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A user-friendly program has been developed to analyze diffuse scattering from

single crystals with the reverse Monte Carlo method. The approach allows for

refinement of correlated disorder from atomistic supercells with magnetic or

structural (occupational and/or displacive) disorder. The program is written in

Python and optimized for performance and efficiency. Refinements of two user

cases obtained with legacy neutron-scattering data demonstrate the effective-

ness of the approach and the developed program. It is shown with bixbyite, a

naturally occurring magnetic mineral, that the calculated three-dimensional

spin-pair correlations are resolved with finer real-space resolution compared

with the pair distribution function calculated directly from the reciprocal-space

pattern. With the triangular lattice Ba3Co2O6(CO3)0.7, refinements of occupa-

tional and displacive disorder are combined to extract the one-dimensional

intra-chain correlations of carbonate molecules that move toward neighboring

vacant sites to accommodate strain induced by electrostatic interactions. The

program is packaged with a graphical user interface and extensible to serve the

needs of single-crystal diffractometer instruments that collect diffuse-scattering

data.

1. Introduction

Crystalline materials with disorder giving rise to unusual

properties can be studied with diffuse-scattering measure-

ments (Frey, 1995). These behaviors involve a wide range of

phenomena from magnetically to structurally disordered

crystals. Quantifying and understanding the diffuse scattering

is crucial to developing property–structure relationships of the

disorder in crystalline materials. Unlike conventional crystal-

lography and diffraction in which the ‘average’ structure is

obtained, diffuse-scattering studies reveal the local ‘devia-

tions’ away from the average (Welberry & Butler, 1995).

Often, the disorder is locally correlated, involving one or more

of the three general disorder types. These include correlations

of magnetic moments, site occupancies and/or atomic dis-

placements.

Correlated disorder is essentially ubiquitous in all func-

tional materials, and the nature of that disorder is closely

related to its particular property functionalities (Keen &

Goodwin, 2015). Diffuse scattering can be measured in both

powder and single-crystal diffraction experiments; however,

characterization of the three-dimensional reciprocal space is

achievable by instrumentation advancements that allow

complete volumes of single-crystal diffraction data to be

collected (Welberry & Goossens, 2014). A recent technique

has emerged to obtain the three-dimensional ‘difference’ pair

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576721010141&domain=pdf&date_stamp=2021-11-23


distribution function (3D-�PDF) from single-crystal diffuse-

scattering data. This autocorrelation function describing the

deviations away from the average structure can be obtained

for occupational/displacive disorder (Weber & Simonov, 2012)

and magnetic disorder (Roth et al., 2018) through the Fourier

transform. The refinement program Yell (Simonov et al., 2014)

is capable of refining the disordered structure from the full-

volume diffuse-scattering data set interpreting with the 3D-

�PDF.

Although powerful, the 3D-�PDF requires special care to

separate the Bragg and diffuse scattering from the total scat-

tering signal. For example, Bragg reflections are removed and

the missing data are filled back in by interpolation to resemble

the surrounding diffuse intensity data. However, this process

may introduce artefacts in correlations with larger separation

vectors. More advanced methods to deal with Bragg peaks

include K-space algorithmic reconstruction (KAREN), which

uses statistical methods to separate the Bragg from the diffuse

scattering (Weng et al., 2020). Another challenge with the 3D-

�PDF is the requirement of a complete volume of diffraction

data. Often, it is impossible to obtain complete reciprocal-

space volumes so data symmetrization is utilized (Michels-

Clark et al., 2016). In many instances, the number of available

symmetry operators is reduced by the disorder itself. Similarly,

sample environments on instruments limit the detector

coverage, further impinging the volume mapping. In these

cases, alternative approaches to model-free methods are

considered to obtain the three-dimensional correlations.

Atomistic Monte Carlo methods are one such technique,

where discrete crystals are constructed with atoms located at

their average positions within a unit cell (Proffen & Welberry,

1998b). A supercell is generated by extending the unit cell in

three-dimensional space, and disorder is introduced by

decorating atoms with either magnetic moments, vacancies or

atomic displacements. Changes are made by rotating

moments, replacing atoms with vacancies and displacing atoms

until the disordered supercell configuration agrees with

experiment through the calculated diffraction intensity. This

relatively straightforward approach is a robust method for

quantifying the disorder from experimental single-crystal

diffraction data, allowing for direct calculation of three-

dimensional pair correlations.

Using forward Monte Carlo (FMC) modeling, a Hamilto-

nian is constructed that describes the system energy and

involves coupling constants between the neighboring atoms

(Welberry & Butler, 1994). For example, a general Heisenberg

model (Ashcroft & Mermin, 1976) is used in magnetically

disordered systems where each spin vector pair has an

(isotropic or anisotropic) exchange coefficient describing the

interaction strength between bonds. To simplify the Hamil-

tonian, often pairs up to a finite number of nearest neighbors

are considered. In addition, long-range dipole interactions are

greatly simplified assuming Ising spin constraints along easy

directions such as in spin ice (Bramwell & Gingras, 2001).

Similar simple energy models are used to capture occupational

disorder using binary random variables and displacive

disorder using harmonic potentials (Proffen, 2000). As these

simplified models generate many of the diffuse-scattering

features (Welberry, 2004), additional effort is required for

more complicated crystal structures where the models become

more difficult to adapt and the disorder is not well known or

established.

The other atomistic method is reverse Monte Carlo (RMC).

RMC is characterized not by an energy function with a model

but rather by a goodness-of-fit parameter used to ‘fit’ the

supercell disorder to experimentally obtained scattering data

(McGreevy & Pusztai, 1988; McGreevy, 2001). RMC does not

use a Hamiltonian and is a good tool for systems with

unknown disorder. This is generally the case for most

complicated material systems that are difficult to model.

Several RMC programs exist for analysis of diffuse scattering,

including RMCProfile for polycrystalline and powder diffrac-

tion (Tucker et al., 2007), Spinvert for powder diffraction of

magnetic materials (Paddison et al., 2013), and DISCUS for

powder and single-crystal diffraction (Proffen & Neder, 1997).

The analysis of single-crystal diffuse scattering from diverse

materials systems with complicated behaviors over different

conditions is a serious challenge even with RMC (Nield et al.,

1995). The resources required to perform refinements are

computationally intensive since the diffuse-scattering pattern

has to be recalculated for each proposed move of the RMC

refinement. A user-friendly and efficient single-crystal RMC

program that integrates into data-reduction workflows is

highly desired at X-ray and neutron-scattering user facilities,

since it avoids construction of complicated models and works

on partial volumes of the reciprocal space. The new program

rmc-discord is introduced to address this challenge for each of

the chemical, structural and magnetic disorder types, opti-

mizing algorithms for performance and providing a user-

friendly experience.

2. Reverse Monte Carlo approach

The RMC method uses the Metropolis algorithm, similarly to

FMC; details are available elsewhere (Proffen & Welberry,

1997, 1998a; Welberry & Proffen, 1998). For any candidate

move that gives an improved fit �2, defined here as

�2 ¼
X

Q

�
IcalcðQÞ � IexptðQÞ

�exptðQÞ

�2

; ð1Þ

the disturbance is always accepted. Here Icalc(Q) and Iexpt(Q)

are the calculated and experimental intensity, respectively.

