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Abstract: It is crucial that the interface design of mobile apps be age-appropriate at this stage of
global aging, as the new epidemic has resulted in a higher sense of isolation among older persons. In
this study, four typical senior social service mobile applications were chosen to give older persons
the ability to complete user login duties. The participants were 16 older adults (7 men and 9 women)
aged 55 to 76. Both objective and subjective data, including task completion time, gaze length, pupil
diameter changes, EEG wave amplitude changes, and subjective sensations of older persons, were
gathered using a combination of eye-movement and EEG signal approaches. The program was
created to investigate the effects of interface design aspects on older people’s task performance,
including interface layout, interface color, information density, icon size and position, etc. The study’s
findings revealed that when the user task completion time and average fixation duration were shorter,
the line of sight was more equally distributed, the visual focus was closer to the login button, and
the average EEG amplitude of the user changed more, the older adults performed better. The palace
layout had a more positive effect on job completion among older individuals when it came to interface
layout. In terms of interface color, colored (contrasting) colors should serve to highlight the interface’s
essential information points while they can be removed. In terms of interface information density,
a low-density level interface design can simplify and lower the cognitive load of task execution for
older people. The first level of icons in the interface and their position in the visual center of the
interface is the best interface design for older persons in terms of icon size and position. The results
of this study have theoretical ramifications for a thorough understanding of the factors influencing
older people’s task performance, practical ramifications for the design of older people-centered
interfaces, and they contribute to our understanding of the characteristics of older people’s interface
interaction behavior.

Keywords: interface design; user experience; design element features; eye tracking; EEG signals;
older persons

1. Introduction

The world’s population is aging, which is a pressing concern. China, which has the
world’s largest old population, is on the verge of becoming an aging society, with 13.5 percent
of the population over 65 by 2020 [1]. Furthermore, due to uncontrollable factors such as
declining perceptual and cognitive abilities over time, older people have lower usage rates
of smart devices such as mobile phones compared to younger people, as smart devices
continue to be upgraded and face-to-face communication between people becomes less
frequent [2]. Smartphone ownership among seniors (65 and older) is 30%, compared to
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86% among those aged 18 to 29 [3]. While being isolated from social life had little negative
impact on young people during the spread of COVID-19, the isolation experienced by the
older population has become more pronounced due to a lack of infrastructure in smart
devices suitable for the elderly population, aggravating their physical and psychological
problems [4–7]. One study found that older people who use mobile internet are 33.1 percent
less lonely than those who do not [8–10]. Social apps for older persons, which function like
virtual universities for older persons and give them access to information about nursing
homes, health and wellness, learning about their interests, and interacting with their peer
groups, have been developed in response to the need for older people to socialize and find
social circles of interest. The interface design of social apps for older persons in China,
however, is still in its infancy. This is why a thorough grasp of the challenges of employing
smart devices for older adults and their demand for them is critical to improving their
present living conditions in the context of an aging society and long-term home isolation.

User experience research is inextricably linked to good interface design. Older people’s
task performance is influenced by interface design features, subjective performance, and
external environmental distractions, among other factors, and interface design elements are
important determinants of user satisfaction and user mood swings. Research on interface
design for older people broadly revolves around three types of smart devices: computer
web pages [11–13], smart home devices [14–17], and mobile applications [18]. The proper
selection and layout of each design element of the interface is vital in order to accomplish
both comfort and accuracy of interface interaction for the senior user group. The three
features of interface layout, interface colors, interface icon dimensions, and icon choices
are examined based on a wide range of literature. Initially, some researchers proposed
a new research method based on a combination of hierarchical analysis and gray theory
to evaluate the aesthetics of interface element layout design [19]; others have developed
a mobile marketing recommendation method that combines aesthetic preference with
layout, discovering that including users’ aesthetic preference factors in interface layout
design can lead to better results [20]. Gao Runze et al. [21], for example, studied the
page layout of shopping websites based on the most popular points of customers’ visual
attention and browsing habits. In terms of result innovation, Li, QC et al. [22] looked into
the navigation patterns of older adults’ apps and discovered that they preferred content-
oriented design patterns; Wu, ZX et al. [23] discovered that older adults preferred text-only
layouts over graphic layouts; and Su, XY et al. [24] discovered that older adults cared
more about the central area when browsing web pages while paying more attention to
the peripheral area during visual search on web pages. By analyzing eye-movement data
collected by older individuals when utilizing different mobile learning platform interfaces,
Zhang, MM et al. [25] discovered that vertical layout panel design was more effective
than horizontal layout panel design. Furthermore, based on interface color research,
Zhang, ZZ et al. [26] discovered that by optimizing color semantics through Spearman
rank correlation coefficient analysis, user satisfaction of smartphone interface icon color
could be improved; Wu, TY et al. [27] analyzed the visual elements of smart kitchen
appliance interfaces for the elderly by combining perceptual engineering evaluation and
experimental psychology to obtain the elderly’s preference for interface color information
and graphics. Backhaus, N et al. [28] and Wu, JF et al. [29] established two control groups
for the selection and identification of icons between young and old people, and between
normal and cognitively impaired elderly people, respectively, in terms of interface icon
ratio and icon selection, with results that showed that older persons prefer the skeuomorph
version. It was concluded that the number of icons in one section of the interface design
should not exceed 25, and the spacing between elements should be higher than 1/2 an icon
for a modest number of icons [30].

All of the aforementioned research examines how one interface design element affects
how older users interact with it and ultimately leads to the selection of interface design
elements that are most suitable for older users. In contrast, there are many studies that
address the impact of multiple variables of design elements on the use of interface design
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in older age groups. For example, Kalimullah, K. and Sushmitha, D. et al. [31] investigated
the user interface design elements (text size, font, color, etc.) of mobile applications that
affect the user experience of older adults and discovered that convenience was the primary
influencing factor for older adults to use and continue to use them. Tang, XT et al. [32]
investigated the impact of design elements such as font size, background color combi-
nations, spacing, and placement of parametric information on the readability of a vital
sign monitoring interface, and discovered that high contrast colors improved accuracy.
Yu, N [33] investigated the preferences of an older population using three factors: button
size, graphic/text ratio, and icon type, and discovered that older adults preferred 20 mm
larger buttons, larger text, and larger icons. The number of icons in one section of the
interface design should not exceed 25, and the spacing between elements should be higher
than half an icon for a modest number of icons [34].

