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Summary Modulation of tumour cell growth by tumour-infiltrating leucocytes is of high importance for the biological behaviour of malignant
neoplasms. In melanoma, tumour-associated macrophages (TAM) and tumour-infiltrating lymphocytes (TIL) are of particular interest as
inhibitors or enhancers of cell growth. Recruitment of leucocytes from the peripheral blood into the tumour site is mediated predominantly by
chemotaxins, particularly by the group of chemokines.

The aim of this study was to identify peptides released by human melanoma cells with monocyte chemotactic properties. To assure the
presence of biologically active mediators, biochemical purification and biological characterization of peptides was based on a detection
system dependent on bioactive, monocyte chemotactic activity in vitro. Cell culture supernatants of melanoma cells were fractioned by
heparin–sepharose followed by preparative reversed-phase HPLC steps to enrich monocyte chemotactic activity in one single band on a
sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gel. These purified fractions were shown to react with RANTES-
specific antibodies in an enzyme-linked immunosorbent assay (ELISA) as well as in Western blot analysis. Amino acid sequencing of the N-
terminal protein fragment confirmed 100% homology to the RANTES protein. Further analysis showed that four out of eight melanoma cell
lines constitutively expressed and secreted the β-chemokine RANTES as detected by ELISA. The amount of RANTES protein secreted (up
to 50 ng ml–1) was about 5–50 times higher than interleukin 8 (IL-8), determined in the same supernatant samples. Tumour necrosis factor α
(TNF-α), not, however, IL-2, interferon-γ (IFN-γ), or α-melanocyte-stimulating hormone (α-MSH) was able to up-regulate RANTES and
interleukin 8 secretion. Furthermore, higher levels of RANTES secretion in vitro were associated with increased tumour formation upon S.C.
injection of six human melanoma cell lines in nude mice. Our data provide evidence that a subset of melanoma cells express mRNA and
secrete RANTES protein which may be partly responsible for the recruitment of monocytes, T-cells and dendritic cells into the tumours.
However, transplantation experiments in nude  mice suggest that effects of RANTES may also benefit tumour progression. Further studies
are needed to dissect the underlying mechanisms.
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Tumour-infiltrating leucocytes play a key role in the growth char-
acteristics of malignant neoplasms. In a recent consensus confer-
ence discussing histopathology and prognostic factors in
malignant melanoma, the importance of the intratumoral infiltrate
containing cells of the monocyte/macrophage lineage for the
prognosis of this highly aggressive tumour has been particularly
emphasized (Barnhill, 1993). Tumour-associated macrophages
(TAM) are regularly found in primary lesions as well as in metas-
tasis of melanoma (Br�cker et al, 1988). Quantitative analysis
revealed that TAM are the most abundant leucocytes in melanoma
(Van Ravenswaay-Claasen et al, 1992). TAM are thought to
mediate primarily cytostatic/cytotoxic effects, but may also
enhance growth of melanoma cells (Te Velde and Figdor, 1991;
Schadendorf et al, 1993). Recruitment of monocytes/macrophages
into the tumour seems to be mediated by chemotactic factors
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generated by tumour cells themselves or, at later stages, also by
factors produced by infiltrating leucocytes. In recent years,
chemotaxins belonging to the group of chemokines have been
found to be profoundly involved not only in inflammatory
processes and artherosclerosis, but also in leucocyte recruitment
into tumours (Schall and Bacon, 1994). Chemotactic migration of
human monocytes has recently been demonstrated to be mediated
by β-chemokines such as monocyte chemotactic protein 1 (MCP-
1) or macrophage-inflammatory proteins (MIPs) (Uguccioni et al,
1995). Furthermore, melanoma cells have been shown to express
mRNA and to secrete MCP-1 protein (Graves et al, 1992).
Benomar et al (1987) reported that human melanoma cells with
high tumorigenic potential in a nude-mouse model secreted no or
low amounts of an unknown monocyte-chemotactic factor.
Culture supernatants from melanoma cells with low tumorigenic
capacity, however, contained large amounts of that unidentified
monocyte-chemotactic factor.

