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INTRODUCTION: SYNTHESIS AND FUNCTIONS OF HEME

Mitochondrial function in endothelial cells (EC) is interconnected by a mesh of signaling molecules
that cross pathways often (Kluge et al., 2013). One such versatile biomolecule is heme. Heme is
important for respiration, curbing oxidative stress, drug metabolism, and oxygen transport (Dailey
and Meissner, 2013). The heme synthesis pathway and intermediates have been studied in detail
over decades, with crystal structures and cloned genes available (Poulos, 2014). Intriguingly, heme is
an important prosthetic moiety of key proteins of EC (Chiabrando et al., 2014b).

In mammalian cells, heme synthesis is accomplished in the mitochondria and cytosol over a
series of eight enzymatic reactions, followed by modification of heme in a couple of sub-hemylation
steps (Nilsson et al., 2009; Hamza and Dailey, 2012; Dailey et al., 2017). Heme biosynthesis in cells
other than erythrocytes is initiated by the rate-limiting enzyme aminolevulinic acid synthase
(ALAS1) that catalyzes formation of 5-aminolevulinic acid (ALA) from succinyl-CoA and glycine
(Figure 1A). ALA is exported into the cytosol and converted via several intermediates into
coproporphyrinogen-III (CPO) by coproporphyrinogen oxidase (CPOX); CPO is then
transported back into the mitochondria for the last two steps of the pathway. In the final step,
ferrochelatase (FECH) incorporates ferrous iron into protoporphyrin IX (PPIX), synthesizing
protoheme. Heme is then available to enable cellular processes by combining with enzyme subunits
as a prosthetic group. For example, heme-iron is part of the catalytically active form of endothelial
nitric oxide synthase (eNOS) (Raman et al., 1998). Similarly, different forms of heme are
incorporated into mitochondrial respiratory complexes I–IV of the electron transport chain
(ETC) (Kim et al., 2012). Of course, the majority of heme is used for incorporation into
hemoglobin during erythropoiesis (Korolnek and Hamza, 2014) and some (primarily in the
liver) for the synthesis of cytochrome P450s, responsible for xenobiotic metabolism (Correia
et al., 2011).

Apart from being a prosthetic cofactor for enzymes, heme’s regulated production ensures that
active iron is sequestered before it can promote formation of reactive oxygen species (ROS) (Ryter
and Tyrrell, 2000). Hence, heme plays a crucial role in ROS homeostasis in the mitochondria,
without which many mitochondrial processes would be damaged (Alonso et al., 2003). One key
regulator involved in detoxification of ROS and stimulating mitochondrial biogenesis is
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proliferator-activated receptor gamma coactivator 1a (PGC1a)
(Austin and St-Pierre, 2012). PGC1a regulates ALAS1
expression in the liver, linking heme synthesis directly to the
nutritional state of cells (Handschin et al., 2005). Fasting-
induced PGC1a was found to be essential for vascular growth
and pathological angiogenesis (Saint-Geniez et al., 2013). Here,
we review recent studies that have identified an unexpected link
between angiogenesis and heme synthesis, offering exciting
therapeutic relevance to vascular diseases like retinopathy of
prematurity (ROP), proliferative diabetic retinopathy (PDR),
and wet age-related macular degeneration (AMD).
HEME SYNTHESIS PROTEINS AS
ANGIOGENESIS MEDIATORS

The terminal heme synthesis enzyme, ferrochelatase, encoded by
FECH, was the first heme pathway component to be identified as
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a druggable target in pathological angiogenesis. FECH blockade
(both genetically and pharmacologically) reduced proliferation,
migration and endothelial tube formation in microvascular ECs.
This effect was specific to ECs; FECH inhibition had a negligible
effect on non-endothelial ocular cell proliferation. This anti-
angiogenic effect was also seen in vivo: mice with a partial
loss-of-function Fechm1Pas point mutation formed reduced
neovascular lesions in the eye in the laser-induced choroidal
neovascularization (L-CNV) model with features of wet AMD, as
did mice with ocular Fech knockdown or inhibition (Figure 1B).
In addition, FECH was overexpressed in and around these
lesions, and in human wet age-related macular degeneration
eyes (Basavarajappa et al., 2017). Moreover, FECH was
upregulated, particularly in neovascular tufts, in the oxygen-
induced retinopathy (OIR) mouse model of ROP (Pran Babu
et al., 2020). The mechanisms of how heme contributes to EC
physiology and drives angiogenesis are now beginning to
be understood.
A