The experimental error �expt(Q) is obtained from the data

normalization (Michels-Clark et al., 2016). If instead the fit

worsens, the move is either accepted or rejected with some

probability according to an acceptance ratio that is a function

of the current system temperature and magnitude of the

change in fit. As the refinement progresses and overcomes

local minima, fewer and fewer candidates that worsen the fit

are accepted as it converges to a global minimum.
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2.1. Single-crystal diffuse-scattering intensity calculations

A major advancement in the calculation of single-crystal

diffuse-scattering patterns from atomistic models utilizes the

fast Fourier transform (FFT), giving a speedup of at least a

factor of one hundred over traditional algorithms in the

program Scatty (Paddison, 2019). Although an RMC imple-

mentation of this algorithm is tempting to achieve faster

refinements, further improvements can be made recognizing

that the diffuse-scattering pattern is calculated repeatedly

throughout the refinement. By storing intermediate results in

memory, it is possible to update the diffuse-scattering pattern

with order corresponding to the chosen sizes of the supercell

and reciprocal-space volume data set. Therefore, the recal-

culation of a diffuse-scattering pattern after a given move in

the refinement can be achieved in nearly linear complexity.

The Scatty algorithm using FFT is summarized below for

magnetic and structural disorder types (Paddison, 2019), and

then we discuss the modification of storing intermediate

results in memory.

The underlying Scatty approach is to perform the FFT of the

disordered magnetic or structural parameters over the discrete

average position vectors of the supercell lattice points for each

unique atom site labeled j = 0, 1, . . . . Through vector addition,

the average location of an atom in a crystal can be defined in

terms of a lattice vector R and its basis vector rj. For a

supercell with finite size N1 � N2 � N3, these positions can be

written in terms of the direct lattice vectors a, b and c, and

integer cell coordinates (R1, R2, R3):

R ¼ R1aþ R2bþ R3c; Ri ¼ 0; 1; . . . ;Ni � 1; ð2Þ

which produces the uniform grid spacing of the discrete

Fourier transform (DFT) with (N1N2N3)2 operations (Briggs

& Henson, 1995). The FFT algorithm efficiently evaluates this

using of the order of N1N2N3 log2ðN1N2N3Þ operations. The

average position vector rj of a unique site j within the unit cell

is written in terms of the direct lattice vectors and its fractional

coordinates uj, vj and wj:

rj ¼ ujaþ vjbþ wjc: ð3Þ

The true position of any atom in the supercell is the sum of its

average position and its displacement uj.

Given a real-space field gj(R) that captures the disorder

among magnetic moments, site occupancies and/or atomic

displacements at sites j within a cell of the supercell R, its DFT

is defined by

gjðkÞ ¼
P
R

gjðRÞ expðik � RÞ: ð4Þ

Here, gj(k) is the sequence of Fourier coefficients in the spatial

frequency domain k. This uniformly spaced wavevector is

given by

k

2�
¼

k1

N1

a� þ
k2

N2

b� þ
k3

N3

c�; ki ¼ 0; 1; . . . ;Ni � 1; ð5Þ

where a*, b* and c* are the primitive reciprocal lattice vectors,

and k1, k2 and k3 are grid points. This wavevector k is defined

within the reciprocal lattice unit cell with resolution deter-

mined by the supercell size. To obtain the reciprocal-space

wavevector, the reciprocal lattice vector K defined in terms of

integer Miller indices h, k and l,

K

2�
¼ ha� þ kb� þ lc�; ð6Þ

is added to the uniformly spaced wavevector k.

The experimental reciprocal-space data set is composed of

equally spaced bin sizes and can be written as

Q

2�
¼ Q1a� þQ2b� þQ3c�; ð7Þ

where Q1, Q2 and Q3 are of size n1 � n2 � n3, respectively.

Although the supercell size gives the maximum reciprocal-

space resolution from k defined in equation (5), a finer (or

coarser) grid of reciprocal-space points Q corresponding to

experimentally obtained scattering data can be implemented

by using interpolation (or resampling). First, the phase factor

in the scattering equations for both magnetic and structural

scattering can be written as exp½iQ � ðRþ rj þ ujÞ� =

expðiQ � RÞ expðiQ � rjÞ expðiQ � ujÞ. Recognizing the identity

exp(iK � R) = 1, the term exp(iQ � R) ’ exp[i(K + k) � R] =

exp(ik � R). The resulting phase factor expðik � RÞ �

expðiQ � rjÞ expðiQ � ujÞ allows for the DFT to be incorporated

into the diffuse-scattering calculations that are efficiently

evaluated using the FFT algorithm.

The procedure for calculating the diffuse-scattering inten-

sities from a supercell of moments located at their average

position (uj = 0) is summarized below. For magnetic scattering,

the DFT of each magnetic moment vector Mj(R) is computed

according to

MjðkÞ ¼
P
R

MjðRÞ expðik � RÞ: ð8Þ

Taking the transformed moments Mj(k) over each site, the

magnetic structure-factor vector F(Q) is calculated by

summing over each unique site j within the unit cell:

FðQÞ ¼
P

j

fjðQÞMjðkÞ expðiQ � rjÞ; ð9Þ

where fj(Q) is the magnetic form factor of the ion. The

structure factor is then projected into the scattering plane

defined by the unit vector Q̂Q of the reciprocal-space wave-

vector Q using

F? ¼ Q̂Q� F� Q̂Q: ð10Þ

Finally, the magnetic intensity is calculated according to

IðQÞ ¼
C

N
hjF?ðQÞj

2
i; ð11Þ

where C is a constant (0.07265 b) and N is the total number of

atoms in the supercell. The angle brackets indicate that

multiple supercell refinements can be averaged together

(Paddison, 2019) to reduce the noise of a recalculated pattern.

For each individual refinement, however, the refined intensity

is calculated using only the refined supercell.

A similar approach is followed for occupational and

displacive disorder. Assuming that each site can be occupied
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by either an atom or a vacancy, a binary site-occupancy

parameter �j(R) can be defined according to

�jðRÞ ¼
0 unoccupied

1 occupied

�
ð12Þ

which can be incorporated into the structure-factor calcula-

tion. A site that is occupied may also take on some atomic

displacement uj(R) away from its average position. The

structure factor accounting for both occupancy and displace-

ment is given by

FðQÞ ¼
P

j

P
R

�jðRÞbj expðik � RÞ expðiQ � rjÞ exp½iQ � ujðRÞ�;

ð13Þ

where bj is the neutron-scattering length of atom j. For X-rays,

the scattering length is replaced by form factor fj(Q).

Following the Scatty approach, it is necessary to take the

Taylor expansion of exp½iQ � ujðRÞ� truncated to order n about

Q � uj(R) = 0. A second-order expansion is typically sufficient,

but higher orders are necessary to capture some diffuse fea-

tures (Butler & Welberry, 1993). The trinomial expansion for

the powers of the dot product in Cartesian coordinates for the

mth term of the Taylor series can be written in a condensed

notation as ½Q � ujðRÞ�
m = ½Q1u

j
1ðRÞ þQ2u

j
2ðRÞ þQ3u

j
3ðRÞ�

m =P
j�j¼m Q�l U

�l
j ðRÞ, where � indicates three-dimensional multi-

index notation, a three-tuple of non-negative integers � =

(�1, �2, �3), and |�| = �1 + �2 + �3. The Taylor expansion

products Q� and U�
j are defined by

Q�
¼
Q3
l¼1

Q
�l

l and U�
j ðRÞ ¼

Q3
l¼1

u
j
lðRÞ

�l : ð14Þ

By definition, Q� ¼ U�
j ðRÞ � 1 when m = 0.