The aim of our study was to identify proteinaceous factors
secreted by human melanoma cells that could induce chemotactic
migration of highly purified, unstimulated monocytes. To assure
the presence of biologically active protein, the first step of our
experimental approach consisted of biochemical purification and
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biological characterization of peptides selected according to their
chemotactic activity for monocytes in vitro using a chemotaxis
bioassay.

MATERIALS AND METHODS

Establishment of melanoma cell lines from metastasis

Cell lines from human melanoma metastases from five different
patients with stage IV melanoma were established and further
cultured. Localization of primary tumours and of metastasis as
well as the type of primary melanomas and their tumour thickness
are shown in Table 1. All melanoma cell lines used in this study
have been thoroughly phenotypically characterized as recently
described (Schadendorf et al, 1996).

Briefly, metastases were taken directly after surgery, the
surrounding tissue was removed, the metastasis cut into small
pieces, and incubated in modified Eagle medium (MEM) (Bio
Concept, Umkirch, Germany) with collagenase/dispase (1%, w/v)
for 1 h at 37°C. Thereafter, the cells were minced through a nylon
mesh, washed, suspended in Ômelanoma mediumÕ [MEM supple-
mented with 10% fetal calf serum (FCS), 2 mM L-glutamine,
100 U mlÐ1 penicillin, 100 mM streptomycin and 0.08 IE mlÐ1

human insulin (Hoechst, Frankfurt, Germany)] and finally seeded
into a tissue culture flask. Melanoma cells were grown near
confluency in Ômelanoma mediumÕ. Cells used for experiments
were between passage 4 and 6.

Culture of melanoma cell lines from primary
melanomas

Established cell lines from primary melanomas (WM 115, WM
98-1, WM 1341) were kindly supplied by M Herlyn (The Wistar
Institute, Philadelphia, PA, USA) (Balaban et al, 1984; Herlyn
et al, 1985; Cornil et al, 1991). Cells were grown in Ômelanoma
mediumÕ near confluency for the experiments described.

Treatment of melanoma cell cultures

Melanoma cell cultures were treated by addition of the following
mediators or substances: phorbol-myristate acetate (PMA, 1 ng
mlÐ1; Sigma, Deisenhofen, Germany), human recombinant inter-
feron-γ (IFN-γ, 100 U mlÐ1; Rentschler, Laupheim, Germany),
human recombinant tumour necrosis factor α (TNF-α, 100 U mlÐ1;
PeproTech, Rocky Hill, USA), human recombinant interleukin 2
(IL-2, 10Ð8 M; PeproTech), α-melanocyte-stimulating hormone
British Journal of Cancer (1999) 79(7/8), 1025–1031

Table 1 Origin and clinical characteristics of melanoma cell lines investigated

Melanoma cell line Source of metastasis Gender Tumour type Tum

KI-MEL-7 Cutaneous Male NM
KI-MEL-13 Cutaneous Female NM
UKRV-MEL-2 Pleural effusion Female SSM
UKRV-MEL-3 Cutaneous Female NM
UKRV-MEL-4 Liver Female Ocular
WM 98-1 Primary melanoma n.k. SSM
WM 1341 Primary melanoma n.k. SSM
WM 115 Primary melanoma n.k. NM

NM, nodular melanoma; SSM, superficial spreading melanoma; n.k., not known.
(α-MSH, 10Ð8 M; Sigma), or Ômelanoma mediumÕ alone for 24 or
48 h. Thereafter, supernatants were harvested and stored in
aliquots at Ð80°C until further use. Cells were then washed and
subjected to mRNA isolation.

Biochemical characterization of monocyte chemotactic
peptides

Supernatants of unstimulated melanoma cell cultures were first
concentrated by ultrafiltration using an Amicon YM-3 membrane.
Thereafter, concentrated supernatants were passed over a heparinÐ
sepharose column. Fractions binding to the heparinÐsepharose
column were tested for monocyte chemotactic activity as follows:
heparin-binding proteins were eluted from the column using a
continuous gradient of sodium chloride, and the fractions tested for
monocyte chemotactic activity. Active fractions were pooled, and
further subjected to a preparative C8-reverse-phase high-perfor-
mance liquid chromatography HPLC column. Fractions were again
tested for monocyte chemotactic activity, active fractions were
pooled and thereafter analysed using the Smart-HPLC system
(Pharmacia) with a C18-reverse-phase column. Fractions with
monocyte chemotactic activity were than subjected to sodium
dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).

