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Rhinovirus stimulated IFN-α production: how
important are plasmacytoid DCs, monocytes and
endosomal pH?

Yang Xi1, Arvid Finlayson1, Oliva J White1, Melanie L Carroll1 and John W Upham1,2

Human rhinovirus (HRV) infection is a major cause of asthma exacerbations, which appears to be linked to a defective innate

immune response to infection. Although the type I interferons (IFN-α and IFN-β) have a critical role in protecting against most

viral infections, the cells responsible for IFN production in response to HRV and the relative importance of pattern recognition

receptors located in endosomes has not been fully elucidated. In the current study we demonstrate that, using intracellular flow

cytometry, 490% of the IFN-α-producing cells in human blood mononuclear cells following HRV16 exposure are plasmacytoid

dendritic cells, whereas monocytes and myeloid dendritic cells contribute only 10% and o1%, respectively, of the IFN-α
production. Bafilomycin and chloroquine, agents that inhibit the function of endosomal toll-like receptors (TLRs), significantly

reduced the capacity of TLR3-, TLR7- and TLR-9-stimulated cells to produce IFN-α and the IFN-induced chemokine CXCL10

(IP-10). In contrast, only bafilomycin (but not chloroquine) effectively suppressed HRV16-stimulated IFN-α and IP-10

production, whereas neither bafilomycin or chloroquine inhibited HRV16-stimulated interleukin-6 release. Attempts to block

IFN-α production with commercially available TLR-specific oligonucleotides were unsuccessful due to major ‘off-target’ effects.

These findings suggest that among circulating haemopoietic cells, plasmacytoid dendritic cells and TLRs located within

endosomes are critical for inducing efficient IFN-I production in response to HRVs.
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Human rhinovirus (HRV), a positive-sense, single-stranded RNA
(ssRNA) virus, is recognized as the most common cause of viral
upper respiratory tract infections. HRV is responsible for more than
one-half of cold-like illnesses in healthy individuals.1,2 In children
and adults with asthma, HRV infections can have more serious
consequences, being responsible for over 70% of acute asthma
exacerbations leading to hospitalization.3 This vulnerability to HRV
infections in people with asthma has been attributed to a deficient
antiviral innate immune response involving both airway epithelial cells
and migratory leukocyte populations.4–7 According to this paradigm,
deficient production of interferon (IFN)-α, IFN-β and IFN-λ is
thought to facilitate HRV spread to the lower respiratory tract and a
higher viral load.4,6,8 In contrast, other investigators have suggested
that viral loads are similar in asthmatic and control subjects during
HRV infections,9 and that asthma induces an unbalanced adaptive
immune response, thereby leading to severe and longer-lasting
airway inflammation.10,11 HRV has also been shown to be the most
common cause of lower respiratory tract infections in hematopoietic
stem cell and lung transplant recipients, and is associated with a high
risk of both acute and chronic rejection and subsequent higher
mortality.12,13

Although HRVs are extremely common in the community, many
aspects of the innate immune response to infection remain unclear.
Much is known about the way in which airway epithelial cells respond
to HRV.4,6 However, there are several unanswered questions regarding
the way in which circulating, bone marrow-derived leukocyte popula-
tions respond to HRV. It is not clear which particular cells are most
responsible for the HRV-induced type I IFN production, and the
relative importance of individual pattern recognition receptors has not
been elucidated. Early studies focussed on the capacity of HRVs to
activate monocytes;14 however, our recent findings suggest that
plasmacytoid dendritic cells (pDCs) are responsible for the majority
of IFN-α and IFN-β synthesis. When peripheral blood mononuclear
cells (PBMCs) were depleted of pDC via immune-magnetic beads,
HRV-induced IFN-α production was reduced by 98%, relative to
intact PBMC.15 However, it was not clear from this study whether
pDCs themselves were producing IFN-α, or possibly acting indirectly
via monocytes or other cells to induce IFN-α release.
In structural cells such as epithelial cells, HRVs replicate within cells

and both ssRNA and double-stranded RNA are recognized by
endosomal toll-like receptor 3 (TLR3) and the cytoplasmic receptor
melanoma differentiation-associated gene 5.16 In contrast, ssRNA
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viruses do not generally replicate inside pDC, although this has not
been examined specifically in relation to HRV.14 In pDCs, recognition
of nucleic acids is largely dependent on endosomal receptors; this then
induces IFN-I production via a MyD88- and IRF7-dependent
pathway.17,18

Therefore, the aims of this current study were first to examine the
cellular source of IFN-α production in HRV-stimulated PBMCs using
intracellular cytokine staining in combination with surface markers
specific for pDCs, myeloid dendritic cells (mDCs) and monocytes.
Second, we aimed to investigate the importance of endosomal TLRs
using general inhibitors of endosomal function (bafilomycin and
chloroquine), and inhibitory oligonucleotides (ODNs) directed against
specific TLRs.

RESULTS

HRV-16 (RV16)-stimulated IFN-α is mainly localized in pDC
To directly demonstrate the cells responsible for RV16-induced IFN-α,
PBMCs from healthy subjects (n= 9) were stimulated with RV16 for
24 h and the frequency of IFN-α-producing cells including monocytes
(CD14+CD303−), mDCs (CD1c+) and pDCs (CD303+CD14−) was
evaluated using flow cytometry.
Representative fluorescence-activated cell sorting plots indicate that

both monocytes and pDCs exhibit elevated intracellular IFN-α
following RV16 stimulation compared with their respective controls.

In contrast, intracellular IFN-α could not be detected in mDC
(Figures 1a and c). Pooled data from all donors show a considerably
greater frequency of IFN-α+CD303+ pDC than IFN-α+CD14+ mono-
cytes (*Po0.05) or IFN-α+CD1c+ mDC (***Po0.001; Figure 1c). Out
of the three cell types tested, 94% of the IFN-α-producing cells were
pDCs compared with that of the monocytes (5% of IFN-α produc-
tion) or mDCs (o1% of IFN-α production; Figure 1d).

How important are endosomal TLRs for the induction of IFN-α
synthesis?
The capacity of endosomal TLRs (TLR3, TLR7 and TLR9) to recognize
viral nucleic acids and to induce IFN gene expression appears to be pH
dependent. Accordingly, the next set of experiments utilized bafilo-
mycin and chloroquine, two well-characterized inhibitors of endoso-
mal acidification.19,20

PBMCs from the healthy subjects (n= 7–9) were pretreated with
50 nM bafilomycin, 6 μM chloroquine or untreated, and subsequently
stimulated with TLR3-, TLR7- and TLR9-specific agonists (Poly (I:C),
Gardiquimod (Gq) and ODN2216). TLR3 and TLR9 stimulation
resulted in significantly higher (Po0.05) production of IFN-α and the
IFN-inducible chemokine CXCL10 (IP-10) than in untreated cells
(Figures 2a, b and e–f). TLR7 ligand stimulation resulted in signifi-
cantly increased (Po0.05) IP-10 production, with a non-significant
trend for increased IFN-α production (Figures 2c and d). Both
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Figure 1 RV16 stimulation triggers significantly more IFN-α+CD303+ than IFN-α+CD14+ or IFN-α+CD1c+. PBMCs from healthy donors (n=9) were cultured in
the presence of RV16 (multiplicity of infection=1) or media only (unstimulated control) for 24 h at 37 °C. Using intracellular cytokine staining, the
percentage and/or proportion of IFN-α-producing cells in human PBMCs were evaluated. After gating on total live cells, monocytes (CD14+CD303−), mDCs
(CD1c+CD14−) and pDCs (CD303+CD14−) were identified (a). Results for IFN-α-producing cells (b—from left to right, monocytes, mDCs or pDCs) are shown.
The bar chart (c) shows the frequency of IFN-α-producing cells, and the plotted values represent the RV16-stimulated cells (b—bottom panels) minus the
unstimulated cells (b—top panels). The proportion of IFN-α-producing cell was also evaluated (d). All data represent mean± s.e.m. *Po0.05, ***Po0.001.
mono, monocytes; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; IFN, interferon; RV16, rhinovirus-16.
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bafilomycin and chloroquine significantly inhibited (Po0.05) IP-10
production compared with TLR3, TLR7 and TLR9 ligand-only treated
cells (Figures 2a, c and e). Both bafilomycin and chloroquine inhibited
IFN-α production compared with ligand-only treated cells; some of
these reductions were statistically significant (Figures 2b, d and f).

Non-specific effects of ODNs
We next investigated the inhibition efficiency and specificity of the
individual TLR-specific ODNs, IRS661, IRS869 and two control ODNs

(cODN1 and cODN2). PBMCs from healthy individuals were cultured
with 1.4 μM of IRS661 or 2.8 μM IRS869, cODN1 or cODN2 and then
stimulated with Gq or Poly (I:C). Somewhat unexpectedly, many of
these ODNs exhibited non-specific inhibition of IP-10 and IFN-α
production (Figure 3). For example, IRS661 (supposedly a TLR7
antagonist) inhibited TLR3-stimulated IP-10 production (Figure 3a).
Similarly, IRS869 (supposedly a TLR9 antagonist) inhibited TLR3- and
TLR7-stimulated IP-10 production (Figures 3a and c). The
two cODNs, cODN1 and cODN2, unexpectedly inhibited

Figure 2 Bafilomycin and chloroquine effectively inhibit TLR3-, TLR7- and TLR9-specific IP-10 and IFN-α. PBMCs from healthy donors (n=7–9) were
treated with 50 µM bafilomycin, 6 µM chloroquine or untreated, and subsequently stimulated with 25 μgml−1 Poly (I:C) (a, b), 0.3 μgmml−1 gardiquimod
(c, d), 50 µM ODN2216 (e, f) for 24 h at 37 °C. IP-10 protein (pgml−1; left panels) and IFN-α protein (pgml−1; right panels) were measured by ELISA.
Solid lines represent the median for each condition. Dotted lines represent the limit of detection (23.4 pgml−1 for IP-10 and 4.9 pgml−1 for IFN-α).
*Po0.05, **Po0.01, ***Po0.001 compared with TLR ligand-only treated condition. IFN, interferon; IP-10, interferon gamma-induced protein 10; TLR,
toll-like receptor; UT, untreated.

pDCs and endosomal pH regulate HRV-stimulated IFN-α
Y Xi et al

3

Clinical & Translational Immunology



TLR3-stimulated IP-10 production (Figure 3a). Similar non-specific
effects were also seen in relation to IFN-α production (Figure 3b).

Bafilomycin inhibits RV16-stimulated innate immune responses
As bafilomycin and chloroquine effectively inhibited TLR ligand-
induced IP-10 and IFN-α, we investigated whether these inhibitors
also inhibit RV16-stimulated responses. PBMCs from healthy subjects
were pretreated with bafilomycin, chloroquine or untreated, and
subsequently stimulated with RV16. Similar to what was observed
following TLR ligand stimulation, bafilomycin inhibited RV16-
stimulated IP-10, IFN-α and IFN-β production (Figures 4a and c)
and markedly reduced the frequency of IFN-α+-producing pDCs
(Figures 4 d–e). In contrast, chloroquine did not have consistent
effects on RV16-stimulated IP-10, IFN-α and IFN-β production, and
the changes in cytokine release were not statistically significant
(Figures 4 a–c). It is noteworthy that neither bafilomycin nor
chloroquine inhibited HRV16-stimulated interleukin-6 release
(Supplementary Figure S1). Bafilomycin and chloroquine did not
appear to be cytotoxic to the cells, as measurement of lactate
dehydrogenase (LDH) in the supernatants showed that bafilomycin
and chloroquine did not increase cell death over and above that seen
in HRV16-stimulated cells (Figure 4f).

Bafilomycin also inhibits RV16-stimulated innate immune
responses in asthma
Similar to what was observed in the healthy subjects, bafilomycin, but
not chloroquine, significantly inhibited RV16-stimulated IP-10, IFN-α

and IFN-β in PBMCs from asthmatic donors (Figures 5a and c).
Interestingly, we have found that cells from the asthmatic subjects
produced significantly lower IP-10 than healthy subjects, whereas IFN-
α and IFN-β production were similar in asthmatic and healthy subjects
(Figures 6a and c).

DISCUSSION

Even though HRV infections are extremely common in the commu-
nity, and can cause severe morbidity in those with pre-existing chronic
lung disease, many aspects of the innate immune response to HRV
remain unclear. Much progress has been made in dissecting airway
epithelial responses to HRV, identifying the pattern recognition
receptors and intracellular signaling pathways that lead to IFN-I and
IFN-III production and the induction of an antiviral state.21,22

However, much less is known about migratory bone marrow-
derived leukocyte populations and how these respond to HRV.
The key findings to emerge from this study are that pDCs and TLRs

located within endosomes have a major role in the innate immune
response to HRV, recognizing viral nucleic acids and inducing efficient
production of IFN-I and downstream molecules such as IP-10
(CXCL10).
Although pDCs have long been regarded as the ‘natural type I IFN-

producing cell’, dedicating 60% or more of their messenger RNA to
IFN production,23 the role that pDCs have in IFN production in HRV
infections has not been clear. Our previous study has shown that the
IFN-α/β productions are markedly diminished when pDCs are
depleted from PBMCs.15 In the current study, we have confirmed

Figure 3 PS ODNs inhibit TLR3 and TLR7. PBMCs from healthy donors (n=6–7) were treated with 1.4 μM IRS661, 2.8 μM IRS869, 2.8 μM cODN1, 2.8 μM
cODN2 or untreated and then stimulated with 25 μgml−1 Poly (I:C) (TLR3; a, b) or 0.3 μgml−1 gardiquimod (TLR7; c, d) or left unstimulated for 24 h at
37 °C. Solid lines represent medians and dotted lines represent limit of detection. *Po0.05, **Po0.01, ***Po0.001 compared with TLR ligand-only
treated condition. cODN, control ODN; IFN, interferon; IP-10, interferon gamma-induced protein 10; ODN, oligonucleotide.
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Figure 4 Bafilomycin, but not chloroquine, significantly inhibits RV16-stimulated IP-10, IFN-α/β synthesis in health. PBMCs from healthy donors were treated
with 50 nM bafilomycin, 6 μM chloroquine or left as untreated, and subsequently stimulated with RV16 for 24 h at 37 °C. IP-10, IFN-α and IFN-β protein were
measured using ELISA (a–c, n=10). Data represent mean values where after the unstimulated control was subtracted. The frequency of the IFN-α-producing
cell was evaluated using intracellular cytokine staining and the applied gating strategy was the same as in Figure 1. The IFN-α-producing pDC in the variable
treatments was then evaluated (d from left to right, unstimulated control, RV16 stimulation only, RV16 stimulation of Baf-treated cells and RV16 stimulation
of Chlr-treated cells). The cytotoxicity of bafilomycin and chloroquine was evaluated (n=5) using LDH Cytotoxicity Assay (f). All data represent mean± s.e.m.
*Po0.05, **Po0.01, ***Po0.001. Baf, bafilomycin; Chlr, chloroquine; IFN, interferon; LDH, lactate dehydrogenase; No blocker, media only; RV16,
rhinovirus-16; UT, untreated.

Figure 5 Bafilomycin significantly inhibits RV16-stimulated IP-10 and IFN-α/β in asthma. PBMCs from asthmatic subjects (n=10) were treated with media
alone, bafilomycin or chloroquine, and then stimulated with RV16 for 24 h at 37 °C. IP-10 protein (a), IFN-α (b) and IFN-β (c) were measured by ELISA.
Data represent mean values where the unstimulated control was subtracted, error bars represent s.e.m. ***Po0.001.
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using intracellular cytokine staining that RV16-stimulated IFN-α
production by circulating cells is largely localized to pDCs, and to a
lesser extent monocytes. In contrast, mDCs do not contribute to IFN-I
synthesis, at least not within the first 24 h.
As antigen-presenting cells, pDCs can rapidly recognize viral nucleic

acids to produce antiviral IFN-I and inhibit viral replication.24 We
used a variety of approaches in an attempt to determine which
subcellular compartments and which pattern recognition receptors are
most important for recognition of HRV. Using two inhibitors of
endosomal acidification, bafilomycin and chloroquine, we observed
reductions in TLR3, TLR7 and TLR9 signaling as shown in Figure 2,
similar to findings reported by others.19 We also tested two commer-
cially available ODNs with the aim of specifically inhibiting TLR7 and
TLR9. However, both IRS661 and IRS869 showed lack of specificity in
their ability to inhibit TLR7 or TLR9 signaling in our model
(Figure 3); even the cODNs showed inhibition of some responses.
Our findings contrast with those of Barrat et al. who initially reported
that IRS661 and IRS869 specifically inhibit TLR7- and TLR9-
stimulated cytokine production by human pDCs.25 Although some
studies show that ODNs lead to TLR inhibition, none of them have
directly demonstrated the sequence specificity of the ODNs tested.
Our findings, and those reported by others, suggested that
phosphorothioate (PS) ODNs can have ‘off-target’ effects, suggesting
that TLR7 inhibition by PS ODN is not sequence specific.26–28 This
lack of ODN specificity makes it difficult to use these ODNs to
accurately define the importance of TLR7 and TLR9 signaling in our
system. It is hoped that further refinements to the design of ODNs in
the future will improve specificity available for testing in future.
In relation to the HRV-stimulated cultures, we found that

bafilomycin significantly inhibited IFN-α, IFN-β and IP-10 production
in healthy donors (Figure 4). In contrast, there was a trend for
chloroquine to inhibit IP-10, IFN-α and IFN-β production, but this
was not statistically significant. Although there is some evidence that
bafilomycin can alter viral uncoating and entry into cells, the fact that
bafilomycin inhibited type I IFN release, but not interleukin-6 release,
makes it likely that the effects of bafilomycin observed herein are
related to effects on endosomal function, rather than non-specific
inhibition of viral entry into cells. It was important to demonstrate
that the inhibitory effects of bafilomycin on innate immune function
were not due to cytotoxicity. Measurement of LDH activity in culture
supernatant suggests that this was not the case, although it is difficult
to exclude a minor degree of cytotoxicity associated with the
combination of chloroquine and RV16.

Although bafilomycin and chloroquine both inhibit endosomal
function, the mechanisms involved appear to be distinct. Bafilomycin
is a specific inhibitor of vacuolar-type H+-ATPase that prevents
acidification of endosomes, and inhibits the activity of pH dependent
lysosomal proteases.19,29,30 Recent data suggest that chloroquine acts
by inducing conformational modifications in nucleic acids that reduce
TLR binding, rather than by changing endosomal pH.19 Our findings
highlight endosomal pH, and TLRs located within endosomes, as
important factors involved in the initiation of IFN-I synthesis during
HRV infections in healthy people and those with asthma. TLR3, TLR7,
TLR8 and TLR9 are all located within endosomes: in the setting of
HRV, we believe that TLR7 within pDC is likely to be most important
of these TLRs given its capacity to recognize ssRNA. Formal proof of
this notion will require the development of more specific TLR
inhibitors. Although TLR3 is critical for recognizing dsRNA produced
during viral replication, our previous work indicates that HRV does
not replicate within PBMC.15 Our findings do not preclude the
involvement of cytosolic pattern recognition receptors such as RIG-I
and melanoma differentiation-associated gene 5, although we would
argue there will be minimal free HRV in the cytoplasm of pDC in the
absence of viral replication.
Although a detailed comparison of healthy donors and those with

asthma was not the primary focus of this study, a number of
important observations are worth discussing. PBMCs from asthmatics
exhibited lower RV16-stimulated IP-10 production than non-
asthmatics. Prior studies have shown that infection of bronchial
epithelial cells from people with asthma results in decreased IFN-I
and IFN-III production compared with epithelial cells from non-
asthmatic subjects.4,6 In addition, PBMCs infected with respiratory
syncytial virus and Newcastle disease virus, both ssRNA viruses, also
showed decreased expression of IFN-α in people with asthma
compared with healthy subjects.31,32 However, there was no difference
in the production of IFN-α or IFN-β in PBMCs following RV16
stimulation in the current study, possibly due to the fact that most
asthmatic participants in this study had relatively mild- and well-
controlled disease. Sykes et al.33 have also recently reported that HRV-
induced IFN production is not deficient in well-controlled asthma.
Whether the low IP-10 production in the current study might be
related to deficiencies in other type of IFN (for example, IFN-λ)
warrants further investigated as there is evidence that IFN-λ can
induce IP-10 production.34 Bafilomycin inhibited HRV-induced IFN-
α, IFN-β and IP-10 production in those with asthma (Figure 6),
similar to the results seen in healthy subjects (Figure 4), suggesting

Figure 6 RV16-induced IP-10 but not IFN-I (α/β) is abrogated in asthma compared healthy controls. PBMCs from healthy (n=10; solid bars) and asthmatic
(n=10; open bars) subjects were stimulated with RV16 or media alone for 24 h at 37 °C. IP-10 protein (a), IFN-α (b) and IFN-β (c) were measured by
ELISA. Data represent average values where the unstimulated control was subtracted, error bars represent s.e.m. *Po0.05.
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that there is no gross deficit in endosomal function in asthma.
Whether endosomal function is specifically altered in more severe
asthmatics is an issue that warrants future study. Some investigators
have reported that genetic variations in TLR7 and reduced TLR7
expression and function are associated with asthma,35–38 Given that
TLR7 is most strongly expressed in pDCs and our current finding that
the pDCs are the primary cell responsible for RV16-stimulated IFN
production will be important for future studies of antiviral immunity
in asthma to focus on pDC and TLR7.
In summary, we have demonstrated that RV16-stimulated IFN-α

secretion in human PBMCs is mainly localized in pDCs. The IFN-α
response in pDCs is suppressed by addition of bafilomycin suggesting
the involvement of endosomal TLRs. Compared the healthy subjects,
the asthmatic patients produced lower IP-10.

METHODS

Patients
Healthy adult volunteers or asthmatic patients were recruited from Respiratory
and Immunology Clinics at the Princess Alexandra Hospital, Woolloongabba,
Queensland. The study was approved by the Metro South Human Research
Ethics Committee, and all subjects provided written informed consent.

Reagents and viruses
Inhibitory and non-inhibitory cODNs (Geneworks, Thebarton, SA, Australia)
were synthesized with a PS backbone and ODN 2261 (TLR9 agonist; Invivogen,
San Diego, CA, USA), a type A CpG ODN, was synthesized with a mixed PS
and PO backbone. All ODN sequences were derived from previous
studies.25,39,40 ODNs were reconstituted in sterile phosphate-buffered saline
and then stored at − 20 °C. The ODN sequences can be found in Table 1.
Chloroquine diphosphate salt (Sigma-Aldrich, St Louis, MO, USA) was
reconstituted in sterile phosphate-buffered saline and then stored at 4 °C for
no 44 weeks. Bafilomycin (Sigma-Aldrich) was reconstituted in sterile
dimethylsulfoxide and stored at − 20 °C. Gardiquimod (Gq; TLR7/8 agonist;
Invivogen) and Polyinosinic:polycytidylic acid (Poly (I:C); TLR3 agonist;
Invivogen) were reconstituted in endotoxin-free water and stored at − 20 °C.
Following initial dose response experiments, TLR agonists were used
at the following concentrations: 0.3 μgml− 1 Gq, 0.1 μgml− 1 ODN2216 or
25 μgml− 1 Poly (I:C). TLR antagonists/inhibitors were used as following
concentrations: 1.4 μM IRS661 or 2.8 μM IRS869, cODN1, cODN2, 50 nM
bafilomycin and 6uM chloroquine.
RV16 stocks were generated by passage in Ohio HeLa cells as described

previously by Sanders et al.41 followed by purification over an OptiPrep
gradient (Sigma-Aldrich). To define the optimal concentration of RV16, the
50% tissue culture-infective dose was determined as previously described by
Pritchard et al.15

Cell separation and culture
Cryopreserved PBMCs were thawed rapidly in a 37-°C water bath and
resuspended drop wise in 10ml of cold Roswell Park Memorial Institute
1640 media containing 2% heat-inactivated fetal calf serum. Cell suspensions
were prepared in Roswell Park Memorial Institute 1640 supplemented with

antibiotics, 2-ME, and 10% heat-inactivated fetal calf serum (24 h, innate
immune studies). Cells (2× 106 or 1× 106) per well were seeded in a 96-well
U-bottom plate in the presence of RV16 at a multiplicity of infection of 1 or
with media only. Cells were incubated at 37 °C with 5% CO2 incubator with
95% humidity for 24 h.
For the functional study of endosomal TLRs, the cells were pretreated with

endosomal TLR inhibitors, PS-linked ODN or medium alone at 37 °C with 5%
CO2 for 1 h, and subsequently stimulated with TLR agonists or RV16
(multiplicity of infection of 1) in the same condition for 24 h. Following
culture, plates were centrifuged at 750 g for 5min and the supernatants were
collected and stored at − 20 °C for enzyme-linked immunosorbent assay
(ELISA) analysis or LDH activity analysis.

Intracellular cytokine analysis
Intracellular cytokine staining was used to assess IFN-α-producing pDCs,
monocytes and mDCs after RV16 (multiplicity of infection of 1) stimulation.
PBMCs (2× 106) per well were seeded in a 96-well U-bottom plate and
stimulated with or without RV16 at 37 °C with 5% CO2 for 18 h, and further
incubated with Brefeldin A (eBioscience, San Diego, CA, USA) for 4 h. Cells
were washed with FACs buffer (1% heat-inactivated fetal calf serum in
phosphate-buffered saline; fetal calf serum; Bovogen Biologicals, Keilor East,
VIC, Australia) and incubated with normal goat IgG (Sigma-Aldrich) at 4 °C
for 15min to block non-specific Fc binding. The cells then were surface stained
with CD303-PE, CD14-PerCP and CD1c-FITC (Miltenyi Biotec, Bergisch
Gladbach, Germany) for 30min at 4 °C, then fixed and permeabilized before
antigen-presenting cell conjugated anti-IFN-α (Miltenyi Biotec) intracellular
staining for 30min at 4 °C. The cells were then washed twice with the FACs
buffer, finally fixed in 0.5% paraformaldehyde before analysis. A total of
~ 500 000 gated events per sample were collected using FACS Canto (BD
Biosciences, Franklin Lakes, NJ, USA), and the results were analyzed using the
FlowJo Tree Star software (version 7.6.1; Flowjo LLC, Ashland, OR, USA).
Unstimulated background was subtracted from the data.

Cytokine ELISA
Cell culture supernatants collected were assayed by ELISA to measure the
concentration of cytokines. IP-10 (also known as CXCL10) was measured using
commercially available paired Abs and recombinant cytokines (BD Bios-
ciences). The ELISAs were performed using a standard protocol optimized by
our group.42 IFN-α and IFN-β ELISA were, respectively, performed using
VeriKineTM Human IFN alpha serum Sample ELISA kit (PBL Assay Science,
Product#41110, Picastaway, NJ, USA) or Human IFN-β Elisa Kit (elisakit.com,
product#0041, Scoresby, VIC, Australia), according to the manufacturer’s
instructions.

LDH cytotoxicity assay
Cells (0.5× 106) per well were pretreated with (1) Roswell Park Memorial
Institute media alone, (2) bafilomycin or (3) chloroquine for 45min, and
stimulated with/without RV16 (multiplicity of infection of 1) for further 23 h at
37 °C. Cell culture supernatant was collected and the percentage of the cell
death relative to detergent-treated sample was measured using LDH Cytotoxi-
city Assay kit (Cat#1780; Promega, Madison, WI, USA) according to the
manufacturer’s instruction. The percentage of cytotoxicity is calculated as:
Absorbance of each sample/Abs maximum lysate control × 100%.

Statistical analysis
Data were analyzed in IBM SPSS Statistics and GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA) using Friedman tests with Dunn’s post-tests
to compare paired samples, whereas Mann–Whitney test was used to
compare data from asthmatic and healthy subjects. Raw data are presented
as mean± s.e.m. The Figures 2 and 3 represent the median and interquartile
ranges. The P-values o0.05 were considered significant.
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Table 1 Name and sequence of oligonucleotides

Name Sequence (5′-3′)

ODN IRS661 TGCTTGCAAGCTTG-

CAAGCA

ODN IRS869 TCCTGGAGGGGTTGT

cODN1 TCCTGCAGGTTAAGT

cODN2 TCCTGGCGGAAAAGT

ODN 2261 GGggacgatcgtcGGGGGGa

aLower case letters indicate phosphodiester linkage, whereas upper case letters indicate
phorothioate linkage.
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