The occupancy parameter and displacement products can

be combined to give a new structural parameter. To enforce

the overall composition cj for each atom j, the relative occu-

pancy parameter is defined as

ajðRÞ ¼
�jðRÞ

cj

� 1; ð15Þ

which takes the values aj(R) = �1 and aj(R) = 1/cj � 1 when it

is unoccupied and occupied, respectively. Multiplying the site-

occupancy parameter by the displacement products gives a

new structural parameter,

V�
j ðRÞ ¼ cj½1þ ajðRÞ�U

�
j ðRÞ; ð16Þ

which can be converted to the wavevector domain by DFT,

V�
j ðkÞ ¼

P
R

V�
j ðRÞ expðik � RÞ: ð17Þ

The structure factor in equation (13) can then be approxi-

mated by

FðQÞ ¼
X

j

bj expðiQ � rjÞ
Xn

m¼0

im
X
j�j¼m

1

�!
V�

j ðkÞQ
�; ð18Þ

where �! = �1!�2!�3!. Lastly, the diffuse-scattering intensity is

determined by

IðQÞ ¼
1

N

D
jFðQÞ � hFðQÞij2

E
; ð19Þ

where hF(Q)i is the Bragg structure factor (Frey, 1995;

Paddison, 2019) and the outer angle brackets indicate aver-

aging over multiple refinements. Again, this averaging over

supercells is only carried out for the recalculated pattern. In

the limit of no displacements, uj(R) = 0 and only the m = 0

term remains in the Taylor expansion products such that the

two right-most sums in equation (18) simplify to �j(R). Simi-

larly, in the limit of no occupational disorder, �j(R) = cj[1 +

aj(R)] = 1, and the parameter simplifies to V�
j ¼ U�

j .

2.2. Storing of intermediate results in memory

For each RMC move, one atom in the supercell is changed,

requiring the complete recalculation of the scattering pattern.

A straightforward implementation for recalculating the

intensity from the structure factor is to recompute the FFT in

N1N2N3 log2ðN1N2N3Þ operations for parameters affected by

the change at location (R1, R2, R3, j). Next, recalculate the

structure factor by multiplying the FFT result with phase and

form factors summing over each site j. Finally, obtain the new

intensity from the magnitude of the structure factor. However,

the intermediate results for each one of these operations can

be computed before the refinement and stored into memory.

Significant speedups in recalculating the intensity can be made

by taking advantage of these intermediate results, reusing and

updating them as needed according to whether a move is

accepted or rejected. Using the definition of the DFT, the

transformed results of a given field computed initially by FFT

can be updated with order corresponding to the supercell size.

The structure factors can be updated using a similar procedure

with order corresponding to the size of the experimental data

set. The two procedures for updating the DFT result and

structure factor are outlined below.

Beginning with the DFT update procedure, every proposed

move is accompanied by a change in only one atom of the

supercell with coordinates (R1, R2, R3, j). All other atoms

remain unchanged. Considering the field represented by the

arbitrary function gj(R) = gj(R1, R2, R3) in equation (4), its

DFT gj(k) = gj(k1, k2, k3) is affected for all ki = 0, 1, . . . , Ni� 1.

Using the FFT, recalculation of equation (4) reduces the order

of operations from (N1N2N3)2 to N1N2N3 log2ðN1N2 N3Þ.

However, intermediate results from the DFT calculation itself

can be stored in memory to update gj(k) on the order of

N1N2N3.

First, the exponential factors exp(ik � R) are calculated and

stored in an array exp_fact[k1,k2,k3,R1,R2,R3] of

size (N1N2N3)2 at the beginning of the refinement. For a

chosen atom with coordinates (R1, R2, R3, j), the N1N2N3

values of gj(k1, k2, k3) are copied into a smaller ‘original’ array

for site j. A single ‘candidate’ value is generated at (R1, R2, R3,

j) for gj(R1, R2, R3). Next, a Fourier components candidate

array of size N1N2N3 corresponding to site j is computed by

adding to the original array the product of the exponential

factors with the difference between the candidate and

original value of gj(R1, R2, R3). This is carried out for all
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ki = 0, 1, . . . , Ni� 1. Pseudocode of this procedure is shown in

Fig. 1 for updating the Fourier components of the magnetic

moment vector Mj(k) and the structural parameter V�
j ðkÞ.

Once the candidate array is computed, it is then used to

update the structure factor.

A similar procedure is utilized to update the structure

factors. At the beginning of the refinement, two copies of the

structure factor are made. For every proposed update, one is

used to calculate the candidate structure factor while the other

is used to store its original values. The structure-factor para-

meters that never change are also stored in an array

fact[q1,q2,q3,j]. Here, q1, q2 and q3 are integer indices

corresponding to Q1, Q2 and Q3 in equation (7). For magnetic

disorder, the factors are fjðQÞ expðiQ � rjÞ, and for occupa-

tional/displacive disorder, the factors are bj expðiQ � rjÞ. The

products of these factors with all of the corresponding Fourier

components are saved in a product array: these products

include one for each of the three vector components of the

magnetic moment vector Mj(k) or one for the structural

parameter V�
j ðkÞ. These arrays have size n1n2n3 multiplied by

the number of unit-cell atoms. For each update of a Fourier

component corresponding to site j, the n1n2n3 values in the

product array for site j are copied into an original array before

a candidate array is computed by multiplying the Fourier

components with the factors array. The candidate structure-

factor array is computed for all Qi by adding to the original

array the difference between the candidate and original

product arrays. This removes the need to sum over all j as in

equations (9) and (18). All structure-factor updates can be

accomplished in the order of reciprocal-space size. This update

procedure is illustrated in Fig. 2, which displays the pseudo-

code for the magnetic structure-factor vector F(Q) and

nonmagnetic structure factor F(Q).

After the candidate structure factors are calculated, the

intensities are calculated using equations (11) and (19). The

typical RMC refinement continues. If the proposed move is

accepted, the candidate Fourier component array is copied

into the larger array of components. The candidate products

array is also copied into its corresponding larger array. If the

move is rejected, no copies are made into the larger arrays and

computer programs
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Figure 1
Pseudocode for updating the magnetic and structure Fourier components using the intermediate results. For a given change in the supercell at location
(R1, R2, R3, j), a nested for loop of size N1 � N2 � N3 is needed to update the Fourier components. By comparison, recalculation of the DFT by FFT
requires on the order of N1N2N3 log2ðN1N2N3Þ operations.

Figure 2
Pseudocode for updating the structure factors using the intermediate results and a nested for loop of size n1 � n2 � n3. Multiplying the updated Fourier
components by precomputed fixed factors into a product array, the structure factor is updated by simply adding the difference between the candidate and
original arrays. A mapping function is used to account for nearest-neighbor interpolation due to differences in reciprocal-space and Fourier-space
resolution.



a new move is proposed. This procedure of saving inter-

mediate results allows for fast recalculation of the intensity. It

also benefits from multi-threaded parallelism.