Interface design is primarily used through human visual engagement as a channel for
communicating and exchanging information between humans and machines. Consequently,
in the numerous studies currently in the literature, in order to assist in improving the aging
of the interface design, the majority of researchers have examined the visual aspects of user
interaction by measuring the user’s eye movements. Numerous researchers’ findings also
support the idea that eye-movement data can be used to monitor a user’s visual motion and
assess the user’s level of concentration, cognitive load, and the appropriate task flow and
interface layout using information like pupil diameter, eye trajectory patterns, and gaze
duration. Researchers like Johannes Zagermann [35] have discovered that changes in user
cognition are reflected in changes in pupil diameter, gaze, and sweeping gaze, with pupil
diameter being the most sensitive to the estimation of user cognitive load [36–38]. The
ability of gaze, an oculomotor measure, to effectively gauge user visual tiredness during
task performance has also been demonstrated by Evgeniy Abdulin and colleagues [39]. We
can draw the conclusion that eye-movement data is a highly reliable and well-established
objective assessment metric in interface design research.

On the other hand, the electroencephalogram (EEG) signal, which records the changes
in electrical potential during brain activity, is a bioelectric signal produced by the activity of
brain nerve cells in the cerebral cortex. Several studies have shown that EEG signals are more
reliable than other signals, such as electrocardiography (ECG) and electromyography (EMG)
signals, in detecting minor changes in the body, such as concentration levels and emotional
shifts [40,41]. The EEG signals generated by the brain can indicate the user’s psychological
changes as they interact with various forms of material (e.g., computer web pages, smart
product interfaces, mobile apps, etc.) [42]. Some researchers believe that EEG signals can
be used to control and operate virtual home appliances [43], while others want to use EEG
signals to investigate the impact of color on interface design [44,45], whilst others want to
use EEG signals to analyze user aesthetic preferences in interface layout [46,47]. Therefore,
studying user behavior during interface interaction using physiological data, such as eye
movement data or EEG signals, can produce the best research results and design approaches.

According to the aforementioned research, eye-movement-related indicators are more
developed and widespread in the study of interface design for older persons, whereas
EEG signals are rarely employed as an assessment indicator, and the use of combined
eye-movement and EEG signals is even less prevalent. Moreover, the current research on
the aging-friendly interface of mobile applications is limited because the core users of smart
devices such as smart home products, shopping websites, and social software are young
people, and older people are rarely the focus group of smart device developers, which
means that older people are still unable to use smart devices in the real world [48], according
to the findings. The use of smart devices and social interaction among the elder population
can be increased by investigating and comprehending their demands and behavioral traits
utilizing real-world interfaces. The research hypotheses are as follows: (1) changes in
interface design elements, such as interface layout, interface color, information density, icon
size and position, etc., significantly influence older people’s task performance by appealing
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to their eye-based visual approach; (2) eye-movement indicators and EEG signal indicators
reflect the impact of interface design elements on older people’s task performance.

In summary, in order to capture the visual activity characteristics of older people
during the task execution of visual search and login for four representative social service
apps for older persons, this paper proposes a method based on a combination of user
eye-movement signal data (i.e., task completion time, average fixation duration, average
pupil diameter, and eye-tracking hotspots, etc.) and EEG data. To test older people’s task
performance, the data was gathered and processed by gathering eye-movement and EEG
signals from them. This was followed by analysis using a variety of techniques, including
one-way analysis and repeated measures analysis of variance. The arrangement of the
information, the color of the interface, and the size and placement of the login icons all
affect how quickly the user completes the activity. This study demonstrates the viability of
employing eye-movement and EEG amplitude metrics to analyze user interface interaction
design as well as the extent to which interface design aspects affect the effectiveness of
task execution for older users. The findings of this study not only contribute to a more
thorough analysis of older people’s task execution behaviors, but they also offer tactical
recommendations for improving the user interfaces of these four social service apps for
older people, which will have a positive influence on the future advancement of interface
design for older users and accessibility.

2. Materials and Methods
2.1. Experimental Participants

Experimental subjects were recruited from three nursing homes in Nanjing, China. The
members of our team contacted the nursing home staff by phone, and the staff randomly
picked 16 eligible individuals based on our team’s specific needs. All of the subjects were free
of color blindness and color weakness, were right-handed, had no physical disabilities, had
natural or corrected visual acuity of more than 1.0, and had some schooling to read and write.
Participants were required to have healthy eyes and no excessively drooping eyelids to conceal
them in order for the oculomotor data to be collected. Seven men (mean standard deviation
= 60.57 ± 6.58 years) and nine women (mean standard deviation = 62.33 ± 8.28 years) were
among the 16 participants, who ranged in age from 55 to 76 years (mean standard deviation =
61.56 ± 7.39 years). The basic demographic information data for all participants are shown
in Table 1. The Ethics Committee of Nanjing Forestry University’s Science and Technology
Division gave their approval to the study protocol (Jiangsu Province, China). Before engaging
in the experiment, all participants read and signed a consent form, and at the conclusion of
the experiment, they were given some experimental recompense.

Table 1. Basic participant information statistics table.

Participants

Male Female

Number 7 9

Mean ± SD 60.57 ± 6.58 62.33 ± 8.28

2.2. Experimental Equipment and Environment

The equipment selected for this experiment included the Ergo LAB human–computer
environment synchronization cloud platform, the Semi-Dry wearable wireless EEG mea-
surement system, the Tobii Pro Fusion eye-tracking device, and the Redmi K30Pro mobile
phone as recording devices. The Tobii Pro Fusion eye-tracking device is a new generation
of high-performance portable eye-tracking devices from Tobii Pro, equipped with dual
eye-tracking sensors and dual tracking modes (bright and dark pupil), with a sampling
rate of 250 Hz, screen resolution of 2400 × 1080 pixels, point-of-view position accuracy of
0.3◦ and a latency of <13 ms. The Semi-Dry system is a compact portable EEG system that
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records 8–64 EEG channels in real time; in this experiment, 16 EEG channels were recorded
in real time. The entire experimental environment is an air-conditioned, controlled indoor
space with good temperature and humidity, good lighting, and no noise. Participants were
tested in a natural sitting position, with a soft and stable seat, and the distance between
their eyes and the screen was approximately 50–80 cm.

