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Abstract

Motivation: Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal
health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicro-
bial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine
learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria.
However, comparing different machine learning methods for the prediction of AMR based on different encodings
and whole-genome sequencing data without previously known knowledge remains to be done.

Results: In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and
convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazi-
dime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding,
one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing
data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset.
Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to iden-
tify mutations that are associated with AMR for each antibiotic.

Availability and implementation: Source code in data preparation and model training are provided at GitHub web-
site (https://github.com/YunxiaoRen/ML-iAMR).

Contact: dominik.heider@uni-marburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rise of antimicrobial resistance (AMR) is one of the greatest
threats to global health, food security and societal development.
Estimates indicate that the number of yearly deaths will be at 10 mil-
lion worldwide with a cost of $100 trillion if no steps to tackle
AMR are taken by 2050 (Naylor et al., 2018). Traditional anti-
microbial susceptibility testing (AST) is widely used for AMR ana-
lysis in clinical practice. However, this approach requires
professional facilities and technicians for implementation and is

viable only for cultivable bacteria (Boolchandani et al., 2019).
Recently, many studies highlight the potential of machine learning
methods in predicting AMR combining sequencing methods and
well-known databases with phenotypic information for AMR
(Boolchandani et al., 2019; Liu et al., 2020; Lv et al., 2021). For in-
stance, Yang et al. (2018) and Kouchaki et al. (2018) analyzed
AMR using different machine learning algorithms [e.g. support vec-
tor machine (SVM), logistic regression (LR) and random forest
(RF)] trained on whole-genome sequencing and achieved high accur-
acy on AMR prediction. Deep learning algorithms also showed
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significant potential for predicting new antibiotic drugs, AMR genes
and AMR peptides (Arango-Argoty et al., 2018; Stokes et al., 2020;
Veltri et al., 2018). However, these studies focused on genome var-
iants (such as single-nucleotide polymorphisms, SNPs) or other fea-
tures only related to resistant genes identified in previous studies or
resistant databases. The potential of machine learning models for

predicting AMR without using known resistance mutation data-
bases or annotated genes remains to be clarified.

To use machine learning methods for the classification of AMR,
the input sequences (here: genomic sequences) need to be encoded
into numerical values. A practical and informative encoding method
for the whole-genome sequence is, thus, crucial for downstream

Fig. 1. Workflow of the study. WGS data from Giessen and the public data from Moradigaravand et al. (2018) were processed, and single nucleotide polymorphisms (SNPs)

were called. The SNP data were encoded by label encoding, one-hot encoding and FCGR encoding for subsequent machine learning. The Giessen dataset was used to train and

validate the four machine learning algorithms using cross-validation. The public data were used for the final evaluation of the models. Finally, we analyzed the association of

SNPs and SNPs-adjacent genes with AMR using EFS. Created with BioRender.com
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analysis. There are various encoding methods for sequences (Spänig
and Heider, 2019), e.g. one-hot encoding or label encoding. One-
hot encoding, also referred to as sparse encoding, encodes the DNA
sequence into a binary matrix, which is then vectorized and used as
input for the machine learning models. Label encoding is another
simple and straightforward encoding method, where each label is
assigned a unique integer.

Thus, in this study, we use label encoding, one-hot encoding and
Chaos Game Representation (CGR) to encode the genomic data.
CGR is a recurrent iterative function system, which can be used to
visualize sequences by building fractals from sequences of symbols,
i.e. from an alphabet A ¼ fS1; . . . ; Sng. Jeffrey (1990) was the first
who applied the CGR algorithm to DNA sequences, i.e. n¼4 and
A ¼ fA;C;G;Tg, thus the resulting fractals are constructed from
squares. Since the development of the CGR and its application in
life science, it has been used for the analysis and alignment-free com-
parison of whole-genome sequences (Joseph and Sasikumar, 2006;
Kania and Sarapata, 2021; Lichtblau, 2019). It has been shown that
CGR is an excellent representation for genomes and that CGR-
driven phylogeny leads to reliable predictions (Deschavanne et al.,
1999). In particular, the comparison between genomes using CGR is
straightforward and fast (Hoang et al., 2016). CGR has been used,
for instance, for a fast comparison of SARS-CoV2 strains (Sengupta
et al., 2020). Extensions of CGR include color grids (Deschavanne
et al., 1999) and frequency matrix chaos game representation
(FCGR) (Almeida et al., 2001). Wang et al. (2005) used FCGR to
calculate the image distance between genomes to generate phylogen-
etic trees. Rizzo et al. (2016) showed that deep neural networks
(DNNs) trained on genomes encoded with FCGR yielded very ac-
curate predictions. They used a convolutional neural network
(CNN) to divide bacteria into three different phyla, order, family
and genus, and showed very high accuracy for the method.

While most existing studies on CGR encoding focused on CGR
for DNA, there also exist a smaller number of studies dealing with
other alphabets, e.g. the encoding of protein sequences. Yu et al.
(2004) used the CGR algorithm for protein classification by separat-
ing the amino acids into four groups based on their properties and
used multifractal and correlation analysis to construct a phylogenet-
ic tree of Archaea and Eubacteria. In other approaches, the amino
acids were retranslated into DNA for CGR (Yang et al., 2009). Sun
et al. (2020) used a three-dimensional CGR representation for pro-
tein classification, and Löchel et al. (2020) used FCGR for resistance
prediction in HIV-1 with CNNs.

Thus, in this study, we analyzed the potential of different statis-
tical and machine learning methods, including LR, SVM, RF and
CNN with label encoding, one-hot encoding and FCGR encoding
for predicting AMR based on whole-genome sequencing of
Escherichia coli (E.coli).

2 Materials and methods

The workflow of the study is shown in Figure 1.

2.1 Data collection and sample phenotype
Escherichia coli is an important model organism that can cause se-
vere infections in humans and animals, it also represents a signifi-
cant resistance gene pool that may be responsible for treatment
failure in humans and veterinary medicine (Poirel et al., 2018).

In our study, we used two datasets, referred to as the Giessen
data and the public data. The first dataset (Giessen) was collected as
part of our study and contains whole-genome sequencing data
(WGS) and corresponding phenotypic information for several anti-
biotics for, in total, 987 E.coli strains. These isolates were obtained
from human and animal clinical samples. Antimicrobial susceptibil-
ity testing was performed using the VITEKVR 2 system (bioMérieux,
Nürtingen, Germany) and interpreted following EUCAST guide-
lines. DNA isolation and whole-genome sequencing were per-
formed, as described by Falgenhauer et al. (2020).

The latter dataset (public) consists of WGS of 1509 E.coli strains
and corresponding phenotypic information (Moradigaravand et al.,

2018). In our study, we focused on the four antibiotics ciprofloxacin
(CIP), cefotaxime (CTX), ceftazidime (CTZ) and gentamicin (GEN).

CIP belongs to the class of fluoroquinolones and is widely used
to treat various infections, including gastroenteritis, respiratory tract
infections or urinary tract infections (Heeb et al., 2011). CIP is par-
ticularly effective against Gram-negative bacteria, such as E.coli.
However, due to overuse, resistances evolve rapidly. CTX and CTZ
belong to the class of cephalosporins and are also widely used to
treat various infections, such as meningitis, pneumonia, urinary
tract infections, sepsis and gonorrhea. They are broad-spectrum
antibiotics with activity against numerous Gram-positive and Gram-
negative bacteria, including E.coli. Nevertheless, resistance is also
increasing noticeably (Gums et al., 2008; Sharma, 2013).

GEN belongs to the aminoglycoside class and is widely used to
treat various infections, including meningitis, pneumonia, urinary
tract infections and sepsis. It is active against a wide range of bacter-
ial infections, mostly Gram-negative bacteria including E.coli. It
binds to the 30S subunit of the bacterial ribosome and negatively
affects protein synthesis (Garneau-Tsodikova and Labby, 2016).

We used data of 900 isolates with resistance information for CIP
(418 resistant, 482 susceptible), 930 isolates with resistance infor-
mation for CTX (455 resistant, 475 susceptible), 841 isolated for
CTZ (291 resistant, 550 susceptible) and 926 isolates for GEN (216
resistant, 710 susceptible).

While the CIP and CTX data are balanced, the Giessen datasets
are imbalanced on the CTZ and GEN data (34% and 23% resistant
isolates, respectively). The public dataset is imbalanced for all anti-
biotics. For CIP, CTX, CTZ and GEN, there are only 267, 115, 73
and 101 resistant samples, representing 18%, 8%, 5% and 7% of
all isolates in the public dataset, respectively.

The summary of the datasets is shown in Table 1.

2.2 Variants calling of whole-genome sequencing data
The raw whole-genome sequencing reads were first quality checked
and filtered by fastp (Chen et al., 2018). The filtered reads were then
aligned to the E.coli reference genome (E.coli K-12 strain.
MG1655) using BWA-mem (Li et al., 2009). Bcftools (Danecek
et al., 2021) was used for calling variants. Samtools (Li and Durbin,
2009) was used to sort the aligned reads, and vcftools (Danecek
et al., 2011) was used to filter the raw variants. We used default
parameters for all tools.

2.3 SNPs pre-processing and encoding
We first extracted reference alleles, variant alleles and their posi-
tions, and merged all isolates based on the position of reference
alleles. We filtered out the loci without variation (N replaces a locus
without variation), and we built the final SNP matrix, where the
rows represent the samples and columns are the variant alleles.

To encode the SNPs for subsequent machine learning, we used
label encoding, one-hot encoding and FCGR encoding. For the label
encoding, the A, G, C, T and N in the SNP matrix were converted to
1, 2, 3, 4 and 0. In one-hot encoding, the DNA sequence is encoded
into a binary matrix, which is subsequently vectorized. For the
FCGR encoding, we used the R package kaos to transform the
sequences into an image-like matrix with a resolution of 200
(Löchel et al., 2020).

2.4 Machine learning and model evaluation
We used four machine learning methods, including LR, SVM, RF
and CNN. For LR, RF and SVM, we used the Scikit-learn python

Table 1. Overview of the datasets

Drug CIP CTX CTZ GEN

Source Giessen Public Giessen Public Giessen Public Giessen Public

Resistant 418 267 455 115 291 73 216 101

Susceptible 482 1229 475 1313 550 1398 710 1398

Total 900 1496 930 1428 841 1471 926 1489
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Fig. 2. ROC curves for the models with label encoding, one-hot encoding and FCGR encoding on the Giessen data. First row: ROC curves for CIP with label encoding (A),

one-hot encoding (B) and FCGR encoding (C), respectively. Second row: ROC curves for CTX with label encoding (D), one-hot encoding (E) and FCGR encoding (F), respect-

ively. Third row: ROC curves for CTZ with label encoding (G), one-hot encoding (H) and FCGR encoding (I), respectively. Fourth row: ROC curves for GEN with label

encoding (J), one-hot encoding (K) and FCGR encoding (L), respectively

Table 2. Results of the four machine learning models with label encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.88 6 0.04 0.75 6 0.04 0.81 6 0.02 0.76 6 0.03 0.87 6 0.01 0.65 6 0.10 0.89 6 0.03 0.91 6 0.02

LR 0.88 6 0.05 0.71 6 0.04 0.81 6 0.03 0.77 6 0.02 0.90 6 0.03 0.69 6 0.08 0.92 6 0.05 0.96 6 0.03

RF 0.92 6 0.04 0.75 6 0.03 0.84 6 0.03 0.79 6 0.02 0.89 6 0.03 0.73 6 0.07 0.90 6 0.06 0.97 6 0.03

SVM 0.85 6 0.03 0.69 6 0.02 0.78 6 0.03 0.75 6 0.02 0.89 6 0.04 0.73 6 0.03 0.89 6 0.03 0.96 6 0.03
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package (Pedregosa et al., 2011). LR was used with default parame-
ters, except that we used 1000 iterations. RF was used with default

parameters and 200 trees. For SVM, we used a linear kernel and de-
fault parameters.

We implemented CNNs using the Keras (https://keras.io/) pack-

age and TensorFlow (https://tensorflow.org). The CNN architecture
is based on eleven hidden layers, including four convolutional layers,

two batch normalization layers, two pooling layers, one flattening
layer, one fully connected layer and one dropout layer. The structure
of the networks for label encoding and one-hot encoding are the

same, which differ from FCGR encoding-based CNNs only in the
convolutional layers and pooling layers (see Supplementary Fig. S1).

For FCGR, we used the Conv2D and MaxPooling2D function,
while the CNN for the label encoding used the 1D versions instead.

We used eight filters in the first two convolution layers with a
kernel size of three, rectified linear unit activation function and
same padding. The last two convolution layers used 16 filters in-

stead. The pool size of all pooling layers is two. We used the softmax
activation function in the final fully connected layer and compiled
the model with Adam optimization and cross-entropy loss.

2.5 Statistical evaluation
We optimized the machine learning models on the Giessen data

using five times 5-fold stratified cross-validation. We applied an up-
sampling strategy to balance the samples in the training set. For the
final evaluation on the public data, we analyzed the performance on

the raw public dataset and on a balanced set using a down-sample
strategy.

We evaluated the models using the receiver operating character-
istics curve (ROC) and the area under the curve (AUC). We also cal-

culated precision and recall for all models. Statistical comparisons
were made by the DeLong test (Demler et al., 2012).

2.6 Marker genes identification located around SNPs
To identify the SNPs that are associated with resistance, we per-
formed a marker gene identification using the EFS R package
(Neumann et al., 2017). The EFS package aggregates eight feature

selection methods for binary classification tasks (Neumann et al.,
2016). We used EFS with default parameters. We then annotated

the corresponding genes of SNPs using SnpEff software (Cingolani
et al., 2012).

3 Results

3.1 Performance of different machine learning methods

for predicting AMR on Giessen data
We used the filtered SNPs matrix encoded by label encoding, one-
hot encoding and FCGR encoding from the Giessen dataset to train
the four machine learning methods LR, RF, SVM and CNN. The
performance of the four machine learning models was evaluated
using five times 5-fold cross-validation. The ROC curves and AUC
values of the different machine learning models range from 0.69 to
0.96, demonstrating that all models can effectively predict AMR
compared with random null models (Fig. 2). We observed that the
mean AUC of the RFs was higher than for LR, SVM and CNN clas-
sifiers for all antibiotics with both encoding methods (Fig. 2). In par-
ticular, RFs were significantly better than LR (P¼0.03), SVMs
(P¼0.01) and CNNs (P¼0.02) for CIP with label encoding
(Supplementary Fig. S2). RFs were also better than the other three
classifiers for GEN with label encoding and FCGR encoding
(P<0.05). For CTZ, RFs significantly outperformed SVMs with all
encoding methods (P<0.05) (Supplementary Fig. S2). For CTX,
RFs are significantly better than LR and SVM with label encoding
and one-hot encoding (P<0.05), while there are no significant dif-
ferences if the FCGR encoding is used (Supplementary Fig. S2).

Moreover, all models show high precision and recall using label
(Table 2), one-hot (Table 3) and FCGR encoding (Table 4) for CIP.
For CTZ and GEN, the models show high recall but lower precision,
which may be related to the imbalanced resistant and susceptible
isolates. In sum, RF, CNN, LR and SVM can predict AMR for CIP,
CTZ, GEN and CTX with three encoding methods in E.coli.

3.2 Evaluation of the models on public data
We performed a further evaluation of our models using the public
data of E.coli of Moradigaravand et al. (2018). The public data are
highly imbalanced and thus performance metrics are difficult to in-
terpret. Thus, to evaluate the performance of the models, we per-
formed a down-sampling to balance the public data. For
completeness, results for the imbalanced set are shown in
Supplementary Tables S1–S3.

The resulting ROC curves clearly show that the machine learning
models generalize well and can predict AMR (Fig. 3). The AUCs of
RFs are higher compared with those from LR, SVM and CNN with
three encoding approaches, except for CTZ and GEN with FCGR
encoding. Consistent with the results from the Giessen data, all clas-
sifiers have high precision and recall for three encoding methods
(Tables 5–7).

Table 3. Results of the four machine learning models with one-hot encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.87 6 0.05 0.75 6 0.00 0.84 6 0.01 0.80 6 0.00 0.90 6 0.01 0.71 6 0.03 0.84 6 0.03 0.87 6 0.05

LR 0.89 6 0.05 0.71 6 0.04 0.80 6 0.03 0.78 6 0.02 0.89 6 0.03 0.73 6 0.08 0.89 6 0.05 0.95 6 0.02

RF 0.92 6 0.05 0.75 6 0.01 0.82 6 0.02 0.80 6 0.03 0.90 6 0.02 0.73 6 0.07 0.90 6 0.07 0.97 6 0.03

SVM 0.86 6 0.05 0.68 6 0.03 0.77 6 0.03 0.76 6 0.03 0.89 6 0.03 0.69 6 0.06 0.89 6 0.06 0.95 6 0.04

Table 4. Results of the four machine learning models with FCGR encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.87 6 0.04 0.74 6 0.04 0.81 6 0.03 0.75 6 0.02 0.91 6 0.03 0.84 6 0.04 0.87 6 0.06 0.96 6 0.01

LR 0.79 6 0.08 0.70 6 0.04 0.73 6 0.05 0.69 6 0.04 0.85 6 0.04 0.79 6 0.05 0.85 6 0.04 0.86 6 0.02

RF 0.91 6 0.03 0.74 6 0.01 0.82 6 0.02 0.80 6 0.02 0.87 6 0.03 0.72 6 0.07 0.90 6 0.07 0.98 6 0.01

SVM 0.81 6 0.03 0.72 6 0.03 0.73 6 0.01 0.69 6 0.02 0.88 6 0.03 0.81 6 0.05 0.87 6 0.03 0.92 6 0.03
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3.3 Marker genes associated with antibiotic resistance
We performed an SNP association study on the Giessen and pub-
lic data using the EFS R package with default parameters. In this
analysis, we did not include the known resistance genes. Thus,
we aimed at identifying secondary mutations that contribute to
the resistance directly or indirectly, e.g. compensatory muta-
tions. This data-driven approach does not need AMR expert

knowledge and can also be used and predict resistance even with-
out knowing the resistance genes but by identification of the sec-
ondary mutations. EFS provided a ranking of the SNPs for each
antibiotic. The ten most important SNPs for each antibiotic are
shown in Figure 4. These SNPs are part of 19 different genomic
regions. We then annotated and analyzed the corresponding
genes of these regions (Table 8).
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Fig. 3. ROC curves for the models with label, one-hot and FCGR encoding on the public data. First row: ROC curves for CIP with label encoding (A), one-hot encoding (B)

and FCGR encoding (C), respectively. Second row: ROC curves for CTX with label encoding (D), one-hot encoding (E) and FCGR encoding (F), respectively. Third row: ROC

curves for CTZ with label encoding (G), one-hot encoding (H) and FCGR encoding (I), respectively. Fourth row: ROC curves for GEN with label encoding (J), one-hot encod-

ing (K) and FCGR encoding (L), respectively

330 Y.Ren et al.



Some of these genes are well-known genes conferring antibiotic
resistance, such as marA. marA is a gene related to multiple drug re-
sistance (Abdolmaleki et al., 2019). In comparison, the other genes
have not been well studied so far. For instance, the gene nhaA (asso-
ciated with CTX, CTZ and GEN resistance) displays a Naþ/Hþ
antiport activity in E.coli that can regulate the permeability, which
may further affect drug resistance (Padan et al., 2004). The gene
rlmC encodes a 23S RNA methyltransferase that methylates the 23S
rRNA, of antibiotic binding sites and is related to antibiotic resist-
ance (Pletnev et al., 2020; Stojkovi�c et al., 2016). It has been
reported that the gene fliI encodes a virulence factor, and some stud-
ies focused on the correlation between antimicrobial resistance and
bacterial virulence (Beceiro et al., 2013; Deng et al., 2019). The
gene pepB encodes the peptidase B, which is related to the produc-
tion of bacteriocins, narrow-spectrum antimicrobial peptides pro-
duced by bacteria (Suzuki et al., 2001; Telhig et al., 2020). MurB is
the key biosynthetic enzyme involved in the synthesis of peptidogly-
can, the key component of the cell wall (Nasiri et al., 2017; Walsh
and Wencewicz, 2014). In sum, the marker genes and SNPs identi-
fied by EFS can be used as a reference for further AMR studies.

4 Discussion

This study analyzed four different machine learning methods (RFs,
LR, SVMs and CNNs) for predicting four antibiotic resistances in
E.coli based on whole-genome sequence data with three different
encoding schemes, namely, label encoding, one-hot encoding and
FCGR encoding. Moreover, our goal was to identify mutations (sec-
ondary mutations) contributing to resistance beyond known resist-
ance genes. Thus, we used a reference genome for E.coli without
known resistance genes. Our study confirmed that label encoding,

one-hot encoding and FCGR encoding could encode genomic data
for preparing the input data for subsequent machine learning and
deep learning methods. Our results show that the four machine
learning methods can effectively predict AMR without the need for
a database of known resistance genes or SNPs, which is an essential
prerequisite for AMR prediction in less well-studied pathogens and
drugs. Furthermore, we provide potential genes and SNPs associated
with AMR based that can be used as a reference for the subsequent
experiments.

Previous studies reported different SNPs in the bacterial genome
associated with multiple drug resistance (Brimacombe et al., 2007;
Figueroa et al., 2019; Shi et al., 2019; Su et al., 2019; Yang et al.,
2018). However, these studies mainly focused on partial SNPs based
on available AMR databases (Yang et al., 2018). Machine learning
based on the complete set of SNPs from whole-genome sequencing
gives further insights and can be used to identify novel biological
mechanisms of resistance.

Encoding the genomic features into a readable format for ma-
chine learning and deep learning is an essential step. Label encoding,
one-hot encoding and CGR encoding can convert SNPs into
machine-recognizable formats very efficiently. Our study used the
three approaches to encode SNPs and yield excellent predictions for
both encoding methods. Many studies indicated that CNNs outper-
form other machine learning algorithms in image classification,
which was the rationale for incorporating FCGR as an encoding
scheme.

We compared four machine learning methods, including RFs,
LR, SVMs and CNNs. Overall, the four machine learning methods
showed good performance in predicting the four antibiotic resistan-
ces of E.coli. We also demonstrated that our models generalize well
on unseen data, as proven by validating the results based on an inde-
pendent public dataset. We were also able to identify SNPs

Table 5. Evaluation of the machine learning models with label encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.94 0.71 0.79 0.84 0.88 0.88 0.81 0.70

LR 0.93 0.76 0.80 0.82 0.90 0.84 0.75 0.62

RF 0.95 0.75 0.81 0.83 0.90 0.85 0.77 0.61

SVM 0.94 0.71 0.75 0.77 0.87 0.84 0.74 0.60

Note: Precision and recall are calculated based on balanced data using down-sampling.

Table 6. Evaluation of the machine learning models with one-hot encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.95 0.83 0.84 0.80 0.90 0.83 0.78 0.62

LR 0.90 0.80 0.76 0.81 0.90 0.85 0.78 0.63

RF 0.90 0.78 0.73 0.81 0.90 0.86 0.78 0.63

SVM 0.89 0.78 0.75 0.73 0.88 0.83 0.77 0.55

Note: Precision and recall are calculated based on balanced data using down-sampling.

Table 7. Evaluation of the machine learning models with FCGR encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.84 0.71 0.72 0.74 0.93 0.89 0.86 0.71

LR 0.85 0.77 0.79 0.80 0.89 0.87 0.86 0.74

RF 0.92 0.77 0.83 0.83 0.88 0.89 0.78 0.59

SVM 0.88 0.78 0.77 0.75 0.90 0.86 0.86 0.74

Note: Precision and recall are calculated based on balanced data using down-sampling.
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associated with resistance. However, the marker genes located
around the SNPs associated with AMR need experimental
validation.

Although we only focused on four antibiotics in this study, our
method can easily be applied to other antibiotics and can also be
extended to other resistance-related SNPs of other pathogens, also
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from species other than bacteria. Furthermore, our approach can

also be applied to other biomedical areas, e.g. for cancer resistance
prediction. More importantly, our method may have huge potential
in systems medicine, to improve the diagnosis, targeted therapy and

disease prevention.
There are also some limitations in our study. For example, we

only used SNP data in our models that have been called based on a
single reference genome. This, however, spares many genomic

regions that might be important resistance factors. This is especially
true for diverse species like E.coli. One approach to mitigate this
issue would be the selection of more suitable or multiple reference

genomes. Another option potentially leading to a more holistic set
of potential SNPs would be to use an artificial pseudo-pan-genome

incorporating many genomes of a particular species as a reference
within the SNP detection workflow. However, other features, e.g.
transcriptomics or proteomics data, might be important for AMR as

well (Moradigaravand et al., 2018). Moreover, several other import-
ant drugs have not been taken into account yet. However, they may
be analyzed with the same methodology when enough data are

available.

5 Conclusion

We investigated four machine learning methods for predicting AMR
to four different drugs in E.coli from whole-genome sequence data

with label encoding, one-hot encoding and FCGR encoding. Our
results demonstrated that all methods perform very well also for un-
seen data. Overall, our study provides a new machine learning-

driven approach for resistance prediction and thus, may improve
treatment of patients in the future.

We evaluated the performance based on cross-validation on our
own data and tested the model performance on public data.

Moreover, we identified potential SNPs and corresponding genes
that are associated with AMR.

We could demonstrate that label encoding, one-hot encoding
and FCGR encoding can be used for whole-genome sequence analy-
ses. Moreover, we provide a comprehensive evaluation of different

machine learning algorithms for AMR prediction in E.coli. The
results of the study give a rich reference resource for further research
on both experimental and computational aspects of AMR.
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