2.3. Implementation and libraries

The program is written in Python (https://www.python.org/),

allowing for efficient development and interfacing with many

widely available software libraries including NumPy (https://

numpy.org/) for array manipulation, SciPy (https://www.scipy.

org/) for advanced scientific functions like kD trees, and

Matplotlib (https://matplotlib.org/) for plotting. Performance-

critical functions and subroutines are written in Cython

(https://cython.org/), providing extensions with the perfor-

mance of compiled C code with support for parallelism

through OpenMP (https://www.openmp.org/) with parallel

‘for loops’. To read crystallographic information framework

(CIF) files, PyCifRW (Hester, 2006) is utilized, allowing for

the creation of crystals. In addition, it allows for the expor-

tation of supercell data for visualization in external viewers

like VESTA (Momma & Izumi, 2008). Diffuse-scattering

patterns saved in the NeXus data format (Könnecke et al.,

2015) are read using the Python package nexusformat (https://

github.com/nexpy/nexusformat). A graphical user interface

(GUI) is implemented using PyQt5 (https://riverbank

computing.com/software/pyqt/). The package is currently

available in Windows and Linux distributions through the

Python Package Index (PyPI) (https://pypi.org/). A Mac OS/X

is planned in a future release.

2.4. Capabilities and user requirements

The RMC program is designed to be simple yet robust to

help facilitate the analysis of diffuse-scattering measurements.

The only major requirements are a CIF file of the average

structure of the crystal and a diffuse-scattering measurement

data set for refinement. The program currently supports the

reading of NeXus files that are built on

top of the HDF5 file format. Alter-

native data readers will also be

implemented and supported. After

performing the refinement, the user

can calculate and visualize correlations.

All data sets can be exported for

further analysis in external programs.

3. Scientific user cases

To illustrate the effectiveness of the

RMC method in extracting the corre-

lated disorder from more complicated

systems, two user cases are presented

below: one for magnetic disorder and a

second for structural disorder. The first

is from the mineral bixbyite and the

other is from a triangular lattice system

Ba3Co2O6(CO3)0.7. The magnetic case

is presented first since it has been

previously analyzed using the magnetic 3D-�PDF method

(Roth et al., 2018, 2019). The second nonmagnetic structural

case has not been previously analyzed; the RMC program is

one tool capable of extracting the correlated disorder. Both

data sets were collected from the elastic diffuse-scattering

spectrometer CORELLI (Ye et al., 2018).

3.1. Magnetic diffuse scattering of frustrated magnet bixbyite

The first user case is from the diffuse scattering of single-

crystal bixbyite, (Fe, Mn)2O3, a natural mineral with magnetic

iron and manganese ions (Roth et al., 2019). It is a cubic crystal

with space group 206 Ia�33 and lattice parameter a = 9.409 Å

(Pauling & Shappell, 1930). Shown in Fig. 3 is the polyhedral

model of bixbyite and its network of (Mn, Fe)2O3 polyhedra.

The magnetic Mn3+ and Fe3+ ions have nearly identical

magnetic form factors (Lisher & Forsyth, 1971) and a similar

magnitude of magnetic moments. The two metal sites in the

structure are occupied by both manganese and iron: one is Fe

rich and the other is Mn rich. The Fe-rich site resides at the

origin (0, 0, 0), while the Mn-rich site is located at

(0, 0.25, 0.285): that is, nearly (0, 0.25, 0.25). The structure can

be thought of as a deviation from a higher-symmetry one with

the position of the Mn-rich sites slightly altered. This reduced

cubic structure has space group 221 Pm�33m with a lattice

parameter that is half of the original. Considering identical

ions, the structure corresponds to a face-centered cubic

crystal, which itself is a common frustrating magnetic lattice

(Ramirez, 1994).

For this Pm�33m structure, the nearest-neighbor pairs of Fe–

Mn and Mn–Mn have identical distances. forming a cubocta-

hedral network of manganese pairs surrounding a central iron

atom. The deviation of Mn-rich sites from the high-symmetry

position creates a nearest-neighbor network consisting of a

hexagonal arrangement of nearly coplanar manganese pairs

surrounding an iron atom, as shown in Fig. 3(b). Bulk property
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Figure 3
Bixbyite. (a) A polyhedral model of (Fe, Mn)2O3 and (b) a network of frustrated hexagons with
nearest-neighbor Mn-rich sites surrounding central Fe-rich sites. Below its transition temperature T =
32.5 K, bixbyite is highly geometrically frustrated.



measurements of field-cooled and zero-field-cooled magneti-

zation suggest spin glass behavior with inverse susceptibility

indicating strong antiferromagnetic interactions (Roth et al.,

2018). The single-crystal diffuse scattering of bixbyite (Roth et

al., 2018) is displayed in Fig. 4, which shows Bragg and non-

Bragg layers in (a) and (b), respectively.

A strategy for fast refinement is to focus on a region of the

diffuse scattering with minimal overlapping symmetry that

covers a primitive segment of the repeating pattern. For

bixbyite, the h, k and l range 0–4 satisfies this requirement. In

general, a two-dimensional slice is not appropriate for

refinements with scattering that show three-dimensional
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J. Appl. Cryst. (2021). 54, 1867–1885 Zachary J. Morgan et al. � rmc-discord 1873

Figure 4
Single-crystal neutron scattering of bixbyite at (hkl) planes (a) l = 0 and (b) l = 0.5, obtained by subtracting high-temperature T = 300 K from low-
temperature T = 7 K data. The complete reciprocal-space volume covers �10 to 10 in each h, k and l dimension using 501 � 501 � 501 bins. The diffuse-
scattering features repeat every four reciprocal lattice units in h, k and l.

Figure 5
Diffuse-scattering intensity from bixbyite showing selected (hkl) planes of the [(a), (c)] cropped and rebinned experimental data compared with [(b), (d)]
RMC refinement values. The region of interest has h and k ranging from 0 to 4 and an l range from 0 to 2 with a grid size of 0.08. A 4 � 4 � 4 supercell is
used. The match between experiment and refinement is excellent. The comparison for plane l = 0 with strongest diffuse-scattering features is shown in (a)
for the experiment data and (b) for the refinement values, while (c) and (d) show the corresponding data for plane l = 0.5. The RMC refinement captures
all of the subtle features of the experimentally obtained pattern with the nuclear Bragg peaks punched out.



symmetry. Some liberty can be taken to restrict the range of a

particular direction while maintaining a good refinement. It is

found that the range of one dimension (along l) can be

reduced by half in bixbyite. However, high and low intensities

are both needed for refinement. For any volume not refined

against, the program has no way of calculating goodness of fit

in those missing regions so the intensity values are uncon-

strained there. Hence, the primitive features are the

‘minimum’ requirement to obtain a reasonable refinement. A

wide coverage with overlapping symmetry is preferred to

obtain the best refinement.

Using the ranges described above, Fig. 5 shows a compar-

ison between the experimental and refinement data. The

Bragg peaks are removed and, unlike for the 3D-�PDF, the

missing data do not have to be filled back in. Figs. 5(a) and

5(b) shows the comparison between the experiment and

refined data, respectively, for a slice taken from the plane l = 0.

Figs. 5(c) and 5(d) show the corresponding data at slice l = 0.5.

Both sets of slices are in good agree-

ment. Spin–spin correlations are calcu-

lated using the refined supercell

structure by taking the dot product

between spin vectors of every possible

ion pair and averaging the results over

common distances and ion pairings

within a cutoff distance. With RMC

refinement, the subtle differences in

pair lengths can be easily resolved in

the correlation calculations. As the

magnetic 3D-�PDF has no underlying

information on the average positions of

ions within the crystal, it is generally

more difficult to distinguish pairs that

are closely spaced, especially like they

are in bixbyite when considering first-

and second-nearest-neighbor manga-

nese pairs.

