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Alternative splicing and polyadenylation represent two major steps in pre-

mRNA-processing, which ensure proper gene expression and diversification

of human transcriptomes. Deregulation of these processes contributes to

oncogenic programmes involved in the onset, progression and evolution of

human cancers, which often result in the acquisition of resistance to exist-

ing therapies. On the other hand, cancer cells frequently increase their tran-

scriptional rate and develop a transcriptional addiction, which imposes a

high stress on the pre-mRNA-processing machinery and establishes a ther-

apeutically exploitable vulnerability. A prominent role in fine-tuning pre-

mRNA-processing mechanisms is played by three main families of protein

kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK)

and cyclin-dependent kinase (CDK). These kinases phosphorylate the

RNA polymerase, splicing factors and regulatory proteins involved in

cleavage and polyadenylation of the nascent transcripts. The activity of

SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibi-

tion was shown to exert anticancer effects. In this review, we describe key

findings that have been reported on these topics and discuss challenges and

opportunities of developing therapeutic approaches targeting splicing factor

kinases.

Introduction

Most RNAs transcribed in the nucleus serve as vectors

of the genetic information encoded in the DNA. The

nascent transcripts undergo several steps of co- and

post-transcriptional processing that are required for

their maturation, including splicing of intronic

sequences, 30 end cleavage and polyadenylation [1,2].

These processes are mediated by complex macromolec-

ular machineries, namely the spliceosome and the

cleavage and polyadenylation complex, whose activity

and recruitment to the newly transcribed RNAs are

modulated by both transcription dynamics [3,4] and

interaction with hundreds of auxiliary RNA-binding

proteins (RBPs) [5,6].

Recognition of the exon-intron boundaries and

polyadenylation signals (PAS) are hampered by the

degenerate nature of the splice-site sequences and by

the presence of multiple PAS within the transcription

unit. For this reason, additional cis-acting sequences,
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named splicing enhancers and silencers, or proximal

and distal sequence elements, respectively, are recog-

nised by specific RBPs that orchestrate the production

of multiple transcripts through alternative splicing

(AS) and alternative polyadenylation (APA) from

most eukaryotic genes [5,6]. The transcriptome diver-

sity generated by these mechanisms allows fine-tuning

of gene expression under physiological conditions, thus

expanding the coding potential and the flexibility of

utilisation of the genome. However, errors in these

complex processing mechanisms can lead to aberrant

expression of RNA isoforms that promote disease

onset or progression. Indeed, many human pathologies

have been linked to defective pre-mRNA-processing

events, and dysregulation of these mechanisms are par-

ticularly frequent in human cancers [7]. Thus, investi-

gation of the molecular mechanisms underlying the

oncogenic alteration of both AS and APA represents a

flourishing field of studies which hold the promise to

yield novel and more specific anti-tumoral therapeutic

approaches [7,8]. In this regard, protein kinases regu-

lating pre-mRNA-processing represent promising

objects of investigation, as they can be potentially tar-

geted by specific enzymatic inhibitors. Notably, several

protein kinases have been shown to regulate both

RBPs and the RNA polymerase II (RNPII) through

phosphorylation, a post-translational modification that

plays a key role in coupling pre-mRNA-processing

with transcription in response to physiological and

pathological signals [9,10].

Protein phosphorylation affects AS at multiple steps,

by modulating the activity of core components of the

spliceosome as well as the expression, activity and/or

subcellular localisation of regulatory RBPs [9,11]. The

protein kinases that mediate such control include both

splicing-specific kinases, such as the serine arginine

protein kinase (SRPK) and CDC-like kinase (CLK)

families, and cell-signaling kinases, whose activity inte-

grates pre-mRNA-processing within cellular responses

to specific cues [9]. On the other hand, regulatory

phosphorylation of the RNPII is largely mediated by

members of the cyclin-dependent kinase (CDK) family,

which target residues of the heptapeptide (YSPTSPS)

repeats in its C-terminal domain (CTD) [12]. Sequen-

tial phosphorylation of the CTD by CDKs regulates

the kinetics of the transcription cycle (i.e. transition

from initiation to elongation, productive elongation

and termination). This regulation also affects AS and

APA by modulating the window of opportunity

between competing splice sites or PAS, respectively

[2,13]. In addition, CTD phosphorylation is also cru-

cial for pre-mRNA-processing because it promotes the

recruitment of RBPs involved in this mechanism [10].

In line with the extensive links between these pro-

cesses, overexpression of mutant RNPII with a defec-

tive elongation rate, or treatment with CDK inhibitors

that block phosphorylation of the CTD, both induced

widespread alteration in pre-mRNA-processing events

[14–18]. To couple these processes, the CTD acts as a

docking platform for the co-transcriptional recruitment

of splicing and cleavage and polyadenylation factors

(CPAs) in a phosphorylation-dependent fashion

[10,19].

In this review, we describe studies that illustrate

how SRPKs, CLKs and CDKs contribute to onco-

genic dysregulation of pre-mRNA-processing, high-

lighting challenges and opportunities of developing

therapeutic approaches targeting their activity.

The SR-protein kinase family

SRPK1–3 form a small family of serine-threonine

kinases that specialise in the phosphorylation of serine

residues within serine/arginine (S/R) dipeptides

enriched in SR proteins, a large family of splicing fac-

tors [20,21].

SRPK1 is the prototype and the most investigated

member of this family (Fig. 1A). Its structure is char-

acterised by a bipartite kinase domain, separated by a

unique spacer insert domain (SID) [20,21]. In non-

stimulated cells, SRPK1 is mainly localised in the cyto-

plasm, where it is held by a strong cytosolic retention

signal within the SID and by the interaction with

molecular chaperones [22–24]. In the cytoplasm,

SRPK1 phosphorylates SR proteins and stimulates

their nuclear import by increasing their affinity for

their specific transportin SR2 [25] (Fig. 2A). Different

intra- and extracellular signals lead to dissociation of

chaperones from SRPK1 and induce its nuclear

translocation [22,24]. In the nucleus, SRPKs cooperate

with CLKs to regulate shuttling of SR proteins

between nuclear speckles and nucleoplasm by phos-

phorylation of different S/R residues [26,27] (Fig. 2A).

Moreover, direct interaction with CLK1 was found to

stabilise the nuclear localisation of SRPK1 and to pro-

mote the release of SR proteins from CLK1 upon their

phosphorylation, thus allowing timely association with

spliceosomal components [28–30]. In addition to SR-

proteins, SRPKs also regulate the activity of other

splicing factors, such as TRA2B [31] and RBM4

[32,33]. Moreover, a systematic study combining

in vitro kinase assays with affinity purification-mass

spectrometry revealed that other RNA-processing fac-

tors, including hnRNPs, spliceosomal proteins and

components of the exon junction complex (EJC), are

substrates of SRPKs [34]. In particular, both SRPK1

6251The FEBS Journal 288 (2021) 6250–6272 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

C. Naro et al. Splicing factor kinases and cancer



and SRPK2 were found to phosphorylate RBM8A (or

Y14) [34], an EJC component whose phosphorylation

regulates its interaction with other EJC proteins and

with mRNA decay factors [35,36]. Lastly, the cleavage

and polyadenylation-specific factors CPSF6 and

CPSF7 (also known as CFIm68 and 59) are also phos-

phorylated by SRPKs. This post-translational modifi-

cation might affect the polyadenylation process, as

suggested by the widespread changes in APA observed

in cells expressing an hypo-phosphorylated CPSF6

[S8YA] mutant [37,38]. Thus, although a comprehen-

sive analysis of post-transcriptional processes other

than splicing is still lacking, these observations suggest

that SRPKs regulate and coordinate various stages of

pre-mRNA processing.

SRPK1 and 2 are ubiquitously expressed in human

tissues, with the highest expression levels in the brain

and testes, whereas SRPK3 is primarily expressed in

brain and muscle [39,40] (Fig. 3A). In line with this

pattern of expression, Srpk1 genetic ablation is an

embryonic lethality in the mouse, whereas knockout of

Sprk3 elicits a type-2 specific myopathy in murine

models [40,41]. To date, no direct information is avail-

able on the impact of SRPKs on developmentally-

regulated splicing programmes. However, the peculiar

higher expression of both SRPK1 and 2 in brain and

testes (Fig. 3A) suggests their implication in the gener-

ation of the large transcriptome diversity in these

organs [42]. Remarkably, SRPK1-mediated phospho-

rylation R/S dipeptides of protamine 1 is crucial to

ensure the protamine-to-histone exchange underlying

reactivation of the paternal genome after fertilisation

[43]. Moreover, SRPK1-mediated phosphorylation of

the ubiquitin ligase RNF12 was shown to regulate a

neurodevelopmental-specific transcriptional pro-

gramme [44]. Collectively, these observations highlight

the multifunctional role played by SRPKs in the

regulation of developmental processes in higher

eukaryotes.

The role of SRPKs in human cancers

SRPK1-upregulation was documented in several human

solid tumours [45–48] and in leukaemia [49,50]. In most

of these cancers, SRPK1-upregulation was correlated

with poor outcome and negative prognostic factors,

such as higher tumour grade and stage or metastatic

behaviour [46,47,51,52]. However, exception to this

trend was reported in patients affected by testicular

germ cell tumours and paediatric retinoblastoma, for

whom high expression of SRPK1 apparently correlates

with better prognosis and increased sensitivity to

chemotherapy [53,54]. Such opposite trends could reflect

changes in post-translational modifications of SRPK1,

which modulate its activity. For instance, phosphoryla-

tion by casein kinase 2 (CK2) o LIMK2 was shown to

enhance SRPK1 activity [55,56], whereas TIP60-

mediated acetylation inhibits SRPK1 auto-

phosphorylation and reduces its stability [57]. Thus, it is

possible that post-translational modifications occur
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Fig. 1. Schematic structures of prototype members of SRPK, CLK and CDK families, implicated in alternative mRNA processing. (A, B)

Schematic representation of the functional domains of the splicing factor kinases SRPK1 and CLK1 (A) and of the transcriptional related

CDKs, CDK7, CDK9, CDK12 and CDK13 (B). SRPK1 shows a bi-lobular kinase domain, interrupted by a unique spacer insert domain (SID),

site of interaction with molecular chaperones. CLK1, CDK7 and CDK9 are primarily constituted by their kinase domain. CDK12 and CDK13

display a RS domain, enriched in Arg/Ser residues and multiple proline-rich regions (PR). CDK13 also has three alanine rich domains (AR).
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differently in cancers showing opposite prognostic

potential of SRPK1, and contribute to its functional

impact. In this regard, it is interesting to mention that

both knock-out and overexpression of SRPK1 were

reported to affect oncogenic features of mouse embry-

onic fibroblasts (MEFs). Ablation of SRPK1 promoted

neoplastic transformation of MEFs, whereas its overex-

pression enhanced anchorage-independent cell growth

[41]. Notably, hyper-activation of the AKT pathway

was suggested to underlie this ambivalent behaviour.

SRPK1 interacts with the AKT kinase and its regula-

tory phosphatase PHLPP1, and both high and low

SRPK1 levels were shown to interfere with a negative

feedback mechanism that normally tunes the AKT

pathway [41]. These observations suggest that splicing-

independent regulatory activities of SRPK1 might also

concur with its multifaceted behaviour observed in

human cancers.

The levels of SRPK1 in cancer cells could be con-

trolled at the transcriptional level by the Wilms’ tumour

suppressor (WT1), a zinc-finger transcription factor

shown to either repress or activate SRPK1 expression in

different cellular contexts. Indeed, WT1 repressed

SRPK1 transcription in a non-tumoral Denys Drash

Syndrome podocyte cell line [58], whereas a more recent

study reported that WT1 acts as a transcriptional acti-

vator of SRPK1 in prostate cancer and leukaemia cells

[59]. This positive function is inhibited by the interaction

of WT1 with the transcriptional co-repressor BASP1

[60], highlighting the relevance of the cellular context
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Fig. 2. Phosphorylation-mediated regulation

of RNA-processing. (A) SRPKs and CLKs

cooperate in phosphorylation of SR

proteins. SRPK- and CLK-activity is

counteracted by specific phosphatase

(PPase), making SR protein-phosphorylation

reversible. This modification modulates SR

proteins shuttling between nuclear speckles

and active site of pre-mRNA-transcription

and processing. It also affects SR protein

physical and functional interaction with the

spliceosome. In the cytoplasm, SRPKs-

mediated phosphorylation regulates SR

protein nuclear import. (B) Schematic

representation of a eukaryotic gene,

displaying multiple constitutive (grey boxes)

and alternative exons (red boxes) and

several PAS. Recognition of these elements

during pre-mRNA-processing is modulated

by transcriptional CDKs (CDK7/9/12/13).

These kinases phosphorylate the RNPII CTD

at different residues and with different

timing. These modifications affect

transcription dynamics and RNPII

interactions with RNAprocessing factors (i.e

RBP, spliceosomal proteins and CPA).

Inhibition or depletion of CDK7/9/12/13 alter

co-transcriptional RNA-processing, favouring

aberrant AS, intron retention and

polyadenylation at premature PAS.
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for the regulation of SRPK1 transcription. In addition,

SRPK1 expression is repressed at post-transcriptional

level by several microRNAs, such as mir-9 [61], mir-99

[62], mir-1296 [63], mir-216b [64], mir-126 [65] and miR-

485-p [66]. Changes in expression of these microRNAs

might contribute to modulate the cellular levels of

SRPK1 in different cancer types. For instance, it was

proposed that activation of the transcription factor

HIF1a upon hypoxic conditions causes the downregula-

tion of mir-1296 and miR-485-p [63,66]. Hence, tran-

scriptional regulation of specific microRNAs by HIF1a
might induce the upregulation of SRPK1 under hypoxia

that has been documented in multiple cancer cells

[67,68].

SRPK1 expression and/or activity was shown to

promote several of the hallmarks of cancer, including

proliferation, resistance to apoptosis, migration and

angiogenesis [46,47,69–73]. In most cases, the pro-

tumoral activity of SRPK1 was associated with modu-

lation of select splice-variants in cancer cells [46,47,69–
73]. For instance, depletion of SRPK1 promoted the

splicing of a truncated isoform of the MAP2K2 gene

and of a shorter isoform of the apoptotic regulator

MCL-1, thus enhancing apoptosis and susceptibility to

chemotherapeutic agents [33,46]. One of the most

investigated targets of SRPK1 is the vascular endothe-

lial growth factor (VEGF) gene. Alternative usage of a

proximal or distal splice site in VEGF exon 8 regulates

the balance between pro- (VEGF165) and anti-

angiogenic (VEGF165b) splice variants [72]. Upregula-

tion of SRPK1 drives phosphorylation and nuclear

translocation of the splicing factor SRSF1, which

enhances splicing of the pro-angiogenic VEGF165 iso-

form in Wilms Tumour [58], melanoma [73] and pros-

tate cancer [47]. More generally, transcriptome

profiling approaches have revealed a widespread
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Fig. 3. SRPK-, CLK- and transcriptional CDK-expression levels in human tissues. (A–C) Clustergrams illustrating expression levels of

indicated members of the SRPK (A), CLK (B) and CDK (C) families, in human tissues. Data and figures were retrieved from the Genotype-

Tissue Expression (GTEx) Portal. Gene expression is shown in Transcripts Per Million (TPM). The GTEx Project was supported by the

Common Fund of the Office of the Director of the National Institutes of According Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and

NINDS. The data used for the analyses described in this manuscript were obtained from: the GTEx Portal on 04/30/21.
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impact of SRPK1 activity on splicing regulation [50].

Genetic or pharmacologic inhibition of SRPK1 affects

more than 2000 splicing-regulated genes in the leukae-

mic cell line THP1 [50]. Among them, SRPK1 inhibi-

tion caused a cancer-relevant switch in the pre-mRNA

of the transcriptional regulator BRD4. The long

BRD4 isoform displayed reduced chromatin-binding

and was proposed a potential therapeutic vulnerability

of leukaemia cells. Indeed, SRPK1 inhibition syner-

gised with inhibitors of BRD proteins in reducing the

growth of leukaemia cells [50]. This finding strongly

suggests that characterisation of the transcriptome sig-

nature regulated by SRPK1 in other tumour types

could provide valuable insights regarding its oncogenic

activity, as well as suggestions about potential targets

to be tested in combined therapeutic approaches.

The CDC-like kinase family

The CLK family comprises four members (CLK1–4)
of SR protein kinases, which are ubiquitously

expressed in human tissues (Fig. 3B). They are char-

acterised by a C-terminal kinase domain and an

N-terminal disordered domain, which mediates

protein-protein interactions (Fig. 1A). CLKs differ

from SRPKs for their preferential localisation in the

nucleus and for their broader spectrum of activity.

Indeed, these kinases also phosphorylate S-K or S-P

dipeptides, in addition to S-R dipeptides [27,74,75].

As previously mentioned, by virtue of these differ-

ences in localisation and specificity, CLKs cooperate

with SRPKs in phosphorylating and regulating the

activity of SR proteins [26–30] (Fig. 2A). In particu-

lar, CLK-mediated phosphorylation enhances the

release of SR proteins from nuclear speckles and pro-

motes their interaction with the U1 snRNP [28,76],

thus increasing their splicing activity. Notably, the

activity of CLK1 and CLK4 is highly susceptible to

physiological temperature changes. This regulation

relies on the intrinsic structural features of CLKs,

which allow reversible rearrangements in their kinase

activation segment [77]. By virtue of this regulation,

CLK1 and CLK4 were recently shown to act as tem-

perature sensors, which couple pathological and cir-

cadian oscillations of the body temperature with

global regulation of gene expression and splicing by

regulating SR-protein phosphorylation [77,78]. CLK-

mediated phosphorylation of SR proteins is also cru-

cial for the regulation of splicing of the so-called

‘detained’ introns in murine embryonic stem (ES)

cells [79]. Detained introns are defined as a class of

evolutionary conserved introns which are retained in

highly stable, nuclear polyadenylated transcripts [79].

Post-transcriptional splicing of detained introns is

activated upon specific cellular cues and positively

regulates the expression of parent genes [79].

CLKs phosphorylate also other splicing factors,

such as TRA2B [80,81] and SPF45 [82]. For instance,

CLK2-mediated phosphorylation was shown to modu-

late the feedback mechanism by which TRA2B auto-

regulates its own splicing and expression levels [80].

Although CLKs, and in particular CLK1, are preva-

lently localised in the nucleus [28,83], these kinases can

also function in the cytoplasm [84]. Among the cyto-

plasmic targets, CLKs can phosphorylate the tyrosine

phosphatase PTP1B [85] and the junctional proteins

PKP2, PPHLN1 and PNN [34] in vitro. Moreover, the

mitotic kinase Aurora B and B56b, a regulatory sub-

unit of the PP2A complex, were also reported to be

functionally relevant substrates of CLKs in live cells

[86,87]. Phosphorylation of Aurora B by CLK1, 2 and

4 was shown to be essential for proper cytokinesis [86],

while CLK2-mediated phosphorylation of B56b pro-

moted assembly of the functional PP2A complex by

regulating an inhibitory feedback loop impinging on

the AKT kinase [87].

The role of CLKs in human cancers

Upregulation of CLK1–4 expression levels was

reported in multiple cancer types, including breast [88],

colon, renal, and lung carcinomas [89]. Moreover, high

expression levels of CLK1 or CLK2 were associated

with negative prognosis in renal carcinoma and

glioblastoma, respectively [89,90]. The increased

expression of CLK2 in breast cancer was correlated

with the amplification of its locus [88], whereas the

cause of CLK1 upregulation in tumours has not been

investigated yet. However, CLK1 protein expression is

regulated by a ubiquitin-mediated degradation mecha-

nism during cell cycle progression, resulting in a peak

of expression during the G2/M phase [89]. Thus, the

increased mitotic index of tumours with respect to nor-

mal tissue, combined with the higher CLK1 transcript

levels, may account for the observed upregulation of

this kinase in human cancers. Furthermore, CLK1 and

CLK4 expression levels are also regulated by post-

transcriptional splicing of the introns flanking their

exon 4. These introns are retained in a large fraction

of polyadenylated transcripts in mouse cells, and their

splicing is activated upon cellular stresses, such as heat

or osmotic shock [91]. CLK1/4 appear to control their

own pre-mRNA, as their chemical inhibition promoted

splicing of the retained introns [79,91]. CLK1 also

auto-regulates AS of its own exon 4, of which the

skipping generates a truncated and catalytically
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inactive protein isoform [92]. Notably, CLK1 intron 4

is variably retained and exon 4 largely excluded, also

in a subset of human cancer cell lines and this regula-

tion is reverted by stress conditions [93]. Thus, alter-

ation of this conserved auto-regulatory mechanism

might also contribute to changes in CLK1 expression

and activity in cancers.

Downregulation or chemical inhibition of CLKs

impairs growth and metastatic properties of tumours

and these effects were correlated with the modulation

of specific splice variants [88,90,94–96]. For instance,

CLK inhibition in a glioblastoma model favours splic-

ing of a cytoplasmic isoform of the oestrogen-related

receptor b (ERR-B) gene, named ERR- b 2, which in

turn inhibits cancer cell growth and migration [95].

Moreover, two distinct CLK inhibitors were reported

to increase the skipping of exon 7 in the RPS6KB1

gene, a splicing event directly correlated with the anti-

proliferative effects of these drugs in breast cancer

models [94,96]. At genome-wide level, CLK inhibitors

modulated a subset of AS events that are dysregulated

across tumour types displaying CLK1 upregulation

[89], suggesting their efficacy in reverting CLK-

mediated oncogenic features. Interestingly, ~ 65% of

the CLK-dependent AS events were also susceptible to

periodic variation across the cell-cycle. Thus, the splic-

ing activity of CLKs may contribute to determine

the proper timing of cell-cycle progression [89]. This

observation, together with the cell cycle-dependent

expression of CLKs and their role in Aurora B phos-

phorylation [86,89], suggests that CLK inhibitors

might represent promising therapeutic options for can-

cers treated with drugs that interfere with mitosis, such

as taxanes for triple-negative breast cancers [97].

Transcriptomic analyses in different cancer cell lines

revealed that chemical inhibition of CLKs results in

pervasive intron-retention patterns [89,98]. Interestingly,

inefficient splicing of detained introns represents a vul-

nerability for glioblastoma cells. It was shown that inhi-

bition of PRMT5, an arginine methyl transferase that

methylates spliceosomal proteins and is required for

spliceosome maturation [99,100] resulted in an accumu-

lation of detained introns and elicited strong anti-

tumoral effects [101]. These observations suggest that

CLK inhibitors might synergise with other spliceosome

inhibitors in halting the growth of tumours that, simi-

larly to glioblastoma, display high levels of detained

introns [102]. In this view, it will be interesting to evalu-

ate whether MYC-driven tumours, which are known to

be particularly susceptible to spliceosome inhibition

[103], are also particularly sensitive to the anti-tumoral

activity of CLK inhibitors and whether these drugs

synergise in combined regimens. In support of this

hypothesis, a novel potent ATP-competitive inhibitor of

CLK2 (T-025; N2-methyl-N4-[pyrimidin-2-ylmethyl]-5-

[quinolin-6-yl]-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine)

exhibited particular efficacy in MYC amplified cancer

cell lines [94]. However, in this initial study T-025 was

not found to induce massive intron-retention as

observed by other spliceosome inhibitors [94]. Thus,

further investigation of the mechanism(s) underlying

this susceptibility are still necessary to elucidate its full

potential [104]. Another interesting observation is

that a new generation ATP-competitive inhibitor of

CLKs, named T3 [4-(2-methyl-1-(4-methylpiperazin-1-

yl)-1-oxopropan-2-yl)-N-(6-(pyridin-4-yl)imidazo[1,2-a]

pyridin-2-yl)] promotes the formation of conjoined gene

transcripts, as a consequence of aberrant RNA-

processing between transcripts of distinct genes [98].

This pattern was correlated to the enrichment of specific

RNA motifs in the last and second exons of upstream

and downstream partners, respectively. These motifs

were predicted to be recognised by RBPs that are

known to affect both AS and APA processes [98], such

as U2AF2 and KHDRBS1 [105,106]. Moreover, mass-

spectrometry assays documented a direct interaction

between CLK2 and these RBPs as well as with core

components of the cleavage and polyadenylation com-

plex, including CPSF7 [98]. Since the alternative last

exon was the second most abundant AS pattern regu-

lated by T-025 after the cassette exon [94], these obser-

vations hint at a possible involvement of CLKs also in

30-end RNA-processing regulation and suggest that

impairment of this function might concur with the anti-

tumoral effects elicited by their chemical inhibition.

The cyclin-dependent kinase family

Cyclin-dependent kinases are a family of serine-

threonine kinases, requiring association with regulatory

cyclins to exert their activity. The human genome com-

prises 21 CDKs and five CDK-like (CDKL) genes,

which can be classified in cell-cycle-related and

transcriptional-related subfamilies on the basis of their

substrate specificity [107]. In particular, the transcrip-

tional CDKs ensure orderly progression of the sequen-

tial phases of the transcription cycle, as well as its

efficient and accurate coordination with the pre-

mRNA-processing events that are required for proper

gene expression (Fig. 2B) [108–110]. Among them,

CDK7, CDK9, CDK12 and CDK13 (Fig. 1B) are the

kinases whose regulatory impact on pre-mRNA-

processing has been more extensively investigated. All

these CDKs are ubiquitously expressed in human tis-

sues (Fig. 3C) and act on similar, yet not overlapping,

steps of transcription and pre-mRNA-processing.
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CDK7

CDK7 function is essential in vivo and its ablation

leads to defects in cell cycle progression and early

embryonic lethality [111]. Moreover, conditional

knockout of CDK7 in adult mice indicated that this

kinase is essential for the homeostasis of tissues with

elevated cellular turnover, which undergo exhaustion

of self-renewal capacity and premature ageing in its

absence, whereas CDK7 appears to be dispensable in

tissues characterised by low proliferation [111]. CDK7

associates with MAT1 and Cyclin H in the cytoplasm

as part of the CDK-activating kinase (CAK) complex,

and regulates phosphorylation of cell-cycle CDKs

[111,112]. In line with this role, loss of CDK7 was

reported to induce mitotic defects in lower organisms,

such as yeast and Caenorhabditis elegans [113,114].

Moreover, selective inhibition of an analog-sensitive

CDK7 allele (CDK7as) in human colon cancer cells

impaired activation of CDK1 and CDK2 and cell

cycle progression [115]. On the other hand, in the

nucleus the CAK complex is tethered to the general

transcription factor TFIIH and facilitates RNPII

escape from the preinitiation complex (PIC) in pro-

moter regions. This latter function is operated through

phosphorylation of the RNPII CTD at Ser5 and of

CDK9, the catalytic subunit of the transcription elon-

gation factor P-TEFb [116,117]. More recently, CDK7

was also reported to phosphorylate several splicing

factors, including the U2 snRNP protein SF3B1 and

the general splicing factor U2AF2 [118]. In addition,

CDK7 also phosphorylates CDK12 and CDK13 [118],

which are involved in the phosphorylation of the

RNPII CTD at Ser2 within the gene body and play a

role in RNA processing regulation (see below). These

findings, together with the observation of a significant

overlap between AS changes elicited by CDK7 inhibi-

tion and the SF3B1 inhibitor Pladienolide B [118], pro-

vide strong evidence for a direct and/or indirect role

for CDK7 in splicing regulation.

CDK9

CDK9 also mediates the phosphorylation of the RNPII

CTD at Ser2 [108]. Loss of CDK9 expression in vivo

causes embryonic lethality [119] and its activity was

shown to contribute to developmental and tissue-

specific differentiation programme types, such as myo-

genic and lymphoid differentiation [120,121]. Together

with its partner Cyclin T1, CDK9 is a key component of

the P-TEFb complex involved in transcription elonga-

tion. Upon promoter clearance, association with the

DRB sensitivity-inducing factor DSIF (a heterodimer

composed of the Spt5 and Spt4 subunits) and negative

elongation factor NELF causes the stalling of the elon-

gating RNPII ~ 50–100 nt downstream of the transcrip-

tion start site. At this stage, CDK9-mediated

phosphorylation of Spt5, NELF and the CTD triggers

the release of the RNPII from promoter-proximal paus-

ing, allows its transition into the gene body and pro-

motes transcript elongation [122–124]. Notably,

chemical inhibition of CDK9 also interferes with co-

transcriptional splicing and with the 30-end RNA cleav-

age and polyadenylation [125] (Fig. 2B). This defect is

likely a consequence of the altered recruitment of regu-

latory factors, such as U2AF2 [19] and the CPAs

PCF11 [19], CSTF2 (also known as CSTF64) and

SSU72 [126]. CDK9 also directly phosphorylates and

enhances the activity of XRN2, the 50–30 exonuclease
that degrades the 50 uncapped RNA generated down-

stream of the cleavage site during 30-end pre-mRNA-

processing [127]. Depletion or inhibition of CDK9

impaired the localisation of XRN2 on the chromatin

and increased the read-through transcription consis-

tently with inefficient transcription termination [127].

These observations indicate that timely phosphorylation

by CDK9 of different targets is essential for the coordi-

nation of transcription and processing of the nascent

transcripts.

CDK12/CDK13

CDK12 and CDK13 are highly homologous kinases

characterised by their larger size with respect to the

other transcriptional CDKs (Fig. 1B). CDK12 and

CDK13 associate with Cyclin K and play a partially

redundant role in the regulation of transcription elonga-

tion [128]. These CDKs, as well as their partner Cyclin

K, are highly expressed in murine ES cells and their

levels decrease when differentiation begins [129]. Nota-

bly, knockdown of CDK12 or CDK13 reduced the

expression of transcription factors involved in stemness,

such as OCT4 and SOX2, indicating their role in self-

renewal of stem cells [129]. Furthermore, loss of CDK12

function impaired expression of DNA damage response

(DDR) genes, thus promoting genomic instability and

apoptosis in both ES and neural progenitor cells

[130,131]. Collectively, these observations highlight the

critical role played by CDK12 and CDK13 in embryoge-

nesis [129,130,132] and neurogenesis [131].

CDK12 and CDK13 phosphorylate the RNPII CTD

at Ser2 in the gene body and towards the 30-end of the

transcription units [109,110,133]. Within proximity of the

PAS, the local increase in RNPII Ser2 phosphorylation

induced by CDK12 promotes the recruitment and stable

association of the CPAs CSTF3 (also known as CSTF77)
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and CPSF3 (also known as CPSF73), thus enhancing

execution of 30-end processing [134,135]. CDK12 activity

is also involved in suppression of intronic premature

polyadenylation (IPA) at cryptic PAS [136,137] (Fig. 2B).

This function likely involves both its activity as regulator

of transcription elongation and direct phosphorylation of

RNA-processing factors, including the CPAs CPSF7 and

CSTF2 and the U1snRNP component SNRNP70 [137].

CDK12 inhibition was reported to particularly affect long

genes displaying a lower ratio of U1snRNP-binding sites

near intronic PAS [137]. This observation may suggest

that the functional interaction between CDK12 and

SNRNP70 potentiates the ability of U1snRNP to recog-

nise and repress cryptic intronic PAS, thus avoiding pre-

mature termination of transcription [138]. Importantly,

genes involved in the DDR were enriched among the

transcripts undergoing premature cleavage and

polyadenylation in CDK12 null cells [136,137]. Together

with the overall reduction in expression of DDR genes

[130], this finding explains the increased sensitivity of

CDK12 null cells to DNA damaging drugs, such as poly-

adenosyl ribose polymerase inhibitors (PARPi) [139,140].

This observation is clinically relevant, as PARPi are usu-

ally applied only to cancer patients bearing mutations in

BRCA1/2 or other DDR genes. In this scenario, it is con-

ceivable that combined treatment with CDK12 inhibitors

may render susceptible to PARPi also cancer cells that

are proficient for the DDR pathway (see below). In addi-

tion to SNRNP70, CDK12 was shown to interact with

several other splicing factors [128,137,141–143]. This

peculiarity of CDK12, as well as of CDK13, with respect

to other CDKs may relate to the presence in their struc-

ture of an RS domain (Fig. 1B), which serves as a

protein-protein interaction domain in many splicing fac-

tors. Moreover, both CDK12 and CDK13 were shown to

localise in nuclear speckles [144,145], which are sub-

nuclear membrane-less organelles where several SR pro-

teins and splicing factors accumulate. Thus, CDK12 and

CDK13 are particularly suited for efficiently coupling

transcription and pre-mRNA-processing events. In sup-

port of this notion, depletion or chemical inactivation of

these CDKs caused widespread effects on AS regulation

in cancer cells, with a particular impact on the selection

of alternative last exons (ALE) in long genes charac-

terised by a large number of exons [128,141].

The role of transcriptional CDKs in
human cancers

Given the key role played by the transcriptional CDKs in

the regulation of gene expression at multiple layers, their

role in human cancers has been extensively investigated.

Overexpression of CDK7 was documented in several

cancers and it was shown to predict poor prognosis and

reduced survival [146–151]. In pancreatic cancer, CDK7

activity is particularly important for cancer cells in which

MYC is upregulated, possibly due to the general increase

in transcription driven by this oncogenic transcription

factor [152]. Notably, MYC-driven cancers were shown

to be more susceptible to splicing inhibition [103], sug-

gesting that the effects of CDK7 on splicing regulation

may contribute to its oncogenic role in cancers that rely

on MYC.

An interesting example of the multiple impacts that

CDKs can exert on tumorigenesis is provided by

CDK12, for which both amplification and deletion have

been linked to tumorigenesis. In breast cancer cells,

CDK12 is frequently amplified together with its neigh-

bouring HER2 gene and it was shown to drive tumour

initiation and progression by activating signaling path-

ways that promote self-renewal of cancer stem cells

[153]. Furthermore, inhibition of CDK12 activity was

shown to enhance the anticancer efficacy of different

HER2-targeting treatments in HER2+ breast cancer

cells [153,154]. By contrast, deletion and/or null muta-

tions in CDK12 were reported in ~ 5% of prostate and

ovarian cancer patients, where this genetic alteration is

correlated with worse prognosis, thus indicating a puta-

tive tumour suppressor role for CDK12 in these cancers

[155]. Notably, inactivation of CDK12 is associated with

a distinct phenotype of the tumour, characterised by

elevated genomic instability, tandem duplications and

possible immunogenicity [156,157]. The elevated geno-

mic instability is likely due to repression of the DDR

pathway in cells lacking CDK12 activity, which impairs

repair of lesions and allows accumulation of genomic

aberrations. Thus, the differential outcome of CDK12-

inactivation reported in different cancers may actually

rely on the same activity of this kinase. Short-term inac-

tivation of CDK12 – an essential gene in mammals – is

deleterious for cancer cells and exposes them to vulner-

ability towards several anticancer agents, particularly

those impinging on the DDR [136,137,140]. However,

in the presence of stable knockout of CDK12 activity, it

is likely that a few surviving cancer cells accumulate

large genomic aberrations that may ultimately create

new oncogenes and generate a highly resistant pheno-

type, as observed in advanced prostate cancer. In sup-

port of this hypothesis, tandem genomic duplications in

metastatic prostate cancers were found in regions har-

bouring an intergenic enhancer element upstream of the

androgen receptor gene (AR) and near the MYC gene,

both loci-encoding transcription factors that play a

crucial oncogenic role in prostate cancer and whose

overexpression has been associated with dysregulated

transcription and RNA-processing [158,159].
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Collectively, these observations indicate that CDKs

coordinate mRNA-transcription and processing through

modulation of transcription dynamics, which affects the

window of opportunity for the recruitment of pre-

mRNA-processing factors, as well as through the direct

phosphorylation and modulation of the activity of such

factors. Inhibition of these CDKs may be particularly

important for tumours relying on altered transcriptional

regulation, such as those driven by oncogenic transcrip-

tion factors like breast (MYC) and prostate (AR) cancers

and Ewing sarcomas (EWS-FLI1).

Inhibition of splicing factor kinases:
emerging therapeutic opportunities

Dysregulation of RNA-processing is an emerging hall-

mark of cancer and represents an element of vulnerability

that could be exploitable therapeutically [160]. In support

of this notion, the spliceosomal SF3B complex was iden-

tified as the target of well-known anticancer agents such

as pladienolides, sudemycins and meayamycins [161]. In

parallel, due to their druggable enzymatic nature, large

efforts have also been devoted to the development of

molecules that specifically inhibit splicing factor kinases.

The efficacy of SRPK, CLK and CDK inhibitors has

now been tested in multiple preclinical studies and hold

promise that these drugs can represent valuable anti-

neoplastic agents, especially for cancer types that are dri-

ven by transcriptional and co-transcriptional dysregula-

tion of gene expression programmes [162]. Herein, we

will briefly describe the current studies that are attempt-

ing to translate the inhibitors of these splicing factor

kinases into the clinic (Table 1).

SRPKs

Pharmacological inhibition of SRPK1 activity was

shown to exert anti-angiogenic effects, suggesting the

potential value of this approach for anti-cancer thera-

pies. The ATP-competitive inhibitor SRPIN430 dis-

plays high selectivity for SRPK1 and SRPK2 [163],

reduces SR protein phosphorylation and inhibits

SRSF1-dependent splicing of the pro-angiogenic

VEGF variant in cultured cell lines [58]. In line with

these observations, SRPIN430 treatment in vivo

reduces growth of melanoma xenografts, an effect that

was accompanied by reduced expression of VEGF and

impaired micro-vascularisation [73]. Moreover, this

inhibitor reduced metastasis-related cellular traits in

triple-negative breast cancer cell lines [56], thus recapit-

ulating the effects observed with stable silencing of

SRPK1 [51]. In this latter study, however, the anti-

tumoral effects of SRPK1 depletion was correlated

with impairment of the NF-jB signaling pathway,

whereas no significant splicing changes were identified

[51]. Thus, SRPK inhibitors might be able to interfere

also with splicing-unrelated activities of SRPK1. Two

other ATP competitive inhibitors of SRPK1, SPHINX

and its derivative SPHINX-31, elicited anti-tumoral

effects in models of leukaemia and solid tumours

[50,164,165]. Importantly, SPHINX-31 did not affect

normal haematopoiesis in vivo [50], thus providing

encouraging results in relation to its clinical safety.

SCO-101 is a drug described as an inhibitor of ATP-

Binding Cassette (ABC) efflux pumps and of SRPK1

[166], which displayed anti-cancer potential in combi-

nation with docetaxel in triple negative breast cancer

cells [167]. More recently, an irreversible SRPK1 inhi-

bitor (SRPKIN) was reported to cause strong antian-

giogenic effects in a mouse model of choroidal

neovascularisation, a form of age-related macular

degeneration that is correlated to potent VEGF-

splicing modulation [168]. This finding suggests that

SRPKIN could display anti-tumoral activity and may

pave the ground for future investigation of this drug

in the oncological setting.

Table 1. SRPKs, CLKs and CDKs as inhibitors in clinical trials. Data reported in this table were obtained from https://clinicaltrials.gov/ct2/

home.

Kinase family Inhibitor Gene target Indications Phase Clinical trial

SRPK SCO-101 SRPK1 Metastatic colorectal cancer I, II NCT04247256

Pancreatic ductal adenocarcinoma I, II NCT04652206

CLK SM08502 CLK1–4 Advanced solid tumours I NCT03355066

CDK AZD4573 CDK9 Advanced haematological malignancies I NCT03263637

Advanced haematological malignancies I, II NCT04630756

KB-0742 CDK9 Solid tumours, Non-Hodgkin Lymphoma I NCT04718675

SY-1365 CDK7 Advanced solid tumours, ovarian cancer, breast cancer I NCT03134638

SY-5609 CDK7 Advanced solid tumours, breast cancer, small-cell lung cancer I NCT04247126

CT7001 CDK7 Advanced solid malignancies I, II NCT03363893

THZ531 CDK12 and 13 Ovarian cancer organoids observational NCT04555473
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Two clinical trials testing the efficacy of an SRPK1

inhibitor in human cancer are currently reported as

actively recruiting. In both trials, the drug under eval-

uation is SCO-101 and the primary outcome is the

evaluation of safety and toxicity of the combination

with current chemotherapeutic regimens. The first

study (NCT04247256; Table 1) combines SCO-101

treatment with FOLFIRI (folinic acid, 5-fluorouracil

and irinotecan) in patients affected by metastatic col-

orectal cancer. Patients recruited for this trial have

acquired resistance to FOLFIRI treatment, possibly

due to the increased efflux of drugs by cancer cells.

The second trial (NCT04652206; Table 1) is an open-

label dose-escalating phase Ib study of SCO-101 in

combination with gemcitabine and nab-paclitaxel. This

study recruits patients diagnosed with locally-advanced

pancreatic ductal adenocarcinoma (PDAC) who are

ineligible for surgery. The rationale of both trials is

based on the ability of SCO-101 to inhibit ABC trans-

porters and possibly revert drug efflux, thus enhancing

the efficacy of chemotherapy. However, the predicted

inhibition of SRPK1 and of splicing regulation is also

thought to contribute to the anti-cancer efficacy of

these treatments. This is particularly appealing in

PDAC, where upregulation of the SR protein SRSF1

was shown to confer increased resistance to gemc-

itabine [169].

CLKs

Several CLK inhibitors have been developed and

tested for their anti-tumoral activity to date (see [170]

for an extended review). A major clinical interest

resides in orally available CLK inhibitors, such as the

aforementioned T-025 [94] or the newly developed

SM08502 [171]. The latter is a potent CLK2/3 inhibi-

tor displaying striking inhibitory effects on the growth

of colorectal cancer cell lines and xenograft models

[171]. The anti-cancer effects of SM08502 were associ-

ated with inhibition of SR protein phosphorylation

and promotion of aberrant splicing of key regulatory

genes belonging to the WNT pathway [171]. SM08502

is currently being investigated in a Phase 1, open-label

dose-escalation study aimed at evaluating its safety,

tolerability, pharmacokinetics and pharmacodynamics

in patients with advanced solid tumours

(NCT03355066; Table 1). Results from this study will

provide insightful information about the potential

application of SM08502 in cancer therapy and may

pave the ground for testing additional CLK inhibitors.

For instance, TG693 is an orally available CLK1 inhi-

bitor that was reported to restore proper splicing of

the dystrophin gene in an immortalised cell line from a

Duchenne dystrophy patient [172]. Nevertheless, its

activity as an anti-tumoral agent has not been evalu-

ated to date. Given the key role played by CLKs in

splicing regulation, it is likely that these inhibitors will

prove to be particularly potent if proper selection of

patients will take into account hallmarks of vulnerabil-

ity to splicing inhibition, such as MYC overexpression

or mutations in genes encoding splicing regulatory

proteins [8].

CDKs

Inhibition of the transcriptional CDKs is emerging as

a powerful tool to sensitise cancer cells that have

acquired resistance to standard treatments. For

instance, the highly selective and potent CDK9 inhibi-

tors A-1592668 [173] and AZD4573 [174] downregulate

Ser2 phosphorylation in the RNPII CTD and repress

expression of MCL-1, an important anti-apoptotic fac-

tor that limits the efficacy of the BCL2 inhibitor Vene-

toclax in haematologic tumours [175]. Pre-clinical

studies showed that both CDK9 inhibitors are well tol-

erated and enhance the efficacy of Venetoclax in xeno-

graft models of acute myeloid leukaemia [173,174]. On

these bases, AZD4573 is currently being evaluated in a

phase I clinical trial for haematologic malignancies

(NCT03263637; Table 1). As mentioned above, these

inhibitors are particularly effective in cancers that are

driven by oncogenic transcription factors. For

instance, inhibition of CDK9 was recently shown to

repress the AR-driven oncogenic programme in

castration-resistant prostate cancer cells in vitro and

in vivo [176]. Likewise, inhibition of CDK12 resulted in

synthetic lethality in Ewing sarcomas driven by the

oncogenic fusion protein EWS-FLI1 [177], which

encodes for a powerful transcription factor that repro-

grammes the transcriptome of sarcoma cells [178]. It

was found that CDK12 inhibitors (THZ1 and

THZ531) also impaired expression of DDR genes in

Ewing sarcoma cells and sensitised them to treatment

with PARPi [177]. This impact on the DNA repair

proficiency of CDK12 is likely not limited to Ewing

sarcoma. Indeed, previous studies showed that CDK12

inhibition by dinaciclib, a pan-CDK inhibitor, sensi-

tised to PARPi triple negative breast cancer cells that

are wild type for BRCA1/2 [179]. Moreover, a recent

study reported that a new selective CDK12/13 inhibitor

(SR-4835) also displayed synthetic lethality in combi-

nation with DNA-damaging agents in triple negative

breast cancer cells [140]. In this regard, it is likely that

the widespread dysregulation of 3’-end processing of

DDR genes caused by CDK12/13 inhibitors [136,137]

plays a key role in their anti-oncogenic activity.
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On this basis, several clinical trials are ongoing to

verify the increased sensitivity of tumours harbouring

CDK12 mutations to PARPi (reviewed in [157]). More-

over, the efficacy of THZ531 is currently being tested

in an observational trial employing organoids derived

from high grade serous ovarian cancer patients

(NCT04555473; Table 1), to verify whether CDK12

inhibition sensitises DDR-proficient tumours to

PARPi [180]. Unfortunately, however, clinical transla-

tion of the current CDK12/13 inhibitors is limited by

their low efficacy in vivo, which is likely due to rapid

efflux from the cell [181]. It is foreseen that chemical

improvement of these drugs will allow their evaluation

in clinical trials aimed at extending the use of PARPi

also to patients that do not harbour mutations in

BRCA1/2 or other DDR genes. Moreover, similar to

the effects elicited by CDK12/13 inhibitors, a recent

study reported that a selective CDK7 inhibitor (SY-

1365) significantly downregulated the expression of

DDR genes [182]. On the basis of its cytostatic and

cytotoxic effects in many different cancer types, this

inhibitor is currently being tested in a clinical trial

recruiting ovarian and breast cancer patients

(NCT03134638; Table 1). However, the mechanism

involved in this CDK7-dependent process appears dif-

ferent from inhibition of CDK12/13. Indeed, while

repressing CDK7 activity causes widespread changes in

AS regulation, such as inhibition of CDK12/13, no sig-

nificant evidence for genome-wide premature intronic

polyadenylation was observed [118]. Thus, CDK7 and

CDK12/13 inhibitors likely modulate similar biological

processes through different mechanisms, suggesting

possible synergistic anti-cancer effects on their com-

bined administration.

Future perspectives and conclusions

Pervasive amplification of transcription distinguishes

many cancer cells from normal cells [183] and requires

proper and efficient pre-mRNA-processing [184]. Ther-

apeutic targeting of splicing is a novel area in the field

of cancer therapy, with promising results related to the

selective anti-tumoral effects for cancer cells exhibiting

transcriptional addiction [8,162]. Moreover, higher sen-

sitivity to splicing inhibitors was demonstrated in can-

cer cells displaying intrinsic defects in the splicing

machinery (i.e. mutations in selected splicing factors or

splicing-regulatory proteins) [8,162]. These observa-

tions support research aimed at identifying biomarkers

of potential susceptibility, as well as for combined

therapeutic approaches that can induce such vulnera-

bility. In this view, the prominent role played by

Table 2. Protein kinases regulating pre-mRNA processing.

Protein kinase Known substrates Regulatory effect References

AKTs hnRNPs, SR proteins, IWS1,

CLK1, SRPK1

Modulation of RNA affinity, splicing/kinase

activity and subcellular localisation

[24,187,191–

193,202]

AMPK (AMP-activated protein kinase) SRSF1 Modulation of RNA affinity [203]

AURKA (Aurora kinase A) SRSF1 Modulation protein stability [189]

BRD4 RNPII Modulation of transcriptional elongation [197,198]

DNA Topoisomerase I SR proteins Modulation of splicing activity [204]

DYRK1A (Dual-Specificity Tyrosine-(Y)-

Phosphorylation Regulated Kinase 1A)

SR proteins, RNPII Modulation of subcellular localisation and of

transcriptional elongation

[205–209]

FASTK (Fas-Activated Serine/Threonine

Kinase)

TIA1 Modulation of splicing activity [210]

GSK3B (Glycogen synthase kinase-3

beta)

PSF, SRSF2, SRSF9, PSF and

other splicing factors, RNPII

Modulation of RNA affinity, subcellular

localisation and of transcriptional

elongation

[188,211,212]

MAPKs (Mitogen activated protein

kinases)

SAM68, SPF45, DAZAP1,

SKIIP

Modulation of RNA affinity and splicing

activity

[186,194,195,213]

NEK2 (NIMA–related kinase 2) SRSF1 Modulation splicing activity [190]

PKA (cAMP-Dependent Protein Kinase) hnRNPs, SR proteins Modulation of RNA affinity and of splicing

activity

[206,214,215]

PLK3 (Polo-like kinase 3) RNPII Modulation of transcriptional elongation [216]

PRP4FB (pre-mRNA-processing factor

4B)

PRP6, PRP31 Modulation of spliceosome assembly [217]

PTKs – protein tyrosine kinase SAM68, SLM-1, SLM-2,

RBM39, YT521-B

Modulation of RNA affinity and of

subcellular localisation

[218–221]
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reversible phosphorylation of splicing regulatory pro-

teins on essentially all the steps involved in pre-

mRNA-processing regulation points to protein kinases

as elective targets for therapy. In this regard, since

kinases have been long investigated as therapeutic tar-

gets, and strategies to improve selectivity and efficacy

of kinase inhibitors are well documented [184,185], it

is likely that improvement of currently promising inhi-

bitors will be achieved in a reasonable time-frame.

It is also worth mentioning that, in addition to the

specific splicing factor kinases described in this review,

other kinases may represent interesting objects of

investigation and research in this field [9,186–190]
(Table 2). Some of these kinases, such as the mitotic

kinases AURKA and NEK2, are frequently upregu-

lated in multiple cancers and both were shown to

phosphorylate and activate the splicing factor SRSF1

(Table 2), thus contributing to its oncogenic functions

[189,190]. Other kinases, such as AKT and MAPK

[24,186,187,191–195] (Table 2), are well known effec-

tors of signaling pathways that are frequently deregu-

lated in cancer cells. Another interesting ‘atypical’

kinase involved in pre-mRNA-processing is the bro-

modomain protein BRD4, which is better known as

transcriptional regulator [196]. BRD4 displays an

intrinsic kinase activity towards the RNPII CTD and

was shown to modulate the transcription elongation

rate [197,198]. Moreover, BRD4 phosphorylates the

oncogenic transcription factor MYC and negatively

affects its stability [199]. Interestingly, BRD4 interacts

with multiple splicing factors and inactivation of its

expression or activity affected splicing regulation in a

leukaemia cell line model [200]. Nevertheless, whether

or not phosphorylation of the interacting splicing fac-

tors by BRD4 is involved in this process has not been

investigated yet. This observation, together with previ-

ous findings reporting BRD4-mediated regulation of

the androgen-insensitive AR-V7 splice variant in pros-

tate cancer [201], points to BRD4 as a relevant splicing

modulator in cancer cells. It will be interesting to test

BRD4 inhibitors, like those for the canonical splicing

factor kinases, as therapeutic strategies to induce

RNA-processing vulnerability in future studies. More

generally, genome-wide elucidation of the impact of

non-canonical splicing factor kinases on the cellular

transcriptome may pave the ground for their rational

employment in specific tumour types.
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