B

FIGURE 1 | Schematic diagram of the heme synthesis pathway in the mitochondrion and effect of Fech inhibition in vivo. (A) Eight sequential steps in the heme synthesis
pathway are depicted, along with some heme-containing proteins. Red dotted lines indicate blockade. (B) Fech inhibition using griseofulvin in the laser-induced choroidal
neovascularization (CNV) mouse model. CNV was confirmed by optical coherence tomography (OCT). Griseofulvin treated eyes had significantly smaller neovascular lesions
as seen in red agglutinin staining for vasculature. Retinal layers indicated: GCL, ganglion cell layer; INL, inner nuclear layer, ONL, outer nuclear layer; Scale bars for OCT
images and agglutinin immunostaining are 100 and 50 µm, respectively. *p = 0.015; ****p = 0.0001 versus vehicle, ANOVA with Dunnett’s post hoc tests (n = 11–13 eyes per
group). Anti-VEGF164 is a positive control antibody therapy. Figure modified from Basavarajappa et al., 2017 © 2017 The Authors, CC BY 4.0. Succ CoA, succinyl-CoA,
ALA, 5-aminolevulinic acid; ALAS, ALA synthase; ALAD, ALA dehydratase; HMBS, hydroxymethylbilane synthase; UROS, uroporphyrinogen synthase; UROD,
uroporphyrinogen decarboxylase; CPOX, coproporphyrinogen oxidase; PPOX, protoporphyrinogen oxidase; FECH, ferrochelatase; PPIX, protoporphyrin IX; eNOS,
endothelial nitric oxide synthase; CYP450, cytochrome P450; ETC, electron transport chain; DYm = mitochondrial membrane potential; mito, mitochondria.
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MECHANISMS OF HEME REGULATION OF
ANGIOGENESIS

Mitochondrial Function
Inhibition of heme synthesis has varying impact on the
hemoproteins of the ETC (Vijayasarathy et al., 1999; Atamna
et al., 2001). Heme b and c are present in complexes II and III,
whereas complex IV has two groups of heme a, made after two
consecutive modifications to protoheme (Kim et al., 2012). We
recently showed that loss of heme via blockade of the terminal
enzyme FECH in retinal ECs specifically causes complex IV
dysfunction with negligible effects on other complexes
of the ETC (Shetty et al., 2020). Complex IV protein and
activity were significantly decreased by small molecule or
genetic inhibition of FECH, but partially restored after heme
supplementation. This loss in complex IV was accompanied
by a depolarized mitochondrial membrane. Furthermore,
heme depletion damaged both oxidative phosphorylation
and glycolysis in retinal and choroidal ECs, along with a
decrease in mitochondrial fusion and elevated ROS. This work
characterized the direct effect of heme blockade on EC
metabolism for the first time (Shetty et al., 2020).

Another recent study elucidated the contribution of the serine
synthesis pathway to heme and ECmetabolism (Vandekeere et al.,
2018). Inhibition of the serine synthesis enzyme phosphoglycerate
dehydrogenase (PHGDH) reduced glycine (substrate for the first
step of the heme synthesis pathway), leading to an indirect
decrease of heme enzymes and an eventual reduction in heme
production in ECs. This also caused mitochondrial defects like
reduced respiration, smaller mitochondria, increased fission,
reduced fusion, and elevated mitophagy. Neonatal mice with
silenced PHGDH had reduced retinal vascularization and
reduced vessel area in the brain, heart, and kidney. Additionally,
another group demonstrated that complex III is essential for EC
proliferation (but not migration) in macrovascular ECs.
Conditional knockout of EC-specific complex III led to reduced
retinal, lung, and tumor neovascular blood vessels (Diebold et al.,
2019). Loss of FECH activity was anti-proliferative for brain
microvascular ECs, with no effect on macrovascular ECs
(Basavarajappa et al., 2017). This was in contrast to reduced
heme synthesis seen in macrovascular ECs as a result of
aberrant serine synthesis (Vandekeere et al., 2018). The
differential phenotypes of heme loss in microvasculature versus
macrovasculature remain unclear and solicit further studies
(Ghitescu and Robert, 2002; Sandoo et al., 2011).