The calculated spin–spin correlations

for the refinement are plotted in a

variety of ways. Fig. 6(a) shows the

spherically averaged correlations where

the closest nearest-neighbor pairs have

strong antiferromagnetic preference.

The calculated 3D correlations in the

plane z = 0 are displayed in (b) and

compared with the magnetic 3D-�PDF

in (c) using the preprocessed intensity

data corresponding to Fig. 4 by

removing Bragg peaks and inter-

polating the missing data. One advan-

tage of RMC refinement is that the 3D

correlations are easily mapped to the

proposed frustrated structure. Fig. 6(d)

displays the 3D spin-pair correlations

corresponding to the nearest-neighbor

hexagonal network shown in Fig. 3(b).

The calculated spin correlations of

Fig. 6(a) are labeled by their corre-

sponding ion pair. It is clear that the six

manganese atoms surrounding the

central iron atom have antiferro-

magnetic preference.

The calculated correlations offer

additional detail of pairs with nearly

equal separation vectors. This is clear

comparing the RMC correlations with
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Figure 6
Magnetic spin-pair correlations for bixbyite. (a) Spherically averaged radial spin correlations show
antiferromagnetic first- and second-nearest-neighbor Fe–Mn (orange fill) and Mn–Mn (blue fill)
pairs with the color indicating the bond type. (b) The corresponding 3D spin correlations in the xy
plane with z = 0 reveal that the second-nearest-neighbor Fe–Mn antiferromagnetic (blue fill)
correlations are stronger than the first. (c) The 3D correlations resolve the subtle differences in bond
length between neighboring pairs (upper right) better than the magnetic 3D-�PDF (lower left). (d)
A portion of the nearest-neighbor hexagonal network along a principal axis with manganese
surrounding iron. Here, iron is placed at the origin (red fill).



the 3D-�PDF in Fig. 6(c). For example, the first and second

Fe–Mn pairs have slightly different separation vectors

deviating from the aforementioned Pm�33m structure. From the

refinement, the antiferromagnetic interactions between

second-nearest-neighbor pairs are stronger than the first Fe–

Mn pairs, the latter of which result in the frustrated hexagonal

network. This is also observed in the radial spin correlations

plotted in Fig. 6(a), which shows the difference in strength of

the antiferromagnetic first and second Fe–Mn pairs. The

nearest-neighbor Mn–Mn pairs show similar preference,

where the second are stronger than the first. The frustration

extends beyond the hexagonal network.

Ion pairs that share the same separation can be individually

calculated from the RMC refinement. The first Fe–Fe pairs

and third Mn–Mn pairs both share common separation

vectors, each apart by half the length of the unit-cell edge.

Both of these correlations are strongly ferromagnetic, as

indicated in Fig. 6(a). In the context of the hexagonal network,

the magnetic moments that reside at the center tend to align

with the other central ions of nearby hexagons. Similarly, the

magnetic moments along the vertices of the hexagons have

alignment preference with the next closest corresponding ion

in the neighboring hexagon. The ability to distinguish different

ion types allows complicated frustrated structures to be

analyzed through the construction of 3D networks, like the

one shown in Fig. 6(d), to help guide the building models of

the magnetic interactions.

3.2. Structural diffuse scattering of disordered
Ba3Co2O6(CO3)0.7

The next example demonstrates RMC refinement of struc-

tural disorder from the triangular lattice system Ba3Co2O6-

(CO3)0.7. It is a hexagonal crystal with space group 174 P�66 and

lattice parameters a = 9.683 Å and c = 9.518 Å (Boulahya et

al., 2000), composed of CoO6 octahedra and carbonate CO3

molecular chains along its c axis (Iwasaki et al., 2009), as

shown in Figs. 7(a) and 7(b). These chains are visualized in

Fig. 7(c), where the average occupancy of the polyatomic ion

CO3
2� molecule is 0.7. The magnetic cobalt ions form

honeycomb layers, which is one lattice that can be geome-

trically frustrated. A single layer is shown in Fig. 7(d).

The absence of long-range magnetic ordering at low

temperatures suggests a spin liquid candidate (Igarashi et al.,

2012); however, the diffuse-neutron-scattering pattern does

not show any signs of magnetic correlation even at low

temperature. The characteristic drop off in intensity at larger

scattering vectors indicative of the magnetic form factor is not

present. Instead, diffuse features are

observed within different non-integer l

planes, as shown in Fig. 8, that persist

all the way to room temperature. The

Bragg layer at (a) l = 0 shows no diffuse

features, but such features are clearly

observed in non-integer layers (b) l =

0.8 and (c) l = 2.8. The correlated

disorder is therefore along the c axis of

the crystal and its origin is structural

rather than magnetic.

Single-crystal X-ray diffraction

measurements with a Rigaku labora-

tory source reveal no diffuse scattering

at these planes, as indicated in

Figs. 8(d)–8( f). Because X-ray scat-

tering length is proportional to atomic

number (Seltzer, 1995), the absence of

diffuse scattering in the X-ray data

would suggest that the heavier

elements are not the origin as the

neutron-scattering lengths of oxygen

and carbon are similar to those of

barium and cobalt (Sears, 1992).

Synchrotron measurements could help

confirm this. Since the average occu-

pancy of CO3 is 0.7, occupational

disorder of the molecule itself is one

possible origin. Calculating the struc-

ture factor of CO3 only, it is observed

that the Bragg scattering intensity at l =

0 and l = 1 in Figs. 9(a) and 9(b)

resembles that of the diffuse scattering
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Figure 7
A polyhedral model of Ba3Co2O6(CO3)0.7 showing chains of CoO6 and carbonate CO3 in (a) the
standard orientation and (b) along the c axis. (c) Isolated views of chains of polyatomic CO3

2� ions
with occupancy 0.7. Single-crystal measurements of inverse susceptibility reveal inter-layer
ferromagnetic and intra-layer antiferromagnetic interactions that suggest a spin liquid candidate
of Ising spins on the (d) cobalt honeycomb lattice.



at the l = 2.8 and l = 0.8 planes in Figs. 8(b) and 8(c),

respectively. This indicates that the CO3 groups are respon-

sible for the disorder. Neutron-diffraction data collected using

the TOPAZ instrument (Schultz et al., 2014) result in atomic

displacement factors with prolate oxygen spheroids generally

oriented along the chain, as indicated in Fig. 9(c), suggesting

the presence of displacive disorder as well. For these reasons, a

detailed analysis of CO3 disorder is key to understanding the

origin of the diffuse scattering in Ba3Co2O6(CO3)0.7.

In each unit cell, the three CO3 molecules take on one of

two orientation variants that are	180
 from one another. The

pattern repeats as A–B–A0–A–B–A0–A–B–A0� � �, where A

and A0 have the same orientation distinguished from B with

opposite orientation. After RMC refinement, it is straight-

forward to separate calculated correlations, placing different

variants at the origin to investigate the correlated disorder.

For molecular-disorder refinement, CO3 is kept as a rigid

stoichiometric molecule and allowed to be either vacant on a

site or present with finite displacement and rotation from its

average position and orientation. To further speed up the

refinement, the structure factor of the molecule is precalcu-

lated and stored as a prefactor. Considering only the

displacement of the center of mass of the molecule (no rota-

tion), a speedup corresponding to the number of atoms per

molecule can be achieved. Such an approach is a general

method for handling rigid assemblies of polyhedra.