Western blot analysis

Fractions showing a single band on SDS-PAGE were subjected to
Western blot analysis and were transferred to nitrocellulose in a
semidry electrophoresis system (Pharmacia) at pH 8.3, using a Tris
(25 mM)/glycine (192 mM) buffer in aqueous methanol (30%, v/v).
After blotting, the filters were blocked with 1% (w/v) gelatin in
phosphate-buffered saline (PBS), followed by a 1-h incubation
with a specific murine monoclonal antibody against RANTES
(Sticherling et al, 1995). After twofold washing and incubation
with peroxidase-labelled secondary antibody and subsequent
washing, the bands were visualized by the use of an enhanced
chemiluminescence system kit (Boehringer Mannheim,
Mannheim, Germany).

Amino acid sequence determination

Amino acid sequence was determined by Edman degradation in an
Applied Biosystems 476 A pulsed liquid protein sequencer using
reversed-phase HPLC for phenylthiohydantoin-derivative detec-
tion. Cysteine residues were confirmed after filter reduction with
tributylphosphine and alkylation with 4-vinylpyridine.
© Cancer Research Campaign 1999

our thickness Localization of PT Reference
(mm)

5.0 Neck Schadendorf et al (1996)
7.0 Arm Schadendorf et al (1996)
1.8 Arm Artuc et al (1995)
2.4 Knee Artuc et al (1995)
– Eye Artuc et al (1995)

n.k. n.k. Herlyn et al (1985a)
n.k. n.k. Cornil et al (1991)
n.k. Right leg Herlyn et al (1985b)
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Determination of monocyte chemotactic activity using
a chemotaxis bioassay

Chemotactic activity for human monocytes in the chromato-
graphic fractions was determined using a chemotaxis bioassay as
recently described (Mrowietz and J�rgens, 1995). Briefly, highly
purified, unstimulated human monocytes were purified from the
peripheral blood of patients after minor cutaneous surgery or from
healthy donors, after obtaining informed consent, by Ficoll-paque
density centrifugation followed by counterflow centrifugation
elutriation (CCE). Viability of monocytes was controlled by
trypan-blue dye exclusion, purity was analysed by microscopic
evaluation of Giemsa-stained cytospin preparations.

Determination of chemotactic activity was performed using a
48-well chemotaxis chamber (Nuclepore, Bodenheim, Germany)
with a PVP-free polycarbonate membrane (pore size 5 µm;
Nuclepore). Migrated cells were quantified by densitometry. As a
positive control for chemotaxis, N-formyl-methionyl-leucyl-
phenylalanin (fMLP, 10Ð8 M, Sigma) was used in each assay.
Random migration of monocytes was controlled using phosphate-
buffered saline with 0.1% (w/v) bovine serum albumin, 0.5 mM

magnesium chloride and 0.9 mM calcium chloride.

Determination of RANTES- and IL-8-specific
immunoreactivity

Immunoreactivity for human RANTES and IL-8 was tested using
sandwich ELISAs, which use specific monoclonal antibodies as
described previously (Sticherling et al, 1995, 1989).

RNA extraction

Cell pellets from cultured melanoma cells were lysed in 1 ml
Trizol reagent (Gibco, Eggenstein, Germany) by vigorous pipet-
ting. Total RNA isolation was performed using a modified one-
step guanidinium thiocyanate method according to the
manufacturerÕs instructions. Extracted RNA was dissolved in
diethylpyrocarbonate (DEPC)-treated water. Integrity and amount
of RNA was checked by gel electrophoresis and spectrophoto-
metric analysis.