2.3. Experimental Stimulus Materials

The goal of this study is to see how different interface design features in a senior care
service application affect how people utilize the aging-friendly APP for older persons. As a
result, the focus of this article is on the functionality and homepage design characteristics
of aging-friendly APP items on the Android application mall in the Redmi K30Pro mobile
phone. To achieve the greatest degree of visual stimulation during the experiment and
monitor the user’s visual changes, 10 candidates for aging APP were initially selected,
based on the APP information framework, interface layout characteristics, main color
characteristics, and interface information density, among other factors. According to
various factors, 17 pages of the first-level interface of four apps with significant differences
were chosen as experimental stimulation materials, with Figure 1a representing the “C-Life
Senior Care APP”, Figure 1b representing the “Senior Living APP”, Figure 1c representing
the “Senior Care Manager APP”, and Figure 1d representing the “Smart Aging APP”. The
data collection of visual search tasks for older users is carried out in the experiment for
these four common mobile terminal goods for older persons.

Figure 1. Experimental stimulus material: the login interface of the four apps.

This study looked at four elderly-friendly mobile goods to see which interface design
features are most appropriate for them. In terms of page layout, the login screens of C-
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Life Senior Care APP and Smart Aging APP are multi-column layout; the login screen of
Senior Living APP is irregular grid layout; and the login screen of Senior Care Manager
APP is palace format interface layout. The difference of the Apps by the position of
color application is: the login screen of C-life Senior Care APP has a gradient orange
background and colored login icons from top to bottom; the login screen of Senior Living
APP has a white background + colorless login icons + colored secondary icons; the login
screen of Senior Care Manager APP has a high contrast color background + colorless
login icons; and the login screen of Smart Care Manager APP has a high contrast color
background + colorless login icons. The login screen of Senior Care Manager APP has a
high contrast color background + colorless login icon; the login screen of Smart Aging APP
has an orange navigation bar + white background + colorless login icon. From dense to
sparse, according to the level of information density: Smart Aging APP > Senior Living
APP > C-Life Senior Care APP > senior care manager APP > Arrangement of colors: Senior
Living APP has a green background with colorful aids; Senior Care Manager APP has a
high-saturation solid color; Smart Aging APP has highly saturated contrasting colors; C-life
Senior Care APP has a low saturation color gradient.

2.4. Experimental Procedure

The experiment was designed to collect and record eye movement changes and brain
waves evoked by visual stimuli using different mobile applications in older adults. The
experimental procedure is described as follows: Before the experiment started, the subjects
entered the lab when the procedure and precautions to be taken were explained. The
subject then started to debug the equipment and software, and presented the first-level
interface prototypes of four typical age-appropriate mobile products on the screen of the
Redmi K30Pro mobile phone. The brightness and color temperature of the screen were
ensured to be consistent before the experiment started. Afterwards, the EEG cap and the
oculography were calibrated separately. A successful calibration was considered when all
electrode points of the EEG cap turned from red to green, the oculography was calibrated
using the five-point method of eye data, and then the experiment was ready to start. The
subjects began with a 10-min sample familiarization exercise to minimize performance
errors due to inexperience. Afterwards, 16 subjects completed the “search for content of
interest” task in each of the four apps, and as the main functions of the old and old mobile
products were different, but each product had to have a personal login interface to facilitate
personalized function pushing, the search task was set to “login”. The main participant
was instructed to “search for and click on the login button” to understand the participant’s
experience of the interaction process. Throughout the experiment, if the subject took a
long time, there was no need to prompt him/her and he/she could just record it as it was.
There was a 5–10 min break after each set of APP interface tests were completed with a
user interview, where the main subject was asked about the user’s understanding and
operational behavior in response to their performance while browsing. The subjects were
also asked to choose the APP with the highest satisfaction and to rate the experience of
using each of the 4 APPs. To end the experiment and collate the data, the experimental
flow is shown in Figure 2.
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Figure 2. Experimental procedure for EEG recording and eye tracking: (a) The overall process of the
experiment; (b) Instrument adjustment and calibration; (c) User experiment diagram.

3. Results
3.1. Eye Movement Data Analysis

Because people primarily acquire information through visual perception, eye move-
ment analysis is a useful method for processing visual data [49]. By evaluating the recorded
data, the oculomotor, as a device for recording eye movements, can explore the relationship
between eye movements and human mental functions. The amount of time it takes all
participants to do the assignment is referred to as the task completion time. The task is
completed faster when the goals are well-defined. The overall amount of time the user
spends staring at the task is known as the average fixation duration. The average fixation
time will increase if the interface information is more challenging to recognize or if the
user is more engaged. The average pupil diameter is the change in pupil diameter over
the course of the user’s task. The pupil diameter will grow as the user’s cognitive burden
does. The hotspot is the user’s region of attention in the interface, and the eye trajectory
is the user’s sweeping route when carrying out a job. In this study, task completion time,
mean fixation duration, and mean pupil diameter were utilized to gauge participants’ task
performance and cognitive load. Eye trajectory and hotspot maps were employed to track
eye movement and vision.

3.1.1. Task Completion Time

Table 2 shows the results of ANOVA for Task Completion Time. It was found that
four different apps had no significant effect on the length of completion time for older
adults (F = 3.240, p = 0.093 > 0.05). The shortest time was the Senior Care Manager APP
(20.55 ± 18.21) and the longest time was the C-Life Senior Care APP (25.50 ± 25.50). Senior
Care APP (25.50 ± 15.81). Based on the results of the analyzed and processed data, the
relationship between the four different apps and the task completion time was derived, as
shown in Figure 3.
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Table 2. ANOVA of participants’ task completion time for different Apps: A refers to C-life Senior
Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to Smart
Aging APP.

