involved 
in PC pathogenesis are summarized in Figure 2.

Prostate Cancer

ApoptosisCell cycle Proliferation EMT Metastasis

miRNA-193a 5

miRNA-139 7

miRNA-1-3p 12

miRNA-96 16

miRNA-302 22

miRNA-1307 25

miRNA-501 29

miRNA-34a  1

miRNA-34c 6

miRNA-143 11

miRNA-204 15

miRNA-15a 21

miRNA-185 27

miRNA-30c 27

miRNA-1266 27

miRNA-136 2

miRNA-101 8

miRNA-139 7

miRNA-182 18

miRNA-192 23

miRNA-202 26

miRNA-211 30

miRNA-500 32

miRNA-200b 4

miRNA-205 10

miRNA-19a 14

miRNA-200 19

miRNA-203 24

miRNA-33a 28

miRNA-141 31

miRNA-652 33

miRNA-375 34

miRNA-410 35

miRNA-132 35

miRNA-486 36

miRNA-875 37

miRNA-145 3

miRNA-21 9

miRNA-375 13

miRNA-19a-3p 17

miRNA-16 20

miRNA-15a 20

Figure 2. Summary of the important miRnas involved in PC.
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Targeted systems for miRNA delivery

Primary PC results in a highly vascular tumor derived from 
proliferating prostatic epithelial cells.67 Tumor vascularity sig-
nificantly affects tumor growth and drug responsiveness 
because it influences tumor blood flow, oxygenation, and the 
permeability of chemotherapeutic drugs into the tumor.68,69 

Successfully targeted drug delivery systems are small (from 10 
to 100 nm in diameter), remain stable in the circulation, accu-
mulate in leaky tumor vasculature via the enhanced perme-
ability and retention (EPR) effect, and enable targeted delivery 
of specific-ligand-modified drugs and drug carriers to areas 
with limited access.70,71 Targeting specific cancer cells is 
a crucial characteristic of drug delivery systems as targeting 
enhances therapeutic efficacy without eliciting damage to nor-
mal surrounding tissue or causing a bystander effect.72 Recent 
advances in drug delivery systems have suggested promising 
miRNA-based approaches for the delivery and treatment of 
different diseases, including PC.73 These advances can be 
broadly classified into two categories: passive and active target-
ing approaches.

Passive targeting

Passive targeting exploits the biological characteristics of 
tumorous and normal tissue to deliver a drug to the target 
site, where it can exert a therapeutic effect. Tumor growth and 
metastasis depend on angiogenesis to provide an adequate 
supply of oxygen and nutrients to the tumor and to remove 
waste products.74 However, this new tumor vasculature is often 
defective and leaky, hindering the delivery and effectiveness of 
systemically administered therapeutic cancer drugs to the 
tumor.75

Many limitations have prevented miRNAs from becoming 
optimal candidates for this type of delivery, including the 
stability of the miRNA in the circulation, its ability to accumu-
late in pathological sites with differing vascular permeability 
and nonspecific distribution, and most importantly, the fact 
that one miRNA has the potential to target many different 
mRNAs leading to a nonspecific effect.76,77 These challenges 
to miRNA usage for targeted drug delivery and some possible 
solutions are highlighted in Table 1.

Active targeting

Active targeting affects cancer cells through direct interactions 
between ligands and target molecules that are overly abundant 
on the surface of cancer cells, allowing the carriers to distin-
guish targeted cells from healthy cells.78 The drug carriers are 
internalized into the cell via receptor-mediated endocytosis, 

and then, the payload is released.79 This active ligand-specific 
targeting is particularly suitable for miRNA-mediated drug 
delivery applications. The most common active targeting car-
riers for miRNAs are generated from peptides, antibodies, 
aptamers, and nanoparticles, which help miRNAs specifically 
target tumor cells.80 In summary, active targeting is a precise 
mechanism for targeting tumor cells that reduces the need for 
a high number of miRNAs, which is required for passive 
targeting, and thus prevents unwanted side effects.81

PSMA is overly abundant on the surface of PC epithelial 
cells and thus has been used as a successful target for PC 
management.82 Interestingly, PSMA is expressed on the sur-
face of endothelial cells in the tumor neovasculature in many 
other types of cancers, including breast, lung, gastric, color-
ectal, pancreatic and renal cell carcinoma, and bladder cancers. 
Therefore, using PSMA to carry therapeutic miRNA payloads 
may be broadly applicable to cancers in addition to PC.83 We 
discuss the most common active targeting PSMA-based car-
riers used for miRNA in PC.