Northern blot analysis

Expression of specific mRNA for RANTES was first analysed
using a non-radioactive Northern blot technique as previously
described (Engler-Blum et al, 1993). Briefly, 10 µg of total RNA
was separated by electrophoresis using a 1.2% agarose formalde-
hyde gel, subsequently transferred to a positively charged nylon
membrane and cross-linked by UV light. Hybridization was
performed with a RANTES-specific cDNA probe (Pharmacia)
labelled with DIG-dUTP (Boehringer). For control, the stripped
membrane was rehybridized with mitochondrial 16S ribosomal
RNA (Boehringer). Specific binding of DIG-labelled probes was
determined by autoradiography of chemiluminescense using
Lumigen PPD (Boehringer) as substrate after linking with alka-
line-phosphatase-conjugated anti-DIG antibody (Boehringer).

cDNA synthesis

Five micrograms of total RNA were mixed with 0.5 µg
oligo(dT)18 primer (Pharmacia, Freiburg, Germany) in a total
© Cancer Research Campaign 1999
volume of 11 µl, incubated for 10 min at 70°C, and subsequently
cooled on ice. After equilibration of all reaction components to
42°C, 33.4 mU RNAguard and 0.5 mM dNTP (Pharmacia), 1×
first-strand buffer, 10 mM DTT and 200 U superscript II (Gibco)
were added to each sample, resulting in a final volume of 20 µl.
cDNA synthesis was performed for 50 min at 42°C, followed by
enzyme denaturation at 70°C for 15 min. Samples were directly
used for polymerage chain reaction (PCR) or stored at Ð20°C until
further processing.

PCR amplification

PCR was performed in tricine buffer using 1 µM of each specific
oligonucleotide primer, 0.2 mM dNTP, 1.25 U Taq-polymerase
(Gibco) and cDNA equivalent to 1.25 µg RNA in a final volume of
50 µl. To perform Ôhot startÕ PCR, primer and dNTP were adjusted
to 30 µl and overlayed with liquid wax (Chill out 14, Biozym, Hess.
Oldendorf, Germany) which solidified on ice. The other compo-
nents of the PCR mixture (20 µl) were added on top of the wax
barrier. PCR was started by transferring the samples from ice to the
preheated (95°C) thermocycler (Biometra, G�ttingen, Germany).

The following primer sequences were used: for GAPDH ampli-
fication, a sense (5′-GCT TGT CAT CAA TGG AAA TCC CAT
C-3′) and an antisense primer (5′-TGT TGA AGT CAG AGG
AGA CCA CCT G-3′) generating a 665-bp fragment was used
(Gl�ser et al, 1997). RANTES was amplified using the sense (5′-
CTG CTG CTT TGC CTA CAT TGC-3′) and the antisense primer
(5′-CGG GTT CAC GCC ATT CTC CTG 3′) leading to a 545-bp
amplificate (Schall et al, 1988; Sticherling et al, 1995).

Animals and in vivo transplantation

Male NMR/I: nu/nu mice (Bomholtgaard, Ry, Denmark) weighing
20Ð25 g were age- and weight-matched used. Mice were kept
under sterile conditions at 24Ð26°C room temperature, 50% rela-
tive humidity and 12-h lightÐdark rhythm in laminar flow shelves
and were supplied with autoclaved food (Sniff, Soest, Germany)
and bedding. The drinking water was filtered and acidified (pH
4.0). For transplantation, melanoma cells were harvested by
trypsinization (0.25% trypsin; Seromed, Berlin, Germany) from
cell culture flasks and were washed twice with PBS. Subsequently,
cells were injected S.C. (107 cells per mouse) into the right flank of
three animals. Mice were visited three times weekly, and growing
tumours were measured. Moribund mice or mice whose tumours
reached a diameter of 15 mm were killed by cervical dislocation.
Metastases were evaluated in all organs by careful macroscopical
inspection.

RESULTS

Biochemical characterization of monocyte-chemotactic
peptides in melanoma cell culture supernatants

The melanoma cell lines KI-MEL-7 and KI-MEL-13 were cultured
on a large scale until 5 l of culture supernatants were obtained.
Biochemical purification of fractions with monocyte-chemotactic
activity in vitro used, sequentially, heparinÐsepharose, C8-
reversed-phase and C18-reversed-phase HPLC, generating a
single band on SDS-PAGE.