Applications

ANOVAGroup A
(n = 16)

Group B
(n = 16)

Group C
(n = 16)

Group D
(n = 16)

Mean SD Mean SD Mean SD Mean SD F P

Task Completion time (s) 25.50 15.81 24.44 21.58 20.55 18.21 21.23 12.34 3.240 0.093

Figure 3. Line chart of participants’ task completion time in different Apps: A refers to C-life Senior
Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to Smart
Aging APP.

3.1.2. Average Fixation Duration

Gaze is the dwell of the human eye while observing a target, and most of the infor-
mation acquired by the user’s eye is processed and extracted while gazing. The average
duration duration reflects the processing time of the target information in the region [50].
An interface with complex information takes longer for the user to process and extract,
and the duration of the duration becomes longer. Thus, a longer sustained duration time
indicates more difficult user task execution. During the experiment, the eye-tracking device
recorded the average duration of older people during the “login” task using four different
apps. Table 3 shows the ANOVA results for Average Gaze Time. The study found a sig-
nificant effect of the four different apps on the duration time of the older person interface
(F = 1.667, p = 0.007 < 0.05). The average duration was from the longest to the shortest:
where Senior Living APP (7.369.11) had the longest average duration and Smart Aging APP
(4.845.97) had the shortest average fixation duration, while the average fixation duration of
the two apps, Senior Care Manager APP (6.476.42) and C-Life Senior Care APP (6.396.33),
did not differ significantly. Based on the results of the analyzed and processed data, the
relationship between the four different Apps and the mean fixation duration of older adult
was derived, as shown in Figure 4.

This shows that: (1) the relationship between different interface design factors and
the average fixation duration of older people is not linear, but has a significant effect, and
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the average fixation duration of users varies with different interface design factors. For
example, the higher the information density level, the smaller the ratio of icons to interface
and the uneven distribution of interface colors, the more negative the effect of interface
design on task performance of older adults; (2) there is a difference between male and
female groups, except for the average fixation duration in Smart Aging APP, the average
fixation duration of the female group is much higher than that of the male group, which
indicates that gender has a significant effect on task performance. There is a significant
difference in the effect of gender on task execution, and the more task interference items
there are in the task execution process, the more time-sensitive tasks need to be completed.

Table 3. ANOVA of participants’ average fixation duration for different Apps: A refers to C-life
Senior Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to
Smart Aging APP.

Applications

ANOVAGroup A
(n = 16)

Group B
(n = 16)

Group C
(n = 16)

Group D
(n = 16)

Mean SD Mean SD Mean SD Mean SD F P

Fixation duration (s) 6.39 6.33 7.36 9.11 6.47 6.42 4.84 5.97 1.667 0.007

Figure 4. Line graph of the average fixation duration time of participants in different Apps: A refers
to C-life Senior Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D
refers to Smart Aging APP.

3.1.3. Mean Pupil Diameter

Pupil diameter size can be used as an indication of cognitive load, which is an uncon-
scious reflex. Pupil dilation indicates the subject’s focused attention on observation and is
accompanied by the subject’s effortful cognitive processes. Table 4 shows the results of the
ANOVA for Mean Pupil Diameter. Four different apps were found to have a significant
effect on the change in pupil diameter in older adults (F = 0.931; p = 0.008 < 0.05). The
mean pupil diameter size ranged from large to small: C-Life Senior Care APP > Senior
Care Manager APP > Smart Aging APP > Senior Living APP. The maximum mean pupil
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diameter was Smart Aging APP (3.04 ± 0.44) and the minimum mean pupil diameter was
Senior Living APP (2.46 ± 1.28). The relationship between the four different apps and the
average pupil diameter of older people was obtained based on the results of the analyzed
and processed data, as shown in Figure 5. It can be seen that there is a significant effect
between different interface design factors and the average pupil diameter of older people,
and the average pupil diameter of users varies with different interface design factors. For
example, the lower the information density level of older people, the less energy and
attention they need to use the interface where the login icon occupies the visual center of
the interface, and the easier the task execution.

Table 4. ANOVA of participants’ mean pupil diameter for different Apps: A refers to C-life Senior
Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to Smart
Aging APP.

Applications

ANOVAGroup A
(n = 16)

Group B
(n = 16)

Group C
(n = 16)

Group D
(n = 16)

Mean SD Mean SD Mean SD Mean SD F P

Mean Pupli diameter (mm) 3.04 0.44 2.46 1.28 2.82 0.84 2.67 1.14 0.931 0.008

Figure 5. Line graph of mean pupil diameter of participants with different Apps: A refers to C-life
Senior Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to
Smart Aging APP.

3.1.4. Eye Tracking Diagram

According to the eye-movement diagram in the eye-movement experiment, we can
observe the location of subjects’ first gaze on the mobile product page, which can reflect
which elements on the whole page are more visually attractive and the visual search
tracking. Usually, the first point of view of users falls in the middle of the page, such
as bright color blocks or attractive images, while textual information is usually in a later
order of attention because it needs to be reprocessed by the brain, which is based on the
characteristics of human visual cognition [51,52]. Observing the user’s eye trajectory during
the page login task provides insight into the impact of interface design elements on user
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task execution. According to Figure 6, the eye-movement chart of the login interface of
C-Life Senior Care APP, Senior Living APP, Senior Care Manager APP, and Smart Aging
APP are plotted in order from left to right.