Sprouting human umbilical vein ECs are highly glycolytic,
producing up to 85% of ATP through the glycolysis pathway.
During angiogenesis, endothelial tip and stalk cells dynamically
switch their glycolytic activity depending on the energy demands
of the tip cells and the proliferating stalk cells (De Bock et al.,
2013). Recently, endothelial tip cells were reported to be less
glycolytic during angiogenic cell differentiation (Yetkin-Arik
et al., 2019), however more studies are warranted to validate
such observations. Additionally, mitochondrial fatty acid
oxidation has a role in proliferation of sprouting ECs (Schoors
et al., 2015). While blocking heme production diminishes
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glycolytic capacity of retinal ECs (Shetty et al., 2020), it is as
yet unclear whether heme regulation of EC metabolism varies
between tip and non-tip ECs. Recent genomic analysis of murine
choroidal ECs from neovascularization revealed potential
metabolic candidates not found in healthy cells, suggesting
targeting endothelial metabolism could be the way forward in
vascular therapeutics (Rohlenova et al., 2020).

Cytosolic Effects
Lack of heme synthesis also leads to incomplete formation of
eNOS and reduced activity (Feng, 2012). Heme depletion via
FECH inhibition led to decreased expression, hemylation, and
activity of eNOS in retinal microvascular ECs (Basavarajappa
et al., 2017). Heme inhibition by chemically blocking the second
synthesis enzyme aminolevulinic acid dehydratase (ALAD) in
rats led to reduced eNOS and downstream mediator soluble
guanylyl cyclase (sGC), both important in maintaining regular
cardiovascular function. These effects did not affect vascular
tension and resulted in no change to arterial blood pressure
(Bourque et al., 2010). But heme depletion-driven eNOS
dysfunction led to impaired NO mediated vascular relaxation
in bovine coronary arteries (Zhang et al., 2018). NO, a potent
vasodilator, is pro-angiogenic and NO itself is known to inhibit
hemylation of extramitochondrial apo-hemoproteins (Waheed
et al., 2010).

It is important to note that heme overload in ECs also
leads to abnormal angiogenesis. Silencing of the heme
transporter FLVCR1a led to intracellular heme accumulation
in microvascular ECs, but not in macrovascular ECs. This heme
accumulation in microvascular ECs led to impaired angiogenesis,
damaged vessel formation and embryonic lethality in vivo
(Petrillo et al., 2018). Heme toxicity has been investigated
previously in hemolytic diseases like sickle cell disease and
thalassemia, where heme scavengers are helpful in reducing
heme-induced ROS accumulation (Vinchi et al., 2013). In non-
small cell lung cancer, tumor cells had elevated heme synthesis
activity, increasing respiratory function of the ETC and
enhancing tumorigenic properties like migration and
invasiveness (Sohoni et al., 2019). This suggests in addition to
heme loss being anti-angiogenic, heme synthesis overdrive can
increase mitochondrial function, but this remains to be validated
in ECs. It would be interesting to investigate whether heme
mediates EC metabolism in neovascularized tumors in a similar
fashion and whether heme synthesis blockers could be valuable
as cancer therapies.
THERAPEUTIC POTENTIAL OF
TARGETING HEME SYNTHESIS IN
NEOVASCULARIZATION

Current therapeutic strategies targeting mitochondria involve key
functions like mitochondrial division (Cassidy-Stone et al., 2008),
ROS formation (Dhanasekaran et al., 2004), and metabolism
(Mather et al., 2001; Csiszar et al., 2009) for age-related
neurodegenerative diseases like Alzheimer’s, Parkinson’s, and
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Huntington’s (Lane et al., 2015). Meanwhile, anti-vascular
endothelial growth factor (VEGF) therapies remain classic
biologics used for neovascular diseases such as wet AMD, PDR,
and multiple cancers (Jain, 2014). Until our and others’ work
described above, there was no rationale for targeting heme
synthesis as neovascularization therapy. But given the specific
antiproliferative effects of FECH blockade in microvascular
ECs, FECH inhibitors like N-methylprotoporphyrin have
demonstrated potential in targeting neovascular pathologies, both
in vitro and in the OIR mouse model (Basavarajappa et al., 2017;
Pran Babu et al., 2020). Novel, drug-like FECH inhibitors are also a
possibility (Corson et al., 2019; Sishtla et al., 2019).