Refinement of rigid CO3 displacement and occupancy is

performed to analyze the structural disorder. Starting with a

random distribution of molecules with 70% occupied and no

initial displacement, occupational disorder is refined for the

first half of the refinement. The remaining molecules are

allowed to displace away from their average positions in the

second half. Although it is possible to refine both disorder

types simultaneously, faster convergence is achieved when the

occupational refinement is given more weight earlier in the

refinement, since removing a molecule affects the structure
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Figure 8
Single-crystal neutron scattering of Ba3Co2O6(CO3)0.7 at (hkl) planes (a) l = 0.0, (b) l = 0.8 and (c) l = 2.8 obtained at T = 50 K. The complete reciprocal-
space volume covers �10 to 10 in each h, k and l dimension using 501 � 501 � 501 bins. The corresponding single-crystal X-ray scattering data at (hkl)
planes (d) l = 0.0, (e) l = 0.8 and ( f ) l = 2.8 obtained at T = 150 K from a Rigaku laboratory source do not exhibit any diffuse-scattering features,
suggesting that the correlated disorder originates from the light elements which are more sensitive to neutrons than X-rays. For the neutron data, the
diffuse scattering remains at temperatures above T = 150 K.



factor much more than displacing it. For the displacive

refinements, the molecules are allowed to displace anywhere

uniformly within a sphere of radius 1.5 Å, which is about half

the distance between molecules along the chain. The experi-

mental data set is compared with the resulting refinement

pattern obtained with RMC in Fig. 10: (a) and (b) compare the
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Figure 9
The calculated CO3-only Bragg scattering intensity at (hkl) planes (a) l = 0 and (b) l = 1 resembles the diffuse neutron scattering at (hkl) planes l = 2.8
and l = 0.8, respectively, suggesting that the diffuse pattern originates from CO3 disorder along the c axis. Additional neutron-scattering data of (c)
atomic displacement ellipsoids (99% probability) for the carbon and oxygen atoms on the CO3 molecule elongated along the c axis further hint at
correlated displacements of the CO3 molecules. The orientation variants are labeled as A, B and A0.

Figure 10
Diffuse-scattering intensity from Ba3Co2O6(CO3)0.7, showing selected (hkl) planes of the [(a), (c)] cropped and rebinned experimental data compared
with [(b), (d)] RMC refinement values. The region of interest has an h range from�10 to 0, a k range from 0 to 10, an l range from 0 to 4 and a grid size of
0.08. A 12 � 12 � 12 supercell is used. The match between experiment and refinement is good. The comparison for plane l = 0.8 is shown in (a) for the
experiment data and (b) for the refinement values, while (c) and (d) show the corresponding data for plane l = 2.8 with the strongest diffuse-scattering
features. There are some additional cloudy features in the refined pattern due to the simplified model of rigid molecular displacements. The extra
correlations generated by this constraint introduce these artefacts. The RMC refinement is also insensitive to the powder rings associated with the
cryomagnet observed in the experimentally obtained pattern as they do not overlap with the main diffuse-scattering features.



plane l = 0.8, while (c) and (d) compare the plane l = 2.8. This

refinement provides a good fit of the experimental data.

Incorporating rotation and distortion of the molecule would

help improve the refined pattern. The refined features are also

broader due to the finite size of the supercell. Extending its

size will improve the sharpness of the refined intensity at the

cost of speed. Correlations can then be obtained considering

different variants as the origin.

Having obtained the occupation and position of the CO3,

various occupancy, displacement and vacant–displacement

pair correlations can be obtained along the molecule chains.

For occupational disorder, occupied and vacant molecules are

mapped to a binary parameter that is either positive or

negative unity, respectively (Welberry & Goossens, 2008). The

calculated occupancy correlations along the chain in Fig. 11(a)

are essentially featureless, ruling out any clustering of vacant

sites where some characteristic distance by which the corre-

lations become negative would be observed. Considering the

average occupancy is 70%, two to three molecules on average

are between every pair of vacant sites. The displacement

correlations are analogous to magnetic spin-pair correlations

or static displacement variables (Welberry & Goossens, 2014);

inspecting them in Fig. 11(b), their modulation corresponds to

a periodicity of four unit cells along the chain in the c-axis

direction. This indicates that, within the first unit cell, neigh-

boring occupied molecules tend to move away from one

another.

The interactions between occupational and displacive

disorder are quantified by identifying all vacant–occupied

pairs. The dot product of the unit separation vector between

pairs with the direction vector of the displaced molecule gives

a measure of the vacant–displacement correlation. This metric

is analogous to an atomic size effect parameter (Welberry,

1986; Butler et al., 1992) that quantifies the preference of an

atom to move toward or away from a vacancy. In Fig. 11(c), the

vacant–displacement correlations have the same periodicity as

the displacement correlations but are out of phase by one unit

cell. Illustrations of the intra-chain disorder are shown in

Figs. 11(d) and 11(e). The spacings between the average

positions of the molecules along the chain are nearly equal. As
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Figure 11
Correlations along the CO3 chains of Ba3Co2O6(CO3)0.7 with the A0 molecule variant located at the origin: (a) occupancy, (b) displacement and (c)
vacant–displacement pairs. The chain pair correlations follow the A0–A–B order illustrated in (d), the relative unit-cell fractional coordinates and the
distance between variants. Representing the molecules as atoms, (e) an illustration of chain disorder is shown with displaced molecules (hatch fill)
moving away from their average position (blue fill) toward nearby vacant sites (pink fill) along the chain.



no clustering occurs along the chain, two to three molecules

will be present between every pair of vacant sites, and those

molecules displace away from their neighbors toward the

closest missing site. This reduces the overall spacing between

molecules producing the displacement and vacant–displace-

ment modulations. These correlated displacements accom-

modate the electrostatic interactions between the polyatomic

CO3 ions and generate the diffuse-scattering pattern observed

by neutrons. This behavior of Coulomb field relaxation is

similar to another hexagonal system with channeled mol-

ecules. For the case of urea inclusion compounds that form a

hexagonal network, rigid alkane groups within its channels

exhibit orientational disorder (Welberry & Mayo, 1996) with a

repeat distance different from the spacing of the urea itself,

which generates diffuse-scattering features in non-integer l

layers similar to Ba3Co2O6(CO3)0.7.

4. Graphical user interface

An important aspect of the program is its GUI. Although

scripts written to perform an RMC refinement are included,

they are intended for development of new modules and testing

purposes. From the perspective of the user, a simple GUI

guides much of the workflow and reduces the learning barrier

to obtaining meaningful information from a diffuse-scattering

pattern. Four main steps achieve this: (1) building a supercell

from the average structure, (2) processing the intensity data to

make it suitable for refinement, (3) executing the refinement,

and (4) calculating and interpreting the real-space correla-

tions. These major steps are incorporated as tabs of the GUI

window.