The user eye-movement diagrams of the four typical products all fold back in the
middle, which corresponds to the general browsing eye movement pattern. A good
interface scan path should be clear, well-organized, provide a good user experience, and
not obstruct the user’s line of sight excessively. Observing users’ eye movement diagram
during page login tasks provides insight into the influence of interface design elements on
user task execution. By compiling the eye-movement diagram of all subjects, we found that
users had more backward glances in the lower half and the right half of the page, which is
related to people’s daily reading habits, where they usually read from left to right and from
top to bottom, and when there are other elements on the page that attract the sight, the eye
tracking diagram will fold back to continue processing the rest of the stimulus information,
thus producing backward glances. From Figure 6a, it can be seen that in the eye tracking
diagram of the C-Life Senior Care APP, the user’s back-gaze occurs inconspicuously, and
the overall interface is more evenly attractive, which enables users to browse according
to their general eye-movement pattern and reading habits, and the user has high freedom
of vision. Then, as shown in Figure 6b,c, comparing the eye tracking diagrams of Senior
Living and Senior Care Manager Apps, we can see that both users look back very frequently,
and due to the difference in information density and page color between them, the return
video rate: Senior Living APP > Senior Care Manager APP . It shows that the high contrast
color of the page can make the users’ eyes average; the users’ eyes of the Senior Living APP
are basically focused on the colored icons, so it has an interference effect on the execution of
the task of finding out the location of the login key for older persons. The user eye tracking
diagram of the Smart Aging APP, as shown in Figure 6d, shows that it is extremely easy for
older people to find the login key. Thus, it can be concluded that an interface layout with
a moderate ratio of icons to the interface, a low information density level, and a general
line of sight pattern is more suitable for older persons, and it is easier to guide the users to
effectively access and process information during the interaction process.

Figure 6. Four product eye movement track maps: (a) C-Life Senior Care APP login screen track
diagram; (b) Senior Living APP login screen track diagram; (c) Senior Care Manager APP login screen
track diagram; (d) Smart Aging APP login screen track diagram.
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3.1.5. Page Heat Map

The hotspot map reflects the distribution of subjects’ interest points when browsing
the interface, and the location of subjects’ attention points when browsing the page can be
judged based on the hotspot map. Following the hotspot attention points can let outsiders
understand the habits of senior users browsing the product [53]. The hotspot map can be
used to visually display the stimulus elements that subjects pay attention to. The gradation
of hotspot color from green to yellow to orange to red represents the shortest to longest
duration of visual attention, i.e., red represents the longest gaze time and green represents
the shortest gaze time, and the hotspot area becomes larger as the gaze time becomes
longer. According to Figure 7, in order from left to right, the eye-movement heat map of
the login interface of the C-life Senior Care APP, Senior Living APP, Senior Care Manager
APP, and Smart Aging APP is shown in order. The following is a detailed explanation
of the distribution status of the heat map: (1) As shown in Figure 7a, the red hotspots
appearing in the eye-movement hotspot map of C-Life Senior Care App are all in the
middle and bottom of the page, and are concentrated on the main navigation bar, which
helps guide users to complete the interaction behavior of the main function. However,
it also shows that low saturation colors are less attractive to users’ eyes, even if they can
complete the interaction tasks on their own, because the interface colors are too mild to
attract users’ attention and make the key information on the home page unappreciated.
Therefore, adding high saturation color to highlight key information does not only not
affect the overall dominance of interactive tasks, but can also attract users’ attention; (2) the
home page of Senior Living APP adopts an irregular grid layout, as shown in Figure 7b,
users’ attention points are scattered and concentrated on the main navigation bar, so when
an irregular grid layout is adopted and the page is rich in color and text information, it
is difficult to focus the attention points effectively. (3) As shown in Figure 7c, the user’s
eyes are concentrated in the eye-movement hot zone diagram of the Senior Care Manager
APP, and the eye-movement hot zone obviously stays in the red color block in the header.
This indicates that the high saturated color has stronger visual stimulation for users, higher
attraction of sight, and longer time for subjects’ sight to gaze at the page head; (4) The
eye-movement hot spot diagram of Smart Aging APP is shown in Figure 7d. On the
intuitive interface with card-type design and rich contrast of color, the distribution of users’
sight is more even, which can attract users to shift their sight, and at the same time, it does
not overly dominate users’ sight. This indicates that the page elements can attract users’
visual attention, which means that users tend to prefer interactive interface designs with
intuitive color contrast and clear and simple pages. Therefore, the color contrast changes to
attract the user’s eye shift, and evenly distributed key information can also draw attention
to the key information within the page.
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Figure 7. Four product eye movement heat maps: (a) C-Life Senior Care APP interface hot spot map;
(b) Senior Living APP interface hot spot map; (c) Senior Care Manager APP interface hot spot map;
(d) Smart Aging APP interface hot spot map.

3.2. EEG Data Analysis

The initial technique for analyzing EEG signals was time-domain analysis. The total
reflection of physiological activity at each electrode location in the cerebral cortex or scalp
surface during the user’s task performance is called electrode wave amplitude variation.
The overall variance in the superimposition of electrode points in each brain area during the
user’s performance is known as the wave amplitude variation in brain regions. Different
parts of the brain reflect different functional changes in the user; the temporal and frontal
regions sense changes in information connected to emotions, while the parietal and occipital
regions perceive changes in visual information [54,55].

The raw EEG data is complex, and processing of the raw EEG data is required to turn
the experimental data into usable analytical data. Four APP interfaces with different design
elements were labeled as A, B, C, and D in the EEG experiment, where A refers to C-Life
Senior Care APP, B refers to Senior Living APP, C refers to Senior Care Manager APP, and
D refers to Smart Aging APP. The detailed data processing steps are as follows: (1) import
electrode coordinates; (2) segmentation according to the whole search task completion
time; (3) segmentation according to the whole search task completion time; (4) baseline
calibration; (5) calibration of all “A”, “B”, “C”, and “D” for a single subject. “C” and “D”
segments of a single subject; (6) averaging and superimposing “A”, “B”, “C”, and “D”
segments of a single subject; (7) averaging and superimposing “A”, “B”, “C”, and “D”
segments of a single subject. (6) Average superimposed wave forms of “A”, “B”, “C”, and
“D” segments for all subjects. Next, the EEG data averaged over all subjects in step 6 were
selected for analysis. According to the wave forms of each electrode and the distribution of
electrodes in the main time window, the most significant changes in the amplitude of FPZ,
F7, F4, F8, C4, P7, P3, and O1 electrodes were selected for further statistical analysis, and
the wave forms of the eight electrodes are shown in Figure 8.
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Figure 8. Electrode wave forms of different APP processes for each electrode position.