Repurposing existing drugs for pathological angiogenesis also
holds promise towards this end. Griseofulvin, an FDA-approved
anti-fungal drug, has a long-known off-target effect of FECH
inhibition (Brady and Lock, 1992; Liu et al., 2015). It has anti-
angiogenic effects in retinal ECs, blocking proliferation,
migration, and tube formation in vitro and reducing
neovascularization in vivo comparable to intraocular anti-
VEGF treatment, in both OIR and L-CNV mouse models
(Figure 1B) (Basavarajappa et al., 2017; Pran Babu et al.,
2020). Isoniazid, an anti-mycobacterial drug, decreases FECH
expression while upregulating ALAS1 (Brewer et al., 2019), and
thus could be tested for potential anti-angiogenic activity in
neovascularization models. Other inhibitors of heme synthesis
used in vitro include succinylacetone and salicylic acid that block
ALAD and FECH respectively (Giger and Meyer, 1983; Gupta
et al., 2013), however their use in preclinical angiogenesis models
remains to be investigated.

Targeting mitochondrial proteins directly involved in ETC
activity has limitations as well, with a direct consequence on
mitochondrial function. However, extracellular supplementation
of hemin (a more stable form of heme) is able to normalize some
of the mitochondrial physiology, like eNOS levels, complex IV
activity, and ETC function (Basavarajappa et al., 2017; Vandekeere
et al., 2018; Shetty et al., 2020). Effect of FECH blockade can be
titrated, with a dose dependent decrease in angiogenesis features
observed in animal models and ECs in culture. Homozygous
Fechm1Pas mice have significantly reduced neovascular lesions,
compared to heterozygous Fechm1Pas mice. And heterozygotes
themselves have reduced lesions compared to wild-type
(Basavarajappa et al., 2017), suggesting a window of FECH
antiangiogenic effects without toxicity. However, complete loss
of Fech and Alas1 are embryonically lethal to mice (Magness et al.,
2002; Chiabrando et al., 2014a), highlighting the importance of
modulating heme inhibition carefully.

Oral supplementation of heme, while still achieving
therapeutic antiangiogenic effects of inhibitors, could be
considered (Luan et al., 2017). In order to limit systemic
toxicity, it would be helpful to localize therapeutic
formulations to pathological tissue wherever possible. For
example, in ocular neovascularization, therapeutic agents could
be delivered through intravitreal or subretinal injection
(Basavarajappa et al., 2017), or even as eyedrops if formulation
allows; this is a promising area for future work. Therapeutic
targeting specific to ECs could be included in drug delivery
Frontiers in Pharmacology | www.frontiersin.org 4
systems (Kawahara et al., 2013), since systemic deficiency in
heme synthesis enzymes can lead to porphyrias. For example,
erythropoietic protoporphyria is caused by toxic buildup of PPIX
(Gouya et al., 1999). The phototoxic PPIX can be detrimental to
cells, and is manipulated in photodynamic therapy (PDT)
(Krammer and Plaetzer, 2008). However, it is unlikely that
PPIX itself mediates anti-angiogenic effects, as ALA-PDT relies
heavily on uptake of ALA (Wachowska et al., 2011). Moreover, as
noted, hemin is able to rescue anti-angiogenic effects in ECs, even
in the presence of PPIX build-up, suggesting that this mechanism
is heme dependent and not due to PPIX toxicity.
CONCLUSIONS AND FUTURE
PROSPECTS

Targeting intracellular heme, either via inhibition of synthesis
through intermediary enzymes or blocking heme transport
(through FLVCR) provides for a novel therapeutic strategy,
one that is primed to be explored in detail in vascular biology.
Key questions that need to be addressed are: Is the role of heme
in angiogenesis limited to ETC and eNOS or do other heme-
containing proteins aid in anti-angiogenic effects? Which
enzymes in the heme synthesis pathway are the most
effectively targetable for treating pathological angiogenesis?
What are the key differences in microvascular and
macrovascular heme synthesis, and can we manipulate these
therapeutically? Proliferative ECs appear to be particularly
sensitive to heme loss, but is this sensitivity only relevant in
vascular tissues? Most importantly, we also need to elucidate the
contribution of heme and heme pathway intermediates in
maintaining normal endothelial cellular physiology, to devise
better strategies for future therapeutic interventions.
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