PSMA-targeting peptides and proteins as miRNA carriers

Peptide- and protein-based carriers have been broadly used for 
miRNA delivery because of the ability of the positive charged 
amino acids to interact with negatively charged nucleotides.84 

For instance, Jin et al. developed a novel combinatorial phage 
biopanning procedure to identify PSMA-specific-targeting 
peptides as carriers for targeted drug delivery to PC cells.85 

They reported that a novel PSMA-specific-targeting peptide 
named GTI, on the basis of its amino acid sequence, exhibited 
high binding affinity and selectivity for PSMA and PSMA- 
positive PC cells. Specifically, GTI mediated the internalization 
of the apoptotic KLA peptide into PSMA-positive LNCaP cells 
and induced cell death. Moreover, FAM-labeled GTI displayed 
high and specific tumor uptake in nude mice bearing human 
PC xenografts. It can be employed as a PSMA-specific ligand.85 

Although this system may be an excellent tool for PC diagnosis 
and targeted drug delivery to PC, to date, no study on the use of 
this system for miRNA delivery via PSMA targeting in PC has 
been reported.

Anti-PSMA antibodies as miRNA carriers

Antibody-based approaches have been widely used to target 
tumor cells via active targeting with specific drug carriers in 
cancer.86 Henry et al. used MLN2704, an antibody- 
chemotherapeutic conjugate consisting of a monoclonal anti-
body specific to PSMA conjugated to the drug maytansinoid 1 
(DM1), which has microtubule-depolymerizing activity. After 

Table 1. Challenges to miRNA usage for targeted drug delivery and possible solutions.

Challenges Possible Solutions

Degradation of miRNAs by nucleases Changing the surface charge and improving their stability
Filtration in the spleen and kidneys Destruction by macrophages while in the circulatory 

system
Chemical modification and/or local administration

Penetration through the cell membrane and extracellular matrix Active targeting via specific ligands and use of cell-penetrating 
moieties

Poor endosomal release and intracellular localization problems Use of conjugating peptides, lytic reactions, or miRNA sponges
Ability to target multiple mRNAs Local administration and active targeting via specific ligands
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MLN2704 binds to PSMA through its specific antibody, 
MLN2704-PSMA is internalized, and DM1 is released into 
the cells, leading to cancer cell death. The Henry et al. study 
demonstrated that MLN2704 showed antitumor activity in an 
animal model of PC, whereas an unconjugated antibody 
showed no antitumor activity and DM1 alone showed weak 
tumor-suppressing activity in vivo .87 Rege et al. focused on 
designing and generating an amphipathic fusion peptide to 
destroy PC cells. Amphipathic lytic peptides exert cytotoxic 
effects on PC cells via depolarization of mitochondrial mem-
branes and the induction of apoptosis.88 This group used 
PSMA-targeted peptides and antibodies against PSMA to pre-
cisely deliver cytotoxic amphipathic lytic peptides to PSMA- 
positive LNCaP cells. The results showed that, compared to the 
peptides, the antibodies more efficiently targeted the PC cells. 
Additionally, the group compared the cytotoxic activity of 
fusion peptides and antibody conjugates and found that treat-
ment with fusion peptides induced oncotic/necrotic death in 
LNCaP cells; moreover, treatment with the antibody conju-
gates caused apoptotic death in these cells.88 Several anti- 
PSMA monoclonal antibodies with cytotoxic agents have 
been introduced for radioimmunotherapy application to target 
PSMA-expressing cells.89 For example, Behe et al. used the 
177Lu-labeled anti-PSMA monoclonal antibody 3F11 to target 
PC cells in a mouse xenograft model. Their results indicated 
that 177Lu-labeled anti-PSMA 3F11 showed high specificity and 
affinity for a xenograft mouse model, making it a potential 
candidate for radioimmunotherapeutic applications in PC.90 

However, the literature on the use of this system for miRNA 
delivery in PC treatment is rare.

PSMA-directed aptamers as miRNA carriers

Aptamers are short single-stranded DNA or RNA oligonu-
cleotides with a unique three-dimensional structure that 
enables its selective binding to specific receptors or protein 
targets,91 making them excellent drug delivery platforms.92 

Conjugation of aptamers to miRNAs is a new method to 
deliver miRNAs precisely to PC cells.93 Dassie et al. developed 
an RNA aptamer (A9 g) that selectively inhibited PSMA 
enzyme activity and functioned as a smart drug for PC treat-
ment. Because PSMA activity plays a crucial role in PC 
progression, this group showed that PC tumor treatment 
with the A9 g aptamer in a murine model significantly 
reduced cell migration and invasion in vitro and metastasis 
to bone in vivo.94 Wu et al. showed that targeting PC with 
miRNA-15a and miRNA-16-1 (potent tumor suppressors in 
PC) through the RNA aptamer A10–3.2, which specifically 
targets PC cells with PSMA residing on their surface, was 
beneficial for the selective killing of PC cells in vitro.95 

Another study by Ye et al. revealed that aptamers in 
a compound with hyperbranched polyamidoamine (HPAA) 
and polyethylene glycol (PEG) and used for targeting PSMA- 
positive LNCaP cells via miRNA-133a-3p delivery facilitated 
miRNA-133a-3p delivery into LNCaP cells and showed excel-
lent cytotoxicity in these cells. Furthermore, in an in vivo 
mouse model of PC, systemic injection of the APT-HPAA- 
PEG/miRNA-133a-3p compound inhibited tumor growth 
and prolonged animal survival.96

PSMA nanoparticles as miRNA carriers

Nanoparticles (NPs) are essential carriers in cancer prevention 
and therapy because they can be generated with unique sizes 
and shapes that enable them to deliver miRNAs and other 
chemotherapeutic agents.97 Silica, gold, and iron oxide NPs 
have been primarily used for miRNA delivery in cancer 
treatment.98 Luo et al. conjugated a PSMA-targeting ligand 
named PSMA-1 to gold NPs (AuNPs) and found that these 
PSMA-1-AuNPs showed greater uptake by PSMA-expressing 
PC3 cells compared to cells lacking PSMA receptors. As gold 
can increase radiotherapy sensitization, significantly enhanced 
radiotherapy efficacy was observed with these PSMA-targeting 
AuNPs.99 Additionally Binzel et al. reported that NPs contain-
ing an anti-PSMA RNA aptamer as the targeting ligand and 
carrying anti-miRNA-17 or anti-miRNA-21 (two common 
oncogenes) suppressed miRNA oncogenic activity in PC, 
showing significant knockdown of miRNA-17 and miRNA- 
21 and upregulation of phosphatase and tensin homolog 
(PTEN), a negative regulator of tumor growth in both 
in vitro and in vivo models of PC.100 Saniee et al. developed 
a docetaxel-loaded NP consisting of poly(lactic-co-glycolic 
acid) polyethylene glycol (PLGA-PEG) conjugated with a urea- 
based anti-PSMA ligand named glutamate-urea-lysine (Glu- 
urea-Lys) to deliver docetaxel for PC treatment. The uptake 
of these NPs by PSMA-positive LNCaP and PSMA-negative 
PC3 cells was analyzed. The results showed that docetaxel 
uptake was more efficient in the PSMA-positive cells when 
compared to the control. In addition, this group showed that 
compared to that of PSMA-targeted NP-carried drugs, the 
toxicity of untargeted NP-carried drugs was reduced by more 
than 70%. Finally, the NPs specifically targeting PSMA-positive 
PC cells showed enhanced the antitumor efficacy mediated via 
docetaxel.101

Challenges to miRNA therapy

Similar to other treatment strategies, challenges and limitations 
have been identified in using miRNAs in cancer treatment.102 

The first three challenges to miRNA therapy are caused by 1) 
nucleases quickly degrading naked miRNAs in the circulatory 
system,103 2) miRNAs quickly cleared through the kidney,102 

and 3) naked miRNAs frequently inducing immune responses 
and being eliminated from the circulation by macrophages, 
thus requiring high-dose administration, which subsequently 
leads to toxicity.104,105 To address these three challenges, sev-
eral different approaches have been employed to alter the 
miRNA surface charge through structural chemical 
modifications:106 1) locked nucleic acid (LNA) modification, 2) 
ribose 2′-OH group modification, 3) peptide nucleic acid 
(PNA) modification, and 4) backbone modification.106

LNA antisense oligonucleotides have been the most exten-
sively studied miRNA structural modifications and have been 
demonstrated to enhance endonuclease resistance and increase 
biodistribution and to exhibit a lower toxicity profile than 
unmodified miRNA.107 The most common groups used to as 
a substitution for 2′-OH are 2′-O-methyl, 2′-O-methoxyethyl, 
and 2′-O-fluoro groups. Substitution with these chemical 
groups enhanced stability, increased binding affinity, and 
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increased the effectiveness of miRNA inhibition in vivo.108 

PNAs are uncharged oligonucleotide analogs. 
A phosphodiester backbone replacement with PNAs produces 
N-(2-aminoethyl)-glycine units. PNA recognizes single- 
stranded nucleic acids with extremely high affinity and 
sequence selectivity. Although uncharged, PNAs increase oli-
gonucleotide stability, making them suitable for therapeutic 
approaches.109 Backbone modification is another strategy in 
which one of the critical atoms in an oligonucleotide is 
replaced to create a more stable oligonucleotide with therapeu-
tic applications. The most widely used backbone-modified 
oligonucleotides are generated by replacing one oxygen atom 
with a sulfur atom. This modification has been shown to 
enhance nuclease resistance. However, modified oligonucleo-
tides exhibit a short circulation half-life and low binding 
affinity.110

The fourth challenge in miRNA therapy is low penetration 
through the cell membrane and the ECM. miRNAs are hydro-
philic and therefore cannot cross cell membranes, despite 
their negative charge.111 Different approaches to help 
miRNAs cross the cell membrane include active targeting 
via peptides and conjugation with lipid-soluble compounds 
such as cholesterol.112 For example, Fabani et al. designed 
anti-miRNA-122 conjugated to penetratin, a cell-penetrating 
peptide (also known as a protein transduction domain), 
enabling delivery of miRNAs through the cell membrane 
in vitro.113

The fifth challenge in miRNA therapy is endosomal escape 
and intracellular localization.114 To enhance endosomal 
release, conjugating peptides and probes have been developed. 
For example, Xie et al. used chloroquine-containing 
2-(dimethylamino)ethyl methacrylate (DMAEMA) copoly-
mers to enhance miRNA delivery by increasing the endosomal 
escape rate. Their results showed that miRNA delivery effi-
ciency was increased by using chloroquine-DMAEMA copoly-
mers in breast cancer cells.115

The sixth challenge involves miRNA targeting of multiple 
mRNAs and the subsequent toxicity caused by off-target gene 
silencing. miRNAs inhibit the expression of target genes by 
imperfect base pairing with target mRNA, allowing a single 
miRNA to regulate the expression of multiple genes, acting as 
a potent multidrug. For example, the tumor-suppressing 
miRNA miR-34 can downregulate genes involved in cell 
proliferation (c-MYC, androgen receptor), angiogenesis 
(VEGF), apoptosis inhibition (BCL2), and the immune 
response (PD-L1), resulting in a potent antitumor 
response.116,117 Localized use of miRNAs and active targeting 
delivery systems can reduce off-target gene silencing and the 
number of possible side effects.118 Furthermore, miRNAs 
may face obstacles in reaching their targets due to competi-
tors that interfere with their functions. Increasing evidence 
suggests that competitive endogenous RNAs (ceRNAs) can 
prevent the downregulation of mRNA targets by binding 
through their own miRNA-binding sites.119 These ceRNAs 
need to be blocked before miRNA targeted therapy can exert 
the maximum effect. We present a summary of the most 
critical challenges to miRNA therapy and potential solutions 
to overcome these challenges through new drug delivery 
technologies in Table 1.

Conclusions and future perspectives

During the past decade, advancements in studies on miRNA 
functions and their essential roles in cancer have led to many 
possibilities for miRNA therapeutic applications. To date, 
many different strategies have been studied to find 
a suitable method for miRNA delivery in cancer 
treatment.120 Nevertheless, the specific properties of 
miRNAs and various physiological obstacles remain the 
main limitations of in vivo miRNA delivery.121 However, 
new opportunities and discoveries being presented by tar-
geted miRNA research are increasing the possibility of using 
miRNA therapy for cancer treatment.122 In the attempts to 
use miRNA in cancer treatment, PSMA is being tested as 
a reliable and specific target for developing a targeted deliv-
ery system with potential application in PC, one of the most 
common cancers worldwide.95,96 As targeted miRNA therapy 
systems mediated through PSMA may increase the efficacy 
and prevent toxic effects on other human cells, new treat-
ment strategies for using PSMA in PC treatment will be 
valuable for further studies. Furthermore, future works are 
needed for designing and optimizing an effective delivery 
system for miRNAs targeting PSMA and potential combina-
tions of these therapies, along with other therapeutic strate-
gies, for the long-term treatment of PC.
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