In Figure 1, the chromatogram of a preparative RP-8 HPLC is
shown. In fractions 10Ð12, monocyte-chemotactic activity was
British Journal of Cancer (1999) 79(7/8), 1025–1031
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Figure 1 Profile of a RP-8 HPLC chromatogram of melanoma cell culture
supernatant eluted from a heparin–sepharose column. Monocyte-chemotactic
activity was detected in fractions 10–12 by chemotaxis bioassay (black area)

O
D

21
5 

nm

15 18

Fraction number

RP-8 HPLC
(Smart-System)

Figure 2 Purification of melanoma cell-derived monocyte attractant. Micro
RP-18-HPLC analysis of chemotactic fractions from RP-HPLC followed by
MonoS-cation-exchange HPLC is shown. In fractions 15–18 (black area),
strong chemotactic activity for monocytes was detectable
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Figure 3 Identification of RANTES as monocyte attractant. RANTES
Western blot analysis was performed with fraction 17 (lane 3), fraction 18
(lane 4), fraction 12 (lane 2) and 10 ng authentic RANTES (lane 1). Note the
presence of a single band in fractions 17 and 18 at the same position as
authentic RANTES
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Figure 4 Expression of RANTES mRNA in cell lines from human melanoma
metastasis (UKRV-MEL-2, -3, and -4, KI-MEL-7, and -13), as well as from
primary melanomas (WM 115, WM 98–1, and WM 1341) by Northern blot
analysis. (–), Without stimulation; (+), after stimulation with PMA (1 ng ml –1,
16 h)
detected by chemotaxis assay as well as immunoreactivity for
RANTES by ELISA. Further purification by the use of Mono S-
cation-exchange HPLC (not shown) followed by micro-RP-18
HPLC on the Smart-System revealed a single peak (fractions
15Ð18) of chemotactic activity for human monocytes (Figure 2).
Peak fractions revealed a single band at 8 kDa upon SDS gel
electrophoresis (not shown).

Determination of immunoreactivity

To test the identity of the monocyte-chemotactic protein, an
aliquot of each fraction obtained during the purification procedure
was analysed by an ELISA using RANTES-specific monoclonal
antibodies. The protein associated with the high monocyte-
chemotactic capacity in the chemotaxis bioassay showed strong
immunoreactivity by ELISA, implicating that the RANTES
protein was isolated and secreted by human melanoma cells. No
immunoreactivity was detected when the fraction was tested in an
IL-8-specific ELISA (data not shown).

Western blot analysis

The fraction showing monocyte chemotactic activity together with
positive immunoreactivity with the RANTES-specific antibody in
ELISA was further analysed by Western blot. A single immuno-
reactive band was detectable at 8 kDa for RANTES as control as
well as for the purified monocyte attractant, but not, however, for a
fraction lacking monocyte chemotactic activity (Figure 3).

Amino acid determination

To prove that RANTES protein was responsible for the observed
effects outlined above, amino acid sequencing was performed. The
analysis revealed the following N-terminal amino acid sequence:
serÐproÐtyrÐserÐserÐasmÐtyrÐtyrÐpro.

This sequence is identical to the amino acid sequence deduced
from cDNA of human RANTES (Schall et al, 1988).
British Journal of Cancer (1999) 79(7/8), 1025–1031
We can, therefore, conclude that the protein secreted from
human melanoma cells showing monocyte chemotactic activity as
well as immunoreactivity with a RANTES-specific antibody is
indeed identical to human RANTES.

Northern blot analysis

Next, we investigated whether human melanoma cell lines express
mRNA for RANTES using Northern blot analysis. As shown in
Figure 4, the melanoma cell lines KI-MEL-7, KI-MEL-13 and
UKRV-MEL-3 demonstrated constitutive expression of significant
levels of RANTES mRNA. Addition of PMA did not increase the
level of expression. WM 98-1 showed only a weak expression,
whereas the melanoma cell lines UKRV-MEL-2 and -4, WM 115
and WM 1341 were found to lack expression of RANTES-specific
© Cancer Research Campaign 1999
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Table 2 RANTES immunoreactivity (ng ml–1) of melanoma cell cultures with
or without PMA stimulation

PMA RANTES-IRa IL-8-IRa

KI-MEL-7 – 50 1.6
+ 40 1.6

KI-MEL-13 – 21.5 <0.1
+ 21.5 <0.1

UKRV-MEL-2 – <0.1 25
+ <0.1 25

UKRV-MEL-3 – 18 n.d.
+ 24.5 n.d.