4.1. ‘Crystal’ tab

The ‘Crystal’ tab allows the user to read a CIF file corre-

sponding to the average structure of the crystal being

analyzed. In many cases, a user will have a CIF file from

preliminary experiments on the sample. If not, several struc-

tural databases are available with published CIF files,

including the Bilbao Crystallographic Server (Aroyo, Perez-

Mato et al., 2006, 2011; Aroyo, Kirov et al., 2006), Cambridge

Structural Database (Groom et al., 2016), Inorganic Crystal

Structure Database (Belsky et al., 2002), Crystallography

Open Database (Gražulis et al., 2009) and others. This

generates the unit-cell data including atomic sites, atom
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Figure 12
(a) The GUI ‘Crystal’ tab for building the supercell for refinement. Illustrations of (b) the original unit cell for bixbyite, (c) the unit cell with the oxygen
atoms removed and (d) the final supercell visualized with VESTA.



positions, atom types and site occupancies without requiring

knowledge about the symmetry operators or lattice para-

meters used to define it. The user can specify the refinement

type as either magnetic or nonmagnetic (structural). The size

of the supercell can be specified at any time. In addition, the

‘Crystal’ tab allows the unit-cell data to be freely adjusted,

including switching atoms on or off, changing occupancies, and

manipulating atom types. The program contains many

magnetic form factors of ions and neutron-scattering lengths

for different isotopes that can be simply selected. Future

support for X-ray form factors for structural disorder is

expected.

An example of the GUI for bixbyite is given in Fig. 12. In

12(a), the ‘Crystal’ tab with finalized data used for refinement

is shown. The overall unit-cell data are given on the left; a

portion of the 32 iron and manganese magnetic ions are

shown. The right shows the three atom sites read from the

original CIF file. In this case the oxygen atom is unselected as

it is not magnetic. Figs. 12(b)–12(d) illustrate this crystal-

building process for bixbyite. Loading in the unit-cell data, the

oxygen atoms are removed and the supercell is generated by

repeating the modified unit cell according to its chosen size.

The final supercell may be exported as another CIF file for

visualization in an external viewer like VESTA.

4.2. ‘Intensity’ tab

Once the supercell is generated, the experimental intensity

is loaded from a supported data format. Current support is for

the NeXus files output by many synchrotron and neutron

sources. Future releases will have support for other data

formats including NumPy arrays. Support for commercial

single-crystal X-ray diffractometers is also possible. Once the

data set is loaded, the user has options to clean up, crop and

rebin the data for refinement. First, the data are rebinned to a

coarser bin size using available predetermined sizes from a

dropdown menu. The binning sizes available are factors of the

original data-set size. The rebinning can be selected for each of

the h, k and l dimensions. Next, the data set is cropped to a

smaller region of interest by selecting the range for h, k and l.

Bragg peaks may be removed using a punch method. The

user selects the cell centering with the default set from the

space group within the CIF file. A box or ellipsoid punch size

in h, k and l space is specified. Finally, an outlier parameter is

defined giving the range of data to be excluded based on the

interquartile range of the data within the punch. A default

value of 1.5 is the standard definition of an outlier: the para-

meter (1.5) times the interquartile range excludes the data

above and below the third and first quartile, respectively. This

is a simple approach to removing Bragg peaks. The punch

computer programs

1880 Zachary J. Morgan et al. � rmc-discord J. Appl. Cryst. (2021). 54, 1867–1885

Figure 13
(a) The GUI ‘Intensity’ tab for generating raw volume data showing (b) the original NeXus file for bixbyite. The figure also shows the data set (c)
rebinned with a larger bin size, (d) cropped to a smaller region and (e) with Bragg peaks removed.



parameters are adjustable and multiple passes may be

performed to give a clean data set for refinement. The punch

may be reset at any time. Future implementations of the

program may include more advanced algorithms, such as

KAREN (Weng et al., 2020) which identifies and removes

Bragg peaks from the total scattering without the need for the

unit-cell data. In addition, it can remove other anomalies due

to sample environment.

The steps for generating clean volume data for refinement

are shown in Fig. 13 for bixbyite: the finalized data set is

produced by rebinning, cropping and Bragg-peak removal.

The original data set of size 501 � 501 � 501 with h, k and l

range �10 to 10 is reduced to a smaller bin size of 0.8 in each

dimension, and cropped to a range of 0–4 in h and k and 0–2 in

l. The Bragg peaks are then removed in one pass using the

default parameters and a box size of five voxels. The resulting

data set may be further investigated at different slices and the

displayed figure may be saved. At any time during this process,

the original data set can be recovered using the reset button.

4.3. ‘Refinement’ tab

Having built the supercell and preprocessed the intensity

data set, a refinement is now set up. The interface for refine-

ment is flexible with options for both magnetic and structural

refinements. The Gaussian filter size may be specified for each

of the h, k and l dimensions to reduce the noise in the refined

intensity and/or mimic the effects of the instrumental resolu-

tion broadening. The number of cycles used for the refinement

can be specified. One cycle is defined as the number of

proposed moves which corresponds to the number of atoms in

the supercell. It is typically best to start with a short refine-

ment (1–10 cycles) to optimize the annealing temperature

prefactor and decay constant. In the first 10–20% of the

refinement, the temperature should be high enough that all of

the proposed moves are accepted. This allows the system to

overcome any local minima as it progresses toward a global

minimum. During this part of the refinement, the temperature

should cool gradually such that some of the bad moves are

rejected. By the final 50% of the long refinement (100–

200 cycles), nearly all of the bad moves should be rejected as

the system is moving toward the global minimum.

These accepted and rejected moves can be monitored in a

plot window that is automatically updated throughout the

refinement and gives the goodness-of-fit value (�2) of

accepted and rejected moves. This window offers several other

diagnostic plots, including overall �2, energy, temperature and

scale factor. In addition, the refined intensity plot can be

compared with the experimental data set. Other parameters

relevant to each refinement type (magnetic, occupational,
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Figure 14
(a) The GUI ‘Refinement’ tab showing progress of the calculated intensity during the refinement (b)–(e) from 0–100%. The moves that are accepted and
rejected are displayed in auxiliary monitor plots that update automatically along with the intensity throughout the refinement.



displacive) can be specified before running the refinement. A

batch job can be specified to give multiple sequential refine-

ments that can be used to improve the refinement statistics by

averaging. An example of a completed refinement is shown in

Fig. 14, which gives the final screenshot in (a) and an illus-

tration of the refinement progress over time in (b)–(e). The tab

allows for user interaction during a refinement and the para-

meters may be updated as it progresses. At any time, the

refinement can be stopped or reset with new parameters as

needed. Further capabilities to control the refinement are

expected additions, including combined occupational/displa-

cive disorder of polyhedra.

4.4. ‘Correlations’ tab

The ‘Correlations’ tab provides the ability to calculate both

spherically averaged and three-dimensional correlations for

occupational, displacement and magnetic disorder. A cutoff

distance is employed to limit the search of pairs using the

underlying kD tree. The distance tolerance is also employed to

account for rounding error in distances. Too tight a tolerance

may identify more pairs than actually exist by subtle differ-

ences in decimal places introduced by rounding error. Too

loose a tolerance may not distinguish real differences in bond

lengths. Support for size-effect correlations will also be

implemented in future releases.

In the case of spherically averaged correlations, a line plot

up to a specified radial cutoff distance provides a simple way

to identify the strongest correlations. Three-dimensional

correlations are visualized as two-dimensional slices through

the specification of lattice planes. Future capabilities will allow

one-dimensional plots along particular directions. For any pair

correlations, particular atom-pair types may be separated out

to help visualize the strength of their interaction. This is

especially important if two or more different pairs share the

same separation vectors. Without accounting for pair identity,

they cannot be distinguished if they have the same separation.

