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Identification of gut microbiome features
associated with host metabolic health in a
large population-based cohort

Ayya Keshet 1,2 & Eran Segal 1,2

The complex relationship between the gut microbiome and host metabolic
health has been an emerging research area. Several recent studies have high-
lighted the potential effects of the microbiome’s diversity, composition and
metabolic production capabilities on Body Mass Index (BMI), liver health,
glucose homeostasis and Type-2 Diabetes (T2D). Themajority of these studies
were constrained by relatively small cohorts, mostly focusing on individuals
with metabolic disorders, limiting a comprehensive understanding of the
microbiome’s role in metabolic health. Leveraging a large-scale, comprehen-
sive cohort of nearly 9000 individuals, measured using Continuous Glucose
Monitoring (CGM), Dual-energy X-ray absorptiometry (DXA) scan and liver
Ultrasound (US) we examined the functional profile of the gut microbiome,
and its relation to 38 metabolic health measures. We identified 145 unique
bacterial pathways significantly correlated with metabolic health measures,
with 86.9% of these showing significant associations with more than one
metabolic healthmeasure. Furthermore, 87,678 unique bacterial gene families
were found to be significantly associated with at least one metabolic health
measure. Notably, “key” bacterial pathways such as purine ribonucleosides
degradation and anaerobic energy metabolism demonstrated multiple robust
associations across various metabolic health measures, highlighting their
potential roles in regulatingmetabolic processes. Our results remained largely
unchanged after adjustments for nutritional habits and for BMI they were
replicated in a geographically independent cohort. These insights pave the
way for future research and potentially the development of microbiome-
targeted interventions to enhance metabolic health.

The human gutmicrobiome, identified as a key aspect in host health,
has been linked with various conditions including inflammatory
bowel disease1, cancer2, and cardiovascular health3. Its emerging
connection with metabolic health, however, is drawing particular
attention for its potential to unravel the complexities of several
metabolic disorders. In recent years, the significance of its con-
tribution to host metabolic health is increasingly recognized;

changes in gut microbiome diversity, and the abundance of specific
species were shown to associate and be used to identify T2D4; gut
microbiome species were linked to the biosynthesis of branched-
chain amino acids (BCAAs), which are elevated in individuals with
insulin resistance5; studies utilizing technological and computa-
tional advances devised metagenome-wide association studies
revealing functional shifts in bacterial genes in individuals with T2D6,
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and associations between single-nucleotide-polymorphisms (SNPs)
in the gut microbiome and host BMI7.

Alongside research discoveries, the characterization of metabolic
health is constantly expanding with the use of diverse tools. Con-
tinuous glucose monitoring (CGM) devices8 which continuously mea-
sure interstitial glucose levels enable a comprehensive understanding
of an individual’s glucose homeostasis, fluctuations over time and
potential disruptions in glucose metabolism. Dual-energy X-ray
absorptiometry (DXA) scans are used as simple noninvasive methods
to accurately measure body composition factors such as visceral fat
and abdominal fat9. Liver US is used to assess liver fibrosis and the
progression of non-alcoholic fatty liver disease (NAFLD)10. Use of these
tools to characterize and investigatemetabolic health revealed further
connections between gut microbiome and metabolic health. A study
integrating CGM and gut microbiome showed that glycemic response
to identical meals is highly variable among healthy individuals, and
that gut microbiome improves prediction of glycemic response to
meals11. A recent study found positive associations between species
from the Firmicutes and Proteobacteria phylums and mean glucose as
measured by CGM12. Researchers recently showed that the gut
microbiome is crucial for hepatic gluconeogenesis, pointing to specific
changes in amino acids that are important for controlling blood sugar
levels13, and that gut microbiome composition of individuals with
NAFLD differs from that of healthy controls14. Several studies have
shown that the gut microbiome alpha-diversity is decreased in indivi-
dualswith overweight, with increased levels of the Firmicutesphylum15,
which was also shown to associate with differences in visceral adipose
tissue (VAT) volume16.