3.2.1. Statistical Analysis of Electrode Amplitude

The amplitude changes of human brain waves can reflect the sensitivity of the human
body to external environmental influences. In this paper, we first compare the wave
amplitude changes of 8 electrodes when users use different apps to complete their tasks,
and Table 5 shows the average wave amplitude statistics of each electrode under different
APP interfaces for users’ usage behaviors. Then do the repeated measures ANOVA of 4
(different mobile apps: C-Life Senior Care App; Senior Living APP; Senior Care Manager
APP; Smart Aging APP) × 8 (electrodes: FPZ, F7, F4, F8, C4, P7, P3, O1).
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Table 5. Analysis of the mean value of the amplitude of each electrode: A refers to C-life Senior
Care APP; B refers to Senior Living APP; C refers to Senior Care Manager APP; D refers to Smart
Aging APP.

Electrodes Mean SD Number Electrodes Mean SD Number

Fpz

A 0.004665 27.31288 16

F7

A −0.02338 20.20405 16
B 0.134871 21.20736 16 B 0.093055 16.96126 16
C 0.474146 26.35667 16 C 0.857294 23.63811 16
D −0.06103 17.80065 16 D −0.010486 13.98773 16

Total 0.138163 23.16939 64 Total 0.916483 18.69779 64

Electrodes Mean SD Number Electrodes Mean SD Number

F4

A −0.02202 14.76019 16

F8

A −0.03429 12.74355 16
B 0.113233 13.24345 16 B 0.108794 12.79345 16
C 0.538435 23.20325 16 C 0.708056 19.00214 16
D −0.02329 11.67699 16 D 0.040016 10.13491 16

Total 0.15159 15.72097 64 Total 0.205644 13.66815 64

Electrodes Mean SD Number Electrodes Mean SD Number

C4

A −0.01727 11.89204 16

P7

A −0.01281 12.46189 16
B 0.060629 10.98026 16 B 0.051005 14.20482 16
C 0.424661 15.35449 16 C 0.381196 22.86642 16
D −0.01441 10.28045 16 D −0.05949 12.55813 16

Total 0.113403 12.12681 64 Total 0.089975 15.52282 64

Electrodes Mean SD Number Electrodes Mean SD Number

P3

A −0.01503 17.14472 16

O1

A −0.03526 18.31962 16
B 0.05162 12.82255 16 B 0.0478 16.6618 16
C 0.351402 17.40791 16 C 0.401782 17.03462 16
D −0.07309 11.5843 16 D −0.08066 12.17158 16

Total 0.078726 14.73987 64 Total 0.083416 16.04691 64

Firstly, the sphericity test was conducted as shown in Table 6, and the test result was
significant p = 0.000 < 0.05, which did not satisfy the assumption of spherical distribution and
required multivariate ANOVA. After multivariate ANOVA, as shown in Tables 7 and 8, the
results showed that (1) presenting no significant main effect of different mobile application
types, p = 0.722 > 0.05, indicating no significant difference between mobile applications;
presenting a significant main effect of electrode type, p = 0.000 < 0.05, indicating a significant
difference between electrodes; and (2) presenting a direct electrode and different mobile
applications with no significant interaction effect, p = 0.425 > 0.05, indicating that there is
no interaction between electrodes and different mobile application changes, and the role of
electrode factors does not vary with the design elements of mobile applications.

Table 6. Mauchly sphericity test.

Within-Subject
Effects Mauchly Approximate

Chi-Square
Degrees of
Freedom P

Epsilon b

Greenhouse-
Geisser

Cyn Feldt Lower Limit

brain area 0.164 3694.900 27 0.000 0.664 0.666 0.143
b May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the Tests of Within-Subjects Effects table.
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Table 7. ANOVA for different applications.

Class III Sum of
Squares

Degrees of
Freedom Mean Square F P

Intercept 34.563 1 34.563 0.023 0.880

Different Apps 2002.538 3 667.513 0.443 0.722

Errors 3,085,338.250 2048 1506.513

Table 8. ANOVA for electrode × APP.

Value F Assumption Degrees of
Freedom

Error Degrees
of Freedom P

Intercept

Billy trajectory 0.002 0.618 b 7.000 2042.000 0.000
Wilke Lambda 0.998 0.618 b 7.000 2042.000 0.000
Hotelling track 0.002 0.618 b 7.000 2042.000 0.000
Roy Max Root 0.002 0.618 b 7.000 2042.000 0.000

Intercept × Apps

Billy trajectory 0.011 1.027 21.000 6132.000 0.425
Wilke Lambda 0.990 1.027 21.000 5864.072 0.425
Hotelling track 0.011 1.027 21.000 6122.000 0.426
Roy Max Root 0.005 1.466 c 7.000 2044.000 0.175

b Exact statistic. c This statistic is the upper limit of F that generates the lower limit of significance level.

Figure 9 visualizes the trend of amplitude change with electrode change. The four
apps with different design features have different trends of change with electrodes, among
which two types of apps, C-Life Senior Care and Smart Aging, have an overall downward
trend of change, and two types of apps, Senior Living and Senior Care Manager, have an
overall upward trend of change. In addition, among the four Apps, only C-Life Senior
Care APP changes have 1 inflection point, while the other three Apps have 5 inflection
points of margin changes, which indicates that the overall changes of C-Life Senior Care
APP electrodes tend to be smooth. The largest magnitude and the most obvious magnitude
difference existed at electrode Fpz, and the least obvious magnitude difference existed
at electrode F8. The overall magnitude size of the four apps was shown as: Senior Care
Manager APP > C-Life Senior Care APP > Smart Aging APP > Senior Living APP.