UKRV-MEL-4 – <0.1 <0.1
+ <0.1 <0.1

WM 98-1 – 5.1 1.3
+ 3.9 1.8

WM 115 – <0.1 n.d.
+ <0.1 n.d.

WM 1341 – <0.1 0.4
+ <0.1 0.4

aRANTES/IL-8 immunoreactivity (ng ml–1; ELISA). +, With PMA stimulation
(1 ng ml–1, 16 h); –, without PMA stimulation. <0.1 = below the detection limit
of ELISA. n.d., not done.

Table 3 Secretion of RANTES and IL-8 protein from human melanoma cells
after stimulation with IFN-γ (100 U ml–1), TNF-α (100 U ml–1), IL-2 (10–8 M),
α-MSH (10–8 M) or medium alone for 24 or 48 h. Immunoreactivity for
RANTES and IL-8 was determined by specific ELISA. Mean of three
independent experiments

RANTES-IRa IL-8-IRa

24 h 48 h 24 h 48 h

KI-MEL-7
IFN-γ 117 240 33 44
TNF-α 200 480 35 84
IL-2 77 177 14 24
α-MSH 98 189 37 30
Medium 180 218 20 47

KI-MEL-13
IFN-γ 95 148 6.8 7.7
TNF-α 140 173 28.5 34
IL-2 57 107 4.9 9
α-MSH 67 107 4.7 7.8
Medium 72 142.5 4.5 7.2

UKRV-MEL-2
IFN-γ <0.1 <0.1 7 7.7
TNF-α <0.1 <0.1 28.5 34
IL-2 <0.1 <0.1 4.9 9
α-MSH <0.1 <0.1 4.7 7.8
Medium <0.1 <0.1 7.8 7.25

UKRV-MEL-4
IFN-γ <0.1 <0.1 3.4 5.5
TNF-α <0.1 <0.1 3 6.9
IL-2 <0.1 <0.1 5 4.6
α-MSH <0.1 <0.1 16.8 13.4
Medium <0.1 <0.1 1.5 2.6

aRANTES/IL-8 immunoreactivity (ng ml–1). <0.1 = below the detection limit of
ELISA.
mRNA.

Modulation of mRNA expression for RANTES as
determined by PCR

To investigate the influence of certain mediators on RANTES-
specific mRNA expression, KI-MEL-13 melanoma cells were
incubated with TNF-α, IL-2, IFN-γ, α-MSH or medium alone for
24 or 48 h. After incubation, mRNA was extracted, reverse tran-
scribed and expression of RANTES mRNA analysed by RT-PCR
as described in the Materials and methods section. No significant
effect of the mediators tested on RANTES mRNA expression was
detectable (data not shown).

Regulation of RANTES and IL-8 protein secretion

To test the inducibility of RANTES protein secretion, five of the
newly established cell lines derived from melanoma metastasis
and three long-term cell lines from primary melanomas (Table 1)
were subjected to PMA treatment (1 ng mlÐ1 for 16 h).
Supernatants were analysed for RANTES and IL-8 immunoreac-
tivity. The results are summarized in Table 2, indicating that four
out of eight melanoma cell lines (KI-MEL-7, KI-MEL-13, UKRV-
MEL-3 and WM 98-1 secreted constitutively RANTES protein.
Addition of PMA did not exert any effect on RANTES secretion.
The remaining cell lines did not express RANTES protein and
could not be induced to do so by addition of PMA. IL-8
immunoreactivity was detected in four out of six melanoma cell
lines tested. Only in the supernatants of two of the cell lines, KI-
MEL-7 and WM 98-1, was immunoreactivity for both RANTES
and IL-8 measured. In both cell lines, RANTES immunoreactivity
was found to be two- to 25-fold higher than IL-8.