Despite the significant strides made in understanding the gut
microbiome’s influence on metabolic health, our knowledge remains
fragmented. While studies have highlighted associations between the
microbiome and metabolic factors such as glucose homeostasis and
obesity17, a comprehensive understanding of the functional mechan-
isms by which the microbiome influences these processes is still
evolving. Recent research has begun to shed light on the metabolic

pathways influenced by the gut microbiome, revealing potential links
to energy metabolism, inflammation, and insulin sensitivity. Several
studies have established the relation between gut microbiome com-
position and diversity to short-chain fatty acids (SCFAs) production,
which in turn regulates several metabolic pathways, is involved in
obesity, insulin resistance and T2D18. Gut microbiome dysbiosis has
also been linked to alterations in bile acid (BA) metabolism, which is
crucial for liver health19. In addition, research has identified gut bac-
teria associated with insulin resistance and insulin sensitivity, and
demonstrated that these bacteria improve host insulin resistance in
mouse models20. Recent research has increasingly focused on the
functional aspects of the gut microbiome. A study demonstrated that
adherence to a Mediterranean-style diet is linked with specific func-
tional components of the gut microbiome, potentially mediating its
protective effect against cardiometabolic diseases21. A more recent
study found an elevated abundance of functions related to bacterial
cellular metabolism, particularly favoring glycolysis, in patients with
type 2 diabetes22.

While previous studies, some conducted in well-phenotyped
cohorts, and investigatedboth the composition and functional aspects
of the gut microbiome21,22, provided valuable insights, we are still far
from understanding the role of the gut microbiome in host metabolic
health. Previous research shows that large cohort sizes are crucial for
accurately capturing associations between the microbiome and host
phenotypes23. Expanding research to large, predominantly healthy
populations can enhance the generalizability of findings and con-
tribute to a more comprehensive understanding of the microbiome’s
role in metabolic health. In this study, we aim to bridge some of these
gaps by leveraging a unique cohort collected as part of the Human
Phenotype Project (HPP)—a large scale, prospective, longitudinal
study24, with 8859 non-diabetic adults aged 40–70, measured through
CGM, DXA scan, liver US and gut microbiome metagenomic sequen-
cing. We analyzed the functional profile of the gut microbiome, as the
relative abundance of bacterial gene families and pathways obtained
using HUMAnN25, and their associations with 38 metabolic health
measures. Associations were studied in a framework similar to that of
genome-wide association studies (GWAS) with adaptations to meta-
genomic data, uncovering bacterial gene families and pathways in the
gut microbiome potentially involved in host glucose homeostasis and
metabolic health.

Results
Study population and design
A total of 8859 participants from the HPP24 who were measured with
CGM, DXA scan, liver US and gut microbiome metagenomic sequen-
cing were analyzed—4778 (53.9%) women and 4081 (46.1%) men, with
an average age of 51.8 (7.8) years and average BMI of 26.0 (4.1) (kg/m2).
Thirty-eight metabolic health measures were defined as the outcomes
of interest (see “Metabolic health measures” in Methods). Table 1
summarizes the main characteristics of the participants, with select
CGM-derived measures (see Table S1 for the complete characteristics
with all CGM measures, and “Study population” in Methods for the
complete description of the HPP).

Gut microbiome metagenomic sequencing data was functionally
profiled with HUMAnN25 and MetaPhlAn26 to obtain bacterial gene
families and pathways abundances (see “Microbiome sample collec-
tion andprocessing” and “Metagenomic readsmapping and functional
profiling” in Methods). The 38 metabolic measures of interest were
divided into 10 categories: Body composition including BMI and
measures from DXA scan, Liver US, and 8 categories of CGM-derived
measures (see “Metabolic health measures” in Methods).