Figure 9. Marginal mean value of electrode amplitude.
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3.2.2. Statistical Analysis of Brain Area Amplitude

The above eight electrodes were divided into four regions: Frontal lobe area (F4, Fpz,
F7, F8), Parietal area (P3, P7), Temporal lobe area (C4), and Occipital area (O1), and several
electrodes within each region were superimposed and averaged. Table 9 shows the average
wave amplitude statistics of each brain area performed by the user under different APP
use behaviors, analyzing the differences in statistics of different brain area locations: do
4 (different APP: C-Life Senior Care App; Senior Living APP; Senior Care Manager APP;
Smart Aging APP) × 4 (brain area: Frontal area; Parietal area; Temporal area; Occipital
area) for repeated measures ANOVA.

Table 9. Analysis of the mean amplitude of each brain region.

Brain Area Mean SD Number

Frontal Lobe Area

C-Life Senior Care APP 0.5363 10.49246 16
Senior Living APP 0.0364 17.20792 16

Senior Care Manager APP −0.3559 19.38743 16
Smart Aging APP −0.3800 10.83575 16

Total −0.408 14.98940 64

Brain Area Mean SD Number

Parietal Area

C-Life Senior Care APP 0.1480 10.28221 16
Senior Living APP 0.3940 16.71846 16

Senior Care Manager APP 0.0752 21.89155 16
Smart Aging APP −0.752 13.09230 16

Total 0.0258 16.08620 64

Brain Area Mean SD Number

Temporal Lobe Area

C-Life Senior Care APP 0.2992 8.87934 16
Senior Living APP 0.2720 15.38968 16

Senior Care Manager APP −0.0673 13.48589 16
Smart Aging APP −0.6464 10.60769 16

Total 0.0356 12.34672 64

Brain Area Mean SD Number

Occipital Area

C-Life Senior Care APP −0.0270 15.71846 16
Senior Living APP 0.5609 19.61370 16

Senior Care Manager APP 0.2936 17.44823 16
Smart Aging APP −0.7069 12.71110 16

Total 0.1166 16.56066 64

The sphericity test was first performed as shown in Table 10, and the test result was
significant p = 0.000 < 0.05, which did not satisfy the assumption of spherical distribution and
required multivariate ANOVA. After multivariate ANOVA, as shown in Tables 11 and 12,
the results showed that there was no significant main effect between the different mobile
applications presented, p = 0.665 > 0.05, indicating no significant difference between the
four mobile application types; there was a significant main effect between the brain regions
presented, p = 0.000 < 0.05, indicating a significant difference between the brain regions; there
was no significant interaction between the brain regions and the different mobile applications
presented There is no significant interaction effect between brain regions and different mobile
applications, p = 0.918 > 0.05, indicating that there is no interaction between brain regions and
different mobile applications, and the role of brain region factors does not vary with the design
elements of mobile applications.
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Table 10. Mauchly sphericity test.

Within-Subject
Effects Mauchly Approximate

Chi-Square
Degrees of
Freedom P

Epsilon b

Greenhouse-
Geisser

Cyn Feldt Lower Limit

brain area 0.670 820.670 14 0.000 0.437 0.463 0.200
b May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the Tests of Within-Subjects Effects table.

Table 11. ANOVA for different applications.

Class III Sum of
Squares

Degrees of
Freedom Mean Square F p

Intercept 24.581 1 24.581 0.035 0.857

Different Apps 1122.500 3 374.167 0.526 0.665

Errors 1,457,707.584 2048 711.711

Table 12. ANOVA for brain region × APP.

Value F Assumption Degrees of
Freedom

Error Degrees
of Freedom p

Intercept

Billy trajectory 0.000 0.044 b 3.000 2046.000 0.000
Wilke Lambda 1.000 0.044 b 3.000 2046.000 0.000
Hotelling track 0.000 0.044 b 3.000 2046.000 0.000
Roy Max Root 0.000 0.044 b 3.000 2046.000 0.000

Intercept × Apps

Billy trajectory 0.002 0.434 9.000 6144.000 0.918
Wilke Lambda 0.998 0.434 9.000 4969.577 0.918
Hotelling track 0.002 0.433 9.000 6134.000 0.918
Roy Max Root 0.002 1.057 c 3.000 2048.000 0.366

b Exact statistic. c This statistic is the upper limit of F that generates the lower limit of significance level.

Figure 10 visualizes the trend of the wave amplitude with the change of brain areas.
The four apps with different design features have slightly different trends in brain area
change. The overall trend direction of Senior Living APP and Senior Care Manager APP is
basically similar, with the two categories of C-Life Senior Care and Senior Care Manager
having an overall upward trend of change. C-Life Senior Care and Senior Care Manager
apps are trending up, while Senior Living and Smart Aging apps are trending down. In
addition, among the four apps, only the Smart Aging APP had 2 inflection points, while
the other three apps had only 1 inflection point for the margin change, which indicates that
the overall brain area change of the four apps tends to be stable. The Occipital area in the
brain area had the largest magnitude and the most obvious magnitude difference, and the
overall magnitude size of the four apps was shown as follows: Smart Aging APP > C-Life
Senior Care APP > Senior Care Manager APP > Senior Living APP.
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Figure 10. Marginal mean of brain area amplitudes: A refers to Frontal area; B refers to Parietal area;
C refers to Temporal area; D refers to Occipital area.

4. Discussion

Cell phones have become a vital tool for human interaction, bringing individuals
easy experiences thanks to the ongoing upgrade of 5G communication technology on the
Internet. It is vital to make the interface design of a senior-centered mobile application
for senior care services user-friendly in order to incorporate older individuals into the
online society more quickly [56,57]. This study looked at the influence of different interface
design features on user task execution by limiting subjects to simply doing the interface
login search task. Additionally, these results demonstrate that varied interface design
components have a considerable impact on older users’ ability to accomplish tasks, and
both eye-movement and EEG data provide a factual foundation for this assertion.