In Table 3, RANTES as well as IL-8 secretion after stimulation
of melanoma cells with IFN-γ, TNF-α, IL-2, α-MSH, or medium
alone after 24 or 48 h is shown. Determination of immunoreactivity
for RANTES and IL-8 by specific ELISA revealed that only TNF-
α was able to up-regulate RANTES protein in KI-MEL-7 and -13
melanoma cells, but not however in the RANTES-negative cell
© Cancer Research Campaign 1999
lines UKRV-MEL-2 and -4. IL-8-immunoreactivity could be up-
regulated in three out of four melanoma cell lines. In UKRV-MEL-
4 cells, IL-8 immunoreactivity was up-regulated by α-MSH.
Stimulation of the cell lines investigated for 48 h led to a more
pronounced secretion of RANTES and IL-8 immunoreactivity
compared with the incubation for 24 h.

Correlation of RANTES secretion and growth in nude
mice

Human melanoma cell lines administered at a fixed cell number
into the right flank of mice varied significantly in their growth
kinetics (Table 4). KI-MEL-7 and KI-MEL-13 produced massive
cutaneous tumours in all mice in a short period (mean 34 days)
after injection. Both cell lines are characterized by higher levels of
RANTES secreted into culture medium in vitro. Injection of WM
98.1 cells that released medium/low concentrations of RANTES
(5.1 ng mlÐ1) in vitro generated reproducible small cutaneous
tumours in all animals in 40 days, however no distant metastases
were detectable. Cell lines WM1341, UKRV-MEL-2 and UKRV-
MEL-4, which did not secrete RANTES, generated very small
cutaneous tumours. These tumours, however, stopped growing and
mice were still alive after 100 days and metastases could not be
found in any organ.
British Journal of Cancer (1999) 79(7/8), 1025–1031
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Table 4 Tumour growth characteristics and development of metastases
after s.c. administration of 107 cells into the flank. Three mice were injected in
each group. RANTES secretion was determined by ELISA in cell culture
supernatant of 106 cells for 24 h. Mean of three experiments

RANTES Tumour take and metastases
(ng ml –1)

KI-MEL-7 50.0 Massive cutaneous tumours (3/3) and no
metastases after 34 days

KI-MEL-13 21.5 Massive cutaneous tumours (3/3) after 34 
days and liver metastases with ascites (1/3) 
after 100 days

WM 98.1 5.1 3/3 cutaneous tumours, mice alive, no 
metastases

UKRV-MEL-2 <1.0 3/3 small cutaneous tumours, mice alive 
after 100 days; no metastases

UKRV-MEL-4 <1.0 2/3 small cutaneous tumours, mice alive after 
100 days; no metastases

WM 1341 <1.0 3/3 small cutaneous tumours, mice alive after 
100 days; no metastases
DISCUSSION

Melanoma is a highly malignant tumour derived from
melanocytes, with a steadily growing incidence worldwide (Rigel
et al, 1996; Rivers, 1996). The tumour tends to develop early
metastases mainly via the blood and the lymphatics and is then
associated with a poor prognosis. Because results obtained by
conventional chemotherapy are highly unsatisfactory and have
only palliative effects, in recent years therapeutic attempts have
been made to use immunostimulating compounds such as inter-
leukin 2 or interferons for treatment of metastatic melanoma
(Ferrone, 1994). Immunostimulating therapeutic approaches are
primarily based on the migration to or the presence of leucocytes
within the tumour tissue. Tumour-associated macrophages (TAM)
can regularly be found in primary melanoma and melanoma
metastasis and are, quantitatively, the dominating leucocyte type
(Br�cker et al, 1988; Van Ravenswaay-Claasen et al, 1992).

Analogous to inflammatory processes, the recruitment of mono-
cytes from the peripheral blood into tumours such as melanomas is
thought to be mediated mainly by chemotaxins. After recruitment,
monocytes may differentiate into macrophages or dendritic cells,
depending on microenvironmental factors (Ibrahim et al, 1995).

In this study, we aimed at the identification and characterization
of monocyte-chemotactic factors secreted by human melanoma
cells. For this purpose, five cell lines derived from human
melanoma metastasis were freshly established and thoroughly
characterized and compared with three established cell lines
derived from primary melanomas. Monocyte chemotactic activity
could be demonstrated in cell culture supernatants of human
melanoma cells and was further subjected to a fractionated
biochemical purification scheme and subsequent biological char-
acterization.