However, the correlations may be recalculated with these

pairs that are the same distance apart averaged together. In

bixbyite, several Fe–Fe, Fe–Mn and Mn–Mn pairs share the
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Figure 15
(a) The GUI ‘Correlations’ tab showing calculated three-dimensional magnetic spin-pair correlations. The figure also displays visualizations of nearest
neighbors in ParaView viewed (b) along the [001] axis, showing those observed in the z/a = 0 plane corresponding to the 3D-�PDF, and (c) along the
[111] axis, showing those corresponding to the nearly hexagonal frustrated network.



same separation vector. Shown in Fig. 15(a) are the calculated

three-dimensional correlations at z/a = 0 with all pairs aver-

aged together. The calculated spherical average and three-

dimensional correlations may be exported as a comma-sepa-

rated values (CSV) file or as visualization toolkit (VTK) files,

respectively, for further processing. For example, Figs. 15(b)

and 15(c) show the three-dimensional correlations visualized

with the external viewer ParaView (Ayachit, 2015) along two

different orientations. Further correlation calculations are

expected additions, including the occupancy–displacement

pair correlations. The capability to map the calculated corre-

lations to the average structure and visualize them is also

planned.

4.5. ‘Recalculation’ tab

Having obtained the refined structure, it is possible to

recalculate the diffuse-scattering pattern back over the

original (or any) size with resolution higher than that used for

refinement. It is then possible to examine and compare with

the original experimental data set. During this recalculation,

the symmetry in reciprocal space may optionally be restricted.

The Laue symmetry can be selected or inferred from the

loaded CIF file in the ‘Crystal’ tab. Of course, the diffuse-

scattering pattern is not required to have the same Laue

symmetry of the average structure but instead may have

symmetry that is lower. For the case of bixbyite as shown in

Fig. 16, the symmetry of the diffuse scattering appears to have

the same Laue symmetry as the average structure m�33. The

recalculated scattering pattern can be exported to a VTK file

for external visualization in ParaView.

5. Program availability

The program is built to accommodate new features based on

user needs and evolving data approaches. The source code is

located on GitHub for download. An accompanying web site

containing tutorials and installation instructions is also avail-

able: https://zjmorgan.github.io/rmc-discord/. The content

includes example refinements of classical disordered systems

with data and instructions to help new users get started. This

includes disorder on triangular, honeycomb, kagome and

pyrochlore lattices.

6. Limitations and guidance

This program is only suited for crystalline materials and not

amorphous or powder materials. Programs like RMCProfile

(Tucker et al., 2007) can handle those cases. The maximum

correlation length that can be resolved in the refinement along

any supercell dimension is half the size of the corresponding

supercell length. This also determines the sharpness of the

features in reciprocal space. A three-dimensional volume data

set is required, which appropriately weights measurement

scans together and normalizes for Lorentz and spectrum

corrections. To refine the diffuse scattering only, Bragg peaks

can be removed, but information about the absolute scaling of

magnetic moments, site occupancies and atomic displacements

is lost in the overall scale factor. Diffuse magnetic scattering

data should be isolated by subtracting

from the low-temperature data a

higher-temperature data set (Paddison

et al., 2013; Roth et al., 2018). Alter-

natively, background subtractions

should be performed from empty

instrument measurements scaled to the

same incident flux as the normalization

data (Michels-Clark et al., 2016).

Although powder lines that do not

overlap with diffuse-scattering features

do not affect the overall refinement as

demonstrated with the Ba3Co2O6-

(CO3)0.7 example, it is generally

advised to exclude them in areas where

there is severe contamination with the

diffuse-scattering features.

7. Future development

An opportunity for the single-crystal

RMC approach is a co-refinement of

the diffuse and Bragg scattering to

obtain both the short- and long-range

ordering (Dove et al., 2002; Proffen &

Kim, 2009). By removing Bragg peaks,

average structure information is lost

computer programs
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Figure 16
The GUI ‘Recalculation’ tab showing the recalculated scattering intensity. The recalculation is
symmetrized using the underlying m�33 Laue symmetry of bixbyite. The resulting pattern compares
favorably with the full-volume experimental data set despite using a smaller region for refinement.



that may contain critical information about the origin of the

disorder. Future implementations will include refining the

integrated Bragg intensities which would give average struc-

ture constraints, guiding the RMC refinement and ensuring

consistency over the full range of the collected data. It would

also allow the absolute values for moments, occupancies and

displacements to be obtained. For complete volume data sets,

3D-PDF analysis could also be incorporated prior to

performing RMC refinements of the total scattering, like that

implemented by the Yell program. Previous studies demon-

strated this approach using PDF analysis before RMC

refinement with powder data (Whitfield et al., 2016). Also, the

data-preprocessing step would be simplified by eliminating the

need for Bragg-peak removal. This approach may benefit

magnetic structure analysis for magnetically dilute systems

and may also allow for analysis of structures with twinning.

Future work is planned to improve upon the molecular-

structure-factor work, extending the displacement and rota-

tion of rigid structures to account for networks of corner-

linked polyhedra with constraints. This will enable the diffuse-

scattering refinement of networks with rigid units. Similarly,

the use of Z matrices for molecules (Goossens et al., 2011) is

another capability that could be implemented, allowing for the

flexibility and rigidity of various portions of a molecule to be

specified. An interface to interactively build and visualize

polyhedra within the GUI is also planned.

Recently, a formalism for interpreting diffuse scattering

based on a disordered superspace approach has been intro-

duced for systems with substitutional disorder (Schmidt &

Neder, 2019). Physical-space structures are realized that

generate diffuse-scattering patterns with specified width and

location in reciprocal space. Compared with RMC where the

interpretation of diffuse scattering is in terms of correlation

parameters, this method has the potential to yield a structure

solution with more physical meaning at a reduced computa-

tional cost, allowing direct interpretation of the diffuse-

scattering features in terms of the modulation functions. An

innovation for RMC that considers the symmetry of disorder

is highly desired. Symmetry analysis is key to understanding

distortion modes that are responsible for unusual properties,

for example in layered perovskites that undergo switching

from positive to negative thermal expansion (Senn et al.,

2016). One opportunity is to utilize ISODISTORT to identify

distortion symmetries from the input CIF file of the parent

structure (Campbell et al., 2006). This could be used to restrict

the possible distortions of individual atoms in disordered

crystals that undergo phase transformations, to speed up RMC

refinements and improve the analysis of these systems.

8. Conclusions

A complete and user-friendly RMC refinement program has

been developed to analyze single-crystal diffuse-scattering

data. The program addresses each of the three disorder types:

occupational, displacive and magnetic. It is optimized for

performance and is accompanied by a user-friendly graphical

interface that allows a user to load in collected data, process

them efficiently, perform a refinement and extract correlations

that describe the disorder within the crystal. It effectively

demonstrates the extraction of correlations from single-crystal

diffuse-scattering data in two different scientific user cases. In

mineral bixbyite, RMC offers richer detail of the spin-pair

antiferromagnetic correlations than the magnetic 3D-�PDF

by distinguishing the subtle differences in separation vectors

between first- and second-nearest neighbors of Fe–Mn and

Mn–Mn pairs. In the triangular lattice system Ba3Co2O6-

(CO3)0.7, RMC reveals no clustering of vacant CO3 sites along

c-axis chains, and the occupied CO3 sites move toward their

closest neighboring vacant sites along the chain to relax strain

induced by electrostatic interactions.
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