Associations between each bacterial gene family and bacterial
pathway, with each metabolic health measure were assessed using
linear regression models, adjusted for age and sex, in a similar way to
genome-wide association studies (GWAS). Associations were

Table 1 | Baseline characteristics of the study population

Characteristic, mean
(STD) or counts %

Male
n = 4081
(46.1%)

Female
n = 4778
(53.9%)

All
n = 8859

Age 51.2 (7.8) 52.3 (7.8) 51.8 (7.8)

Body composition

BMI (kg/m2) 26.5 (3.8) 25.6 (4.4) 26.0 (4.1)

Total fat mass (g) 22,958.3
(7992.0)

25,744.5
(8479.0)

24,436.9
(8369.8)

Scanned VAT mass (g) 1180.5 (729.6) 637.6 (452.4) 892.5 (657.2)

Android tissue fat (%) 0.3 (0.1) 0.4 (0.1) 0.4 (0.1)

Liver ultrasound

Liver sound speed (m/s) 1548.5 (27.8) 1540.7 (27.5) 1544.4 (27.9)

Liver viscosity (Pa.s) 1.7 (0.2) 1.7 (0.3) 1.7 (0.3)

Liver elasticity (kPa) 5.4 (1.0) 4.6 (0.9) 5.0 (1.0)

Liver attenuation (dB/
cm/MHz)

0.4 (0.1) 0.4 (0.1) 0.4 (0.1)

Select CGM-derived measures

eA1C 5.0 (0.4) 4.9 (0.4) 5.0 (0.4)

SD 15.3 (4.5) 15.1 (4.1) 15.2 (4.3)

HBGI 0.2 (0.7) 0.1 (0.3) 0.2 (0.5)

LBGI 2.2 (1.9) 2.5 (1.9) 2.4 (1.9)

MAGE 37.8 (11.9) 37.6 (10.8) 37.7 (11.3)

MODD 13.3 (4.1) 12.7 (3.5) 13.0 (3.8)

BMI body mass index, VAT visceral adipose tissue, eA1C estimated A1C, SD standard deviation,
HBGI high blood glucose index, LBGI low blood glucose index,MAGE mean amplitude of gly-
cemic excursions, MODDmean of daily differences.
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considered significant if found to have a Bonferroni-corrected p-
value < 0.05 (see “Bacterial gene families/pathways—metabolic mea-
sures associations” in Methods). Overview of the study design is illu-
strated in Fig. 1.

Bacterial gene families and pathways associate with metabolic
health measures
Overall, 565,398 unique bacterial gene families and 346 unique bac-
terial pathways were associated with 38 metabolic health measures.
We found 87,678 (15.5%) unique bacterial gene families significantly
associated with metabolic health measures in 284,759 different cor-
relations, and 145 (41.9%) unique bacterial pathways significantly
associated with metabolic health measures in 862 different correla-
tions. Most significant associations were negative—both for the bac-
terial gene families (239,077 (83.96%)) and the bacterial pathways (621
(72.0%)). From the 145 bacterial pathways that were significantly
associated with at least one metabolic health measure, most pathways
(126 (86.9%)) were significantly associatedwith two ormoremetabolic
health measures. Similarly from the 87,678 bacterial gene families, the
majority of the bacterial gene families (64,199 (73.22%)) were asso-
ciated with two or more metabolic health measures.

The body composition category showed the highest numbers of
significant associations, both to bacterial gene families and bacterial
pathways (Fig. 2). 21,871 unique bacterial gene families and 14 unique
bacterial pathways were significantly correlated with at least one
metabolic health measure from this category, and showed no sig-
nificant associations with any measures from other categories. Most
bacterial gene families and pathways were correlated with more than
one measure in this category, yet some unique associations were
found. Android fat tissue (%), the measure with the highest number of
bacterial gene families associations, had 12,093 bacterial gene families
uniquely associated solely with it and no other metabolic health
measure that was tested. BMI had the highest number of bacterial
pathways associated with it, and 10 bacterial pathways were uniquely
correlated solely with it. Allmeasures in this category showed a similar
pattern, with the majority of association, both for bacterial gene
families and bacterial pathways, being negative associations.