The results of our study demonstrated that the β-chemokine
RANTES was present in large amounts in pooled culture 
supernatants of melanoma cells, as finally proven by amino 
acid sequence analysis. In comparison with the secretion of 
the α-chemokine IL-8, RANTES secretion was up to 50-times
higher.
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Further analysis demonstrated RANTES expression and secre-
tion in four out of eight lines tested without stimulation. IL-8
immunoreactivity could be detected in the supernatants of four out
of six melanoma cell lines investigated, which is in accordance
with previous findings (Schadendorf et al, 1993). In three out of
four melanoma cell lines, only TNF-α was able to up-regulate IL-
8 secretion in a time-dependent fashion. These data are in accor-
dance with a recent publication showing increased IL-8 mRNA
expression and protein secretion in melanoma cells by IL-1β and
TNF-α (Singh and Varney, 1998).

Chemokines represent a novel group of proteins with structural
similarities and chemotactic activity for certain leucocytic target
cells. For monocytes, β-chemokines (CÐC chemokines) were
shown to be highly potent inducers of chemotactic migration. It
has been demonstrated previously by in situ hybridization and
immunostaining that melanoma cells are capable of expressing
MCP-1 mRNA and a protein which is a prominent β-chemokine
(Graves et al, 1992). In a further PCR-screening study, expression
of RANTES mRNA was detected in 18 out of 21 melanoma cell
cultures, however five human melanocyte cultures were negative
(Mattil et al, 1994).

Until recently, chemotactic factors secreted from melanoma
cells had not been identified. A supposedly proteinaceous factor
with monocyte-chemotactic activity released from human
melanoma cells has, however, been described in 1983 by Bottazzi
et al (Bottazzi et al, 1983). Secretion of RANTES by the A375
melanoma cell line after lymphotoxin β cross-linking has been
recently reported (Degli-Esposti et al, 1997).

The expression and secretion of RANTES by patient-derived
melanoma cells and its modulation, as shown in the present
study, has not been demonstrated so far. In addition, we have
analysed six human melanoma cell lines for their growth kinetics
in a nude mouse model after s.c. injection of a fixed number of
tumour cells. Cutaneous tumour formation and capacity to develop
distant metastases seemed to correlate well with the levels of
RANTES released in vitro, but not however with IL-8 secretion.
These results point towards distinct differences in both
chemokines with regard to the metastatic potential (triggered by
RANTES) and growth characteristics (triggered by IL-8) of
melanoma cells. In contrast, Benomar et al 1987) reported the
correlation of low tumorigenic potential in a nude mouse model
and the high expression of an unknown monocyte chemotactic
factor released from melanoma cells. Because a large number of
chemokines have been identified so far, further studies are needed
to elucidate the role of these different compounds as well as the
underlying mechanisms.

RANTES does not specifically attract monocytes, but also
attracts T-cells of the memory subset (Schall et al, 1990). In addi-
tion, Sozzani et al (1995) showed that monocyte-derived dendritic
cells respond chemotactically to RANTES, but not however to
MCP-1. The detection of RANTES protein in melanoma cell
supernatants may, therefore, be of importance for the recruitment
not only of monocytes but also of T-cells and dendritic cells into
the tumour tissue. The use of nude mice, however, is not a suitable
model to study the influence of T-cells and exact immunological
interactions.

Taken together, our data show that a subset of human melanoma
cells are constitutively capable of expressing mRNA and secreting
protein of the β-chemokine RANTES. Compared with other
chemokines such as IL-8, the amount of RANTES secretion is
© Cancer Research Campaign 1999
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high. In melanoma cells expressing RANTES mRNA, this
chemokine represents the major monocyte-chemotactic activity
present in culture supernatants. RANTES may, therefore, be a
possible candidate for attracting monocytes from the peripheral
blood into the tumour tissue. However, other factors such as newly
identified members of the still growing family of chemokines
need also to be considered. The growth advantage of RANTES-
secreting cell lines might be a first hint in that direction. Further
investigations related to the exact role of RANTES in vivo and its
influence on the tumorigenicity of melanoma cells in nude mice
are needed.
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