In terms of the design element of the login screen layout, the time taken to complete the
task was much shorter in the hysteretic layout compared to the multi-column and irregular
layouts, and the average fixation duration was also very short, with little change in pupil
diameter. The irregular and multi-column layouts do not do a good job of attracting the
user’s attention, which leads to a tendency for older users to be distracted by information
other than the login, so the older population prefers a simpler interface. It is also clear
that physiological indicators such as pupil diameter and average fixation duration have
a definite advantage in examining the cognitive load of users. This is in line with the
findings of other scholars. In terms of the color scheme of the login screen, the fact that the
background color of the C-Life Senior Care and Senior Living apps is mostly white makes
it easier for the user to perform tasks in a cyclical manner, as the color of the login screen
is more appealing to the user than the absence of color. As a consequence, bright design
elements should be employed throughout the interface, preferably in crucial information
places [58–61]. The user’s behavioral line of sight can be captured with great accuracy
using eye tracking and eye-tracking hotspot maps.

Then, on the element of information density of the login interface, the information
density not only refers to the amount of interface information but also refers to whether
the logic between the information is smooth [62]. When older adults completed the login
task in the Senior Living APP, for example, the magnitude of both electrodes and brain
areas was the smallest compared to the other three apps, indicating that an interface design
with too much information density and not enough logical arrangement of information
will cause older adults to lose interest in the process of using it. It has also been verified
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that changes in brain areas and electrode changes can reflect changes in user behavior
and emotions. Finally, in terms of the element characteristics of the login icon, because
the login symbol is the most essential and key information point in the login interface, its
position, size, and design should correspond to the visual habits of older users. The user’s
pupil diameter did not change greatly during the task execution process in the Senior Care
Manager APP and Smart Aging APP, indicating that there is no significant cognitive load
on information acquisition during task execution and that the central position of the login
icon in the interface is beneficial for older people.

The interface layout and the reasonable design of overall information (including the
contrast between the background color and the font/icon color, the position of the login
symbol in the body of the interface, the size of the login icon in the body of the interface,
and the overall information density of the interface, etc.) can guide the visual focus and
browsing habits of users, thus affecting the task execution of user behavior, according to the
analysis of users’ eye movement and EEG data during the use of four typical pension service
mobile applications. This study evaluates the variations between four popular mobile
applications for social services for older persons and identifies the interactive impacts of
key interface design components on the impact of task performance on older individuals.
The study’s findings, which combine objective experimental findings with subjective user
interaction, offer a theoretical framework for future interface designs that are centered on
the needs of older people and suggest the following design tactics: (1) If task performance
for older users is the only factor taken into account, then a palatial interface style with
minimal information density, a high percentage of login icons, and moderate placement is
chosen; an irregular interface layout must reduce information density, eliminate distracting
icons, and emphasize login icon elements in order to increase older people’s motivation
to perform tasks. A multi-column interface layout with low information density and a
moderate proportion of login icons is more motivating for older people. (2) No matter how
the interface is set up, the login symbol is more noticeable than other components (be it by
placing larger icons, adding color, repositioning, etc.) and the user interaction experience
benefits from the lower information density level. (3) Focus on adjusting the information
density of the interface if you want to increase customer satisfaction with the product.
Only essential information can be retained in a low-density interface, while a high-density
interface level can diversify high-density information through the use of colors, larger and
bolded fonts, and other techniques to highlight significant information. (4) Based on a
study of the visual behavior of users using the interface, it can be found that at the level of
visual centrality of the login icon and low density interface, the rational use of color can
reduce the time users spend searching for the login button and improve the efficiency of
task execution.

5. Limitations and Future Directions

There are some limitations to this study. First, this study used different applications
as independent variables, and although it can draw conclusions about the influence of
design elements like interface layout, interface color, and interface information density
on the use of APP by older adults, it may not yield as precise results as single element
variable experiments such as control chart-book layout; second, the sample size of male
and female control groups of subjects was uneven. In future studies, we should make sure
that the experimental independent variables are not influenced by other strong variables
and average the number of control groups.

6. Conclusions

With the inclusion of the new crown pandemic, increasing the frequency of social
encounters for older individuals using smart gadgets could help them feel less lonely and
improve their physical health. On the other hand, older persons have a high demand for the
ability to precisely and efficiently detect the interaction information of mobile applications
so that they may simply operate the program. In this work, we investigate the effects of
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multidimensional design features of interfaces on task performance in the elderly using
a mix of eye-movement and EEG tests. The findings of these trials suggest that the most
beneficial combination of interface design elements for task execution for older people is
a palatial interface layout, a large proportion of login icons, a small information density
level, and effective use of color placement. It was also further demonstrated that changes
in pupil diameter, mean gaze duration, and trajectory heat maps in the eye movement
data and changes in potential and brain region amplitude in the EEG signal clearly reflect
the true visual cognitive state of the user during use. The palatial interface architecture
organizes the information on the interface and makes it easier for older persons to operate.
The proportion of login icons in the interface and the richness of interface information have
an impact on the old person’s task performance when using the app. A higher proportion
of login icons and a lower degree of information density are more ideal for older persons to
use and make it easier to assist them through the interaction process to properly obtain and
process information. Furthermore, the use of color in the interface and the display of vital
information will make it easier for older people to use. It was also further demonstrated
that changes in pupil diameter, mean gaze duration and trajectory hotspot maps in the eye
movement data, and changes in potential and brain region amplitude in the EEG signal
clearly reflect the true visual cognitive state of the user during use.

Based on two objective evaluation criteria, namely eye movements and EEG, with
specific theoretical and practical values, this study explores the impact of various interface
design features on older people’s ability to conduct task-related activities. In terms of
theoretical significance, this work adds to the body of knowledge regarding interface
design for older users by applying a combined eye-movement and EEG method to the
assessment of the effects of interface design features on task performance. Secondly, this
study demonstrates that user behavioral and emotional changes can be observed using
data markers connected to eye movements and EEG signals. Indicators indicate that older
people perceive information on the interface slowly and feel negative emotions. They
include long average fixation duration, significant pupil diameter changes, and minor
amplitude changes of electrodes and brain areas in the EEG. This research compares and
explains the differences between four typical mobile applications of social services for the
older person, which helps designers and other professionals comprehend the impact of
each design element on the initial interface design and later software upgrade process.
The effects of task completion offer strategic direction for the creation of interface design
products geared toward older persons, which can help older persons continue to use smart
device software.
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