Diverse association patterns were observed across other cate-
gories. Liver viscosity and liver elasticity10 showed no significant
associations with any bacterial gene family or pathway. Liver sound
speed demonstrated predominantly positive significant associations
with both bacterial gene families and bacterial pathways. In contrast,
liver attenuation, which describes the reduction in ultrasound beam
intensity as it traverses the liver and has been linked to clinical liver
state indicators27, exhibited almost only negative significant associa-
tions with bacterial gene families and bacterial pathways.

CGM-derived measures showed variable association patterns.
Measures of short-term variability; SD within series (SDwsh)28, Stan-
dard Deviation of the Rate of Change (SD.Roc)29 and Mean Absolute
Glucose (MAG)30, were associatedwith a high number of bacterial gene
families and pathways compared to other categories of CGM-derived
measures (Fig. 2). Similar to body composition most associations with
these short-term variability measures were negative. Measures of
hyperglycemia—% above 180, HBGI31 and Hyper index32—showed the
lowest numbers of significant associations with bacterial gene families
and pathways. eA1C33 and GMI34, both transformations of the mean-
glucosemeasured fromCGM, showed similar associationpatterns, and
were found to be significantly associated with 3396 bacterial gene
families and 14 pathways.

Short-term variability, between-day variability, and within-day
variability measures from CGM showed similar association patterns
within their category, in terms of the number of significant associa-
tions and the correlation direction. Overall variability measures
showed a differing pattern where, for example, the IQR (interquartile
range) was significantly associated with 2967 bacterial gene families
and 6 pathways, while the CV (coefficient of variation) was only sig-
nificantly associated with 25 bacterial gene families and 3 path-
ways (Fig. 2).

Despite most associations across body composition, Liver US and
CGM-derived measures in the different categories being negative, for
measures of hypoglycemia—% below 70, LBGI31 and Hypo index32—

most associations to bacterial gene familieswerepositive, aswell as for
ADRR35 and IGC32 (Fig. 2). The Average Daily Risk Range (ADRR) is
calculated to quantify the daily glucose variability and risk, integrating
both hypoglycemic and hyperglycemic excursions into a singlemetric
that reflects overall glycemic risk. It is derived by averaging the daily
risk scores, which assess the likelihood and severity of glucose devia-
tions from the normal range. The Index of Glycemic Control (IGC)
provides a composite measure that combines average glucose levels,
variability, and episodes of hyper- and hypoglycemia, giving a holistic
view of glucose control efficacy and stability.

To address high correlations between bacterial gene families, and
identify independent bacterial gene families associated with the
examined metabolic health measures, two approaches were imple-
mented. Upfront gene filtering was employed prior to the association
analysis to obtain uncorrelated representative gene families (see
“Upfront gene filtering” in Methods), resulting in 55,925 pre-filtered
bacterial gene families thatwere then associatedwithmetabolic health
measures. Clumping, commonly used in GWAS analyses (see “Gene
clumping” in Methods), was employed post association analysis, to
each metabolic health measure individually, to obtain a subset of
independent associations. Both approaches resulted in similar

Fig. 1 | Study overview. Illustration of the study design.
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numbers of significant uncorrelated bacterial gene families associated
with metabolic health measures (Figs. S1 and S2). In both, Android fat
tissue (%) was the measure with the highest number of independent
bacterial gene families associations (1342 from clumping, 2217 from
pre-filtering), followed by Scanned visceral adipose tissue (VAT) mass
(1317 from clumping, 2013 from pre-filtering) (Figs. S1 and S2). While
measures of short-term CGM variability, had hundreds or tens of

independent associations with bacterial gene families, for example
SD.wsh (148 from clumping, 140 from pre-filtering) and SD.Roc (87
from clumping, 78 from pre-filtering), measures of overall variability,
within-day variability, and between-day variability were found to have
only several to tens of independent associations. The IQR and MAD
were associatedwith 2967 and 1231 bacterial gene families accordingly.
Clumping identified only 14 and 11 independent clumps of bacterial
gene families (Fig. S1), and pre-filtering identified 45 and 18 uncorre-
lated bacterial gene families (Fig. S2).

“Key” associated bacterial gene families and pathways
Aiming to narrow our focus and pinpoint crucial bacterial gene families
and pathways, we devised a methodology to select “key” bacterial gene
families and pathways—prioritizing entities based on their significance
across multiple metabolic health measures and the robustness of their
associations, defined by their Bonferroni-corrected p-values (see
“Selecting “key” associated bacterial gene families and pathways” in
Methods). 5 bacterial pathways and 5 independent bacterial gene families
were selected as “key” entities, for each group of metabolic health
measures: Body composition, Liver US and all CGM-derived measures.
This process results in 11 unique bacterial pathways and 15 unique bac-
terial gene families that were chosen as “key” entities. Figure 3 displays a
heatmap of the correlations of these “key” entities with the metabolic
healthmeasures. Tables S2 and S3 show for each “key” bacterial pathway
and gene family the metabolic health groups it was chosen for.

The 11 “key” pathways clustered to 3 groups, with distinct corre-
lation patterns to the tested metabolic health measures (Fig. 3A,
Table S2). Cluster I, showing strong positive correlations to most
metabolic health measures, with negative correlations to hypoglyce-
miameasures derived fromCGM, included 2 pathwayswith roles in the
biosynthesis of amino acids; superpathway of L-aspartate and
L-asparagine biosynthesis (ASPASN-PWY) and L-methionine biosynth-
esis IV (PWY-7977). High ratio of asparagine to aspartate was shown to
be associated with an increased risk for T2D36, and aspartate was sig-
nificantly associated with decreased insulin secretion, elevation of
fasting glucose levels and increased risk of T2D37. Methionine meta-
bolismhave beenpreviously linked tometabolic syndromeand related
diseases, and elevated serum S-adenosylmethionine (SAM) was found
in individuals with NAFLD38. In addition, Methionine levels have been
found to significantly associate with Matsuda insulin sensitivity index
in a long-term follow-up study of ~5000 Finnish men37. The third
pathway in this cluster was PWY0-1586, responsible for peptidoglycan
maturation.

Pathways in cluster II and III showed an opposite correlation
pattern to Cluster I with negative correlations with body composition
and most CGM-derived, Liver US measures, and positive correlations
with hypoglycemia measures. Cluster III showed stronger correlation,
with higher correlation coefficients compared to Cluster II. Cluster II
includes NAD salvage pathway II (PNC IV cycle) (PWY-7761) and purine
ribonucleosides degradation (PWY0-1296). NAD+ metabolism plays a
key role in insulin sensitivity and is, at times, disrupted by obesity and
age39,40. Elevating NAD+ levels, using nicotinamide mononucleotide
(NMN), a key NAD+ intermediate, was shown to correct metabolic
disturbances and ameliorate glucose intolerance and insulin resistance
in T2Dmice41. Purine dysregulation has been tied to several metabolic
diseases, including gout and metabolic syndrome42, which are often

Fig. 2 | Numberof significantly associatedbacterial gene families andpathways
with metabolic health measures. Heatmap showing the number of positive and
negative significant associations between each metabolic health measure and
bacterial gene families and pathways. Associations were obtained using two-sided
linear regression adjusted for age and sex, and corrected for multiple comparisons
using the Bonferroni method. Associations with Bonferroni-corrected p-value <
0.05 were considered significant. Colored bar on the right shows the category
assigned for each metabolic health measure.
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accompanied by insulin resistance. The purine degradation pathway
was shown to be enriched in the gut microbiome of individuals with
obesity in a study of a small Korean population43. The two additional
pathways in this cluster—gluconeogenesis III and anaerobic energy

metabolism (invertebrates, cytosol)—have known, critical roles in
energy and glucose metabolism, yet to the best of our knowledge, no
current evidence connect them directly to any of the examined host
metabolic health measures.

Fig. 3 | Heatmap of “key” bacterial pathways and gene families. Heatmaps
showing the correlation coefficient of the A 11 “key” bacterial pathways and B 15
“key” clumped bacterial gene families with the highest number of significantly
associated metabolic health measures and lowest p-value ranking across groups

(see “Selecting “key” associated bacterial gene families and pathways” in Methods).
Associations were performed using two-sided linear regression adjusted for age
and sex. Multiple comparisons were corrected using the Bonferroni method, and
associations with Bonferroni-corrected p-value < 0.05 were considered significant.
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Cluster III, with the same correlation pattern as Cluster II yet
with stronger associations, included PWY-6609: adenine and ade-
nosine salvage III. This pathway is part of the purine salvage pathway,
which recycles adenine and adenosine. The adenosine system has
been highlighted for its critical role in regulation of insulin and glu-
cose homeostasis in individuals with T2D, and its receptor system
was associated with development or progression of diabetes melli-
tus, with specific focus on T2D44. Another pathway in this cluster is
PWY-3841: folate transformations II. Folate depletion has been pre-
viously reported to potentially cause oxidative stress in the liver,
leading to the development of NAFLD45. Folate deficiency has also
been tied to obesity, and lower levels of folate have been observed in
individuals with obesity46. The two remaining pathways in Cluster III
are TRNA-CHARGING-PWY: tRNA Charging, a pathway essential for
protein synthesis, enabling the attachment of amino acids to their
corresponding tRNA molecules, and PWY-7953: UDP-N-
acetylmuramoyl-pentapeptide biosynthesis III, a pathway involved
in the synthesis of bacterial cell wall peptidoglycan, which is crucial
for bacterial growth and survival.

“Key” clumped bacterial gene families showed two correlation
patterns, similar to those observed in the “key” bacterial pathways
(Fig. 3B). “Key”bacterial gene familieswere annotated using theUniRef
database47. Cluster I, showing mostly positive correlations with meta-
bolic health measures, included 2 bacterial gene families, chosen by
their associations with the metabolic health measures in the Liver US
group (Table S3), both uncharacterizedproteins. Cluster III, containing
a single bacterial gene family—FAD-dependent oxidoreductase,
showed an opposite correlation pattern to Cluster I, with this bacterial
gene family associating negatively with almost all metabolic health
measures. Cluster II of the “key” bacterial gene families includes sev-
eral protein families involved in energy metabolism, such as ATPase
BadF/BadG/BcrA/BcrD Type Domain-Containing protein, AAA+
ATPase domain-containing protein and Phosphate/phosphite/phos-
phonate ABC transporters and periplasmic binding protein. “Key” pre-
filtered bacterial gene families showed slightly stronger associations to
metabolic health measures than those of the “key” clumped gene
families (Figs. 3B and S3), with a single correlation pattern of mostly
negative correlations and positive correlations only to hypoglycemia
measures derived from CGM (Fig. S3). Cluster II encompasses a broad
spectrum of gene families (Table S4), including those with recognized
enzymatic roles in metabolism such as Pyridoxamine 5’-phosphate
oxidase family protein48 and Aminotransferase, which previous
research highlighted as potentially involved in the pathogenesis of
metabolic syndrome49. Several of the “key” bacterial gene families in
the clumping analysis and pre-filtering analysis were uncharacterized
proteins sourced from the species Faecalibacterium prausnitzii
(Figs. 3B and S3); one of the most abundant bacterial species in the
colon of healthy humans. Changes in Faecalibacterium prausnitzii
abundances were related to various intestinal and metabolic
diseases50.

Community-level contributions to bacterial pathways
The “key” bacterial pathways identified in the previous analysis
represent specific functionalities associated with metabolic health
measures. These functionalities could result from two different bio-
logical scenarios: (1) a community-level functionality where multiple
microbial species or genera contribute to an overall functional capa-
city, or (2) a scenario where a single microbial species or genus pre-
dominantly encodes the functionality. To distinguish between these
possibilities, we utilized the HