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Abstract

Background

Calcium electroporation describes the use of high voltage electric pulses to introduce supra-

physiological calcium concentrations into cells. This promising method is currently in clinical

trial as an anti-cancer treatment. One very important issue is the relation between tumor cell

kill efficacy–and normal cell sensitivity.

Methods

Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation

and electrochemotherapy using bleomycin on three different human cancer cell lines: a

colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780), and a

breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibro-

blasts (HDF-n).

Results

The results showed a clear reduction in spheroid size in all three cancer cell spheroids three

days after treatment with respectively calcium electroporation (p<0.0001) or electroche-

motherapy using bleomycin (p<0.0001). Strikingly, the size of normal fibroblast spheroids

was neither affected after calcium electroporation nor electrochemotherapy using bleomy-

cin, indicating that calcium electroporation, like electrochemotherapy, will have limited

adverse effects on the surrounding normal tissue when treating with calcium electropora-

tion. The intracellular ATP level, which has previously been shown to be depleted after cal-

cium electroporation, was measured in the spheroids after treatment. The results showed a

dramatic decrease in the intracellular ATP level (p<0.01) in all four spheroid types—malig-

nant as well as normal.
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Conclusion

In conclusion, calcium electroporation seems to be more effective in inducing cell death in

cancer cell spheroids than in a normal fibroblast spheroid, even though intracellular ATP

level is depleted in all spheroid types after treatment. These results may indicate an impor-

tant therapeutic window for this therapy; although further studies are needed in vivo and in

patients to investigate the effect of calcium electroporation on surrounding normal tissue

when treating tumors.

Introduction
Electroporation or electropermeabilization is a method to generate transient permeabilization
of the cell membrane by applying short, intense electric pulses [1]. The method can be used to
facilitate transport of normally non-permeant ions or molecules into most cell types [2]. This
method is used in the clinic in combination with chemotherapeutic drugs (electrochemother-
apy) where the effect of the drug is increased drastically [2–5]. Due to common side effects of
most chemotherapeutic drugs including bleomycin [6]; it is appealing to be able to use non-
toxic molecules or ions that will induce cell death, when they are internalized into the cells in
high concentration by electroporation. Calcium is a tightly regulated ubiquitous second mes-
senger that is involved in regulation of transcription, metabolism, proliferation, apoptosis,
necrosis, and many other cellular processes [7–9]. Calcium electroporation, where calcium is
introduced into the cell cytosol by electroporation, has previously been shown to efficiently
induce cell death in vitro and in vivo associated with acute ATP depletion [10], using electropo-
ration parameters similar to those used for electrochemotherapy [11]. Calcium electroporation
is currently in clinical trial (ClinicalTrials.gov ID- NCT01941901) for cutaneous metastasis
where the response of the treatment will be compared with the response of electrochemother-
apy using bleomycin, which is a clinically used anti-cancer treatment [12,13]. Calcium electro-
poration has been proven efficient in cell death of cancer cells but the effect on a broader range
of tumor cell lines and on normal cells has not previously been investigated. We have tested the
effect of calcium electroporation and electrochemotherapy using bleomycin in four different
human cell spheroids (three cancer cell lines and one normal primary cell type) in order to
investigate any difference in sensitivity between the different cell types. We chose using 3D
spheroids as an in vivo-like model of tumors, a system which has previously been used for elec-
troporation and electrochemotherapy studies [14,15].

Materials and Methods

Chemicals
Propidium iodide (PI; Sigma-Aldrich), bleomycin sulfate (Bleo; Merck-Millipore), and calcium
chloride (Ca; SAD, Denmark).

Cell culture
Three human cancer cell lines and one normal human cell type were used in this study. HT29
cells (ATCC #HTB-38), from a human colorectal adenocarcinoma, were grown in RPMI-1640
culture medium (Gibco, Invitrogen). SW780 (kindly provided by Dr. Lars Dyrskjøt Andersen,
Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark), a human
bladder transitional cell carcinoma [16], MDA-MB-231 (ATCC #HTB-26), a human breast
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adenocarcinoma, and human dermal fibroblasts HDF-n (ScienCell #2310) were grown in
DMEM culture medium (Gibco, Invitrogen). All cells grew with 10% fetal calf serum (Gibco,
Invitrogen) and 100 U/ml penicillin and 100 μg/ml streptomycin, and all tested negative for
mycoplasma using MycoAlert mycoplasma detection kit (Lonza). Cells were maintained at
37°C in a humidified atmosphere containing 5% CO2.

Spheroid formation
Spheroids were produced with a non-adherent technique as previously described [14]. Briefly,
5000 cells were seeded in ultra-low attachment 96-well plates (Corning, Fisher Scientific) that
were centrifuged 5 min at 4°C at 300 g. Spheroids were cultivated for 5 days at 37°C in a
humidified atmosphere containing 5% CO2. Day of treatment was denoted as day 0. The nor-
mal dermal fibroblast spheroids were smaller as primary normal cells do not grow as aggres-
sively as cancer cell lines.

Electroporation conditions
One spheroid at the time was incubated 5 min in 100 μl of HEPES buffer (10 mMHEPES,
250 mM sucrose, and 1 mMMgCl2 in sterile water) with added drug before placed between
two stainless steel, flat, parallel electrodes (0.4 cm between electrodes) in 100μl of HEPES buffer
with added drug and 8 square-wave pulses of 100 μs, 1 Hz, and 1000 V/cm or 5000 V/cm
(applied voltage to electrode distance ratio) were delivered by the Electro cell S20 generator
(βTech, France) at room temperature. After treatment, spheroids were rinsed in HEPES buffer
and cultivated in cell culture media before analysis. Membrane permeabilization was assessed
by pulsing spheroids in the presence of 100 μM propidium iodide after 5 min incubation
(1000 V/cm) followed by fluorescence imaging as in [15]. The 1000 V/cm parameters (applied
voltage to electrode distance ratio) are the same as the ones used in our previous in vivo study
[10] and used in the clinical setting [12].

Spheroid growth experiment
After harvesting, spheroids were washed in HEPES buffer and incubated for 5 min in respec-
tively HEPES buffer (control), 168 mM CaCl2 (as used before [10]), or 1 mM bleomycin (as
used before [15]) before electric pulse application or not.

Growth of spheroids was followed by light microscopy before treatment and at day 2, 3, and
4 after treatment using a Leica DMIRB microscope coupled to a coolSNAP HQ camera (Roper
Scientific, Photometrics) and size determined using Image J software (NIH, Bethesda, USA).
The normalized area was expressed as the ratio of the post-treatment spheroid 2D area com-
pared to the area before treatment as in [14,15].

Differences in normalized areas in the 6 treatment groups were evaluated as repeated mea-
surements, validated and analysed with an exponential decrease model with Bonferroni correc-
tion using SAS software version 9.2. ‘Group’, ‘days’ and ‘spheroid’ were considered factors and
baseline level of spheroid area as covariant.

Viability
Four days after treatment, spheroids were incubated for 30 min at 37°C with 2 μMCalcein-AM
and 4 μM EthD-1 (LIVE/DEAD viability/cytotoxicity kit, Invitrogen). In living cells, active
intracellular esterase cleaves the calcein-AM to intensely fluorescent calcein, which is retained
within cells with membrane integrity. Fluorescence was observed using a Leica DMIRB micro-
scope coupled to a coolSNAP HQ camera (Roper Scientific, Photometrics). In order to

Calcium Electroporation in Normal and Malignant Cell Spheroids

PLOS ONE | DOI:10.1371/journal.pone.0144028 December 3, 2015 3 / 11



compare pictures, fluorescence intensities were normalized using the maximum value, using
Image J software (NIH, Bethesda, USA).

MDA-MB231 spheroids could not be tested since the spheroids were destroyed after both
calcium electroporation and electrochemotherapy using bleomycin, and therefore transfer of
the spheroids at day 4 to do live/dead staining could not be performed.

ATP assay
Spheroids of the four cell types were electroporated as described above with 168 mM calcium.
Spheroids electroporated with HEPES buffer, non-electroporated spheroids incubated with
168 mM calcium and untreated spheroids were used as controls. Additionally, one group of
spheroids was exposed to very high voltage electroporation (8 pulses of 100 μs, 5000 V/cm, and
1 Hz); the highest electric field possible to apply with the used equipment and with the elec-
trode geometry employed. This was done with the aim of examining cell death but results
showed that this high electric field was not sufficient for complete cell death. Spheroids were
lysed 1, 4, 24, and 72 hours after treatment with 100 μL of lysis buffer (50 mM TRIS pH 8, 1
mM EDTA, 0.5% Tween20), and ATP content determined by adding 100 μL rL/L Reagent
(ENLITEN ATP Assay, Promega) and measuring light emission using a luminometer (Clarios-
tar, BMG). Difference in ATP level after different treatments was assessed by 2-way ANOVA
with post least-squares-means test with Bonferroni correction.

Results and Discussion
Calcium electroporation seemingly had no effect on the size of the human fibroblast spheroids
compared with untreated controls, but efficiently reduced the size of the three different cancer
cell spheroids compared with untreated controls (p<0.0001 three days after treatment), at least
as efficiently as electrochemotherapy using bleomycin (p<0.0001 three days after treatment;
Fig 1). Although the effect of calcium electroporation appears to be superior to the effect of
electrochemotherapy using bleomycin in two of the cancer cell spheroids (HT29 and SW780),
this could be due to the chosen concentrations (168 mM CaCl2 as previously used in vivo [10]
and 1 mM bleomycin as previously used in spheroids [15]).

As seen in Fig 1, despite seeded at the same density, the spheroids differ in size on the day of
treatment with the fibroblast spheroids being the smallest (182 +/- 9 μm in diameter) followed
by the breast cancer spheroids being 321 +/- 15 μm in diameter and the bladder cancer and
colon cancer spheroids being the largest (514 +/- 17 μm and 628 +/- 17 μm in diameter, respec-
tively). It has previously been shown that the size of the spheroids affects the sensitivity to elec-
troporation with the smaller spheroids being most sensitive [14]. The fibroblast spheroids
should therefore be more permeabilized and more affected than the cancer cell spheroids
which are not the case (as described later and seen in Fig 1). Thus, in spite of the smaller size
the fibroblast spheroids seem to be less sensitive to calcium electroporation than the cancer cell
spheroids. It is also seen that the untreated normal cell spheroids decreased slightly in size over
time indicating that these cells do not continue to grow over time as cancer cells. The breast
cancer cell spheroids decreased in size over time likely because this is a metastasizing cell line,
thus the cells easier detach from each other.

To investigate whether cells in the spheroids were dead or alive after treatment, the spher-
oids were examined using a viability/cytotoxicity assay where living cells were stained with cal-
cein-AM and dead cells were stained with EthD-1 (Fig 2). The normal fibroblast spheroids
stained with calcein irrespective of treatment, showing that many of the cells in these spheroids
were still viable after the different treatments albeit with few cells staining EthD-1 indicating
cell death. This could be due to the natural turn-over of these cells, and the amount of dead
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Fig 1. Spheroid size. Size measurements of human normal dermal fibroblast (A), colon cancer (B), bladder
cancer (C), and metastatic breast cancer (D) spheroids. Left panel: representative fluorescence microscopy
images of a spheroid just after electroporation (8 pulses of 100 μs, 1000 V/cm, and 1 Hz) in buffer containing
propidium iodide (PI) to visualize electropermeabilized cells and light microscopy images of another spheroid
just before treatment (LM). Right panel: Growth curves of the spheroids after treatment with respectively 168
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cells seems to be comparable in control as well as in treated spheroids. When looking at the
colon cancer spheroids, it is clearly seen that there was a high death rate (low calcein staining
and high EthD-1 staining) in the spheroids treated with calcium electroporation and electro-
chemotherapy using bleomycin. It is also seen that electroporation alone caused dissociation of
some of the cells on the outer surface of the spheroid but did not kill the cells. Live/dead stain-
ing of the bladder cancer spheroids showed, similar to staining of that cell line with propidium
iodide (Fig 1), that the dyes did not enter the spheroid. This could be due to tight junctions in
the bladder cancer cell line.

Electrochemotherapy using bleomycin has a therapeutic window, where tumors are much
more sensitive to electrochemotherapy than normal cells [17–19], thus the limited effect of
electrochemotherapy using bleomycin on the normal fibroblast spheroids was expected. Inter-
estingly, our present study could indicate that also treatment with calcium electroporation
affects malignant and normal cells differentially.

ATP levels were previously shown to be acutely and severely depleted after electroporation
alone as well as after calcium electroporation. The electroporated cells have re-established the
ATP level 4 hours after treatment whereas in cells treated with calcium electroporation the
ATP level stayed low for up to 8 hours after treatment [10]. The intracellular ATP level in the
spheroids after calcium electroporation was measured (Fig 3) to investigate if the difference in
sensitivity between cancer and normal cells could partly be explained by a difference in intra-
cellular ATP level after treatment. Intriguingly, we found a dramatic decrease in ATP level
both in cancer and normal cells after treatment with calcium electroporation (p<0.01). Thus,
the effect of calcium electroporation on the intracellular ATP level cannot explain the differ-
ence in sensitivity; however the normal cells seem able to survive this decrease in ATP level
whereas the highly metabolically active cancer cells do not. The amount of ATP per spheroid
differs up to a 100 fold between the different cell spheroids likely due to the difference in size
between the different spheroid types. In addition, we applied high voltage electroporation treat-
ment, attempting to induce cell death. The intracellular ATP was actually not totally depleted
in all these spheroids, indicating that all of the cells were not dead. Indeed, calcium electropora-
tion significantly affected the intracellular ATP level more than treatment with high voltage
pulses in the cancer cell spheroids (p<0.0001).

The electroporation parameters used in this study (8 pulses of 100 μs, 1000 V/cm (applied
voltage to electrode distance ratio), and 1 Hz) is the same as the clinically used electroporation
parameters. The linear array electrode is used in the clinic [20] and has 4 mm in distance
between the electrodes exactly like the plate electrode used in this study. To test if the parame-
ters caused permeabilization of the cells in the spheroid model, the spheroids were electropo-
rated in the presence of propidium iodide (Fig 1). This showed that the cells were
permeabilized using these parameters in accordance with previous work showing that all the
cells within spheroids, even those in the center, were permeabilized after electric pulses applica-
tion [15]. Cells in the center of the spheroids can be up to 19% smaller than the peripheral cells
[21] and the different cell types differ in size, however cell size should not affect the sensitivity
to treatment since all the cells in the spheroids were permeabilized (Fig 1). Interestingly, propi-
dium iodide (668 Da) was not detected in all of the cells in the bladder cancer (SW780) spher-
oid. This could be explained by the presence of tight and adherent junctions in this epithelial

mM calcium (Ca), 1 mM bleomycin (Bleo), electroporation (EP), 168 mM calcium electroporation (Ca EP),
electrochemotherapy using 1 mM bleomycin (Bleo EP), and untreated controls (Control). Measurements
performed before treatment and at day 2, 3, and 4. Spheroid size is normalized to the size before treatment,
means +/- SD, n = 5–6.

doi:10.1371/journal.pone.0144028.g001
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bladder cell line impeding diffusion of propidium iodide into the center of the spheroid.
Indeed, bladder epithelial cells are known to display tight junctions playing a critical role in the
maintenance of a physiological, impermeable, urine-blood barrier [22]. This barrier prevents

Fig 2. Live/dead staining. Live/dead staining with Calcein-AM and EthD-1 of human normal dermal fibroblast, colon cancer, and bladder cancer spheroids 4
days after treatment with 168 mM calcium (Ca), 1 mM bleomycin (Bleo), electroporation (EP; 8 pulses of 100 μs, 1000 V/cm, and 1 Hz), 168 mM calcium
electroporation (Ca EP), or electrochemotherapy using 1 mM bleomycin (Bleo EP), and of untreated controls (Control). Upper panels are calcein-AM staining
(living cells), middle panels are EthD-1 staining (dead cells), and lower panels are merged images of living (green) and dead (red) cells.

doi:10.1371/journal.pone.0144028.g002
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Fig 3. Intracellular ATP level. Intracellular ATPmeasurements of human normal dermal fibroblast, colon
cancer, bladder cancer, and breast cancer spheroids 1, 4, 24, and 72 hours after treatment with 168 mM
calcium (Ca), electroporation (EP; 8 pulses of 100 μs, 1000 V/cm, and 1 Hz), 168 mM calcium electroporation
(Ca EP), high voltage EP (8 pulses of 100 μs, 5000 V/cm, and 1 Hz), and of untreated controls (Control).
Means + SD, n = 3–5 (n = 2 for blank). Please note the difference in the y-axes.

doi:10.1371/journal.pone.0144028.g003
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passage of ions and solutes between the urine and the blood. This could also explain the lack of
live/dead staining in this spheroid type (Fig 2). However, the spheroids were clearly affected by
calcium electroporation and electrochemotherapy using bleomycin indicating that these drugs,
with electroporation, are able to enter the cells in the spheroid. The bladder cancer spheroids
treated with calcium electroporation or electrochemotherapy using bleomycin showed more
labeling after live/dead staining than spheroids treated with the other conditions. It could be
that electroporation with these drugs loosens or alters tight junctions, however more research
is needed. Indeed, bladder cancer is a likely novel target for electrochemotherapy or calcium
electroporation [23,24].

Electrochemotherapy using bleomycin is used in the clinic for treatment of cutaneous
metastasis of all histologies [5,13,18,25]. Calcium electroporation is currently being investi-
gated in a double-blinded randomized clinical trial, where intratumoral injection of either bleo-
mycin or calcium followed by electroporation is evaluated for response. It has previously been
shown that when treating cutaneous metastasis with electrochemotherapy the surrounding
normal tissue is much less affected [18]. However, the effect of calcium electroporation on nor-
mal cells has not been investigated. Here, we have shown that both calcium electroporation
and electrochemotherapy using bleomycin effectively induce cell death in the tested cancer cell
spheroids but the treatments do not seem to affect the normal fibroblast spheroids to the same
degree even though a similar loss of intracellular ATP level was observed in all cell lines. Rea-
sons for this apparent discrepancy in sensitivity to calcium electroporation between malignant
and normal cells could be differences in calcium signaling pathways [26], calcium channel
expression [27], cell death pathways [28], and other phenomena e.g. effects on the microtubule
system [29] or membrane repair system [30]. The discrepancy could also be due to difference
in the active calcium transport [31,32] such as the expression of the plasma membrane calcium
ATPases. Further investigations are needed to understand the cell death pathway of calcium
electroporation and the difference in sensitivity.

The perspectives for calcium electroporation are many since electroporation based treat-
ments are increasingly used to treat cutaneous metastases [5,13], in guidelines for treatment of
cutaneous tumors [33], and also increasingly used for tumors in internal organs e.g. for liver,
brain, and bone metastases [2,4,34]. Several clinical trials are ongoing for irreversible electropo-
ration in treatment of tumors in internal organs [35–38] and the treatment field in irreversible
electroporation may be enlarged using calcium as an adjuvant. Furthermore, calcium electro-
poration may be of particular interest since it can be used directly by interventional radiologists
and surgeons since oncologists are not required for application of this novel treatment.

In conclusion, calcium electroporation is a novel, efficient, simple, and inexpensive procedure,
showing very promising results in preclinical studies, and is currently in clinical trial. The finding
of a differential effect to calcium electroporation in malignant and normal cell spheroids is prom-
ising and further research is needed to verify this on other normal cell types as well as in vivo and
in patients to validate the findings and to understand the mechanism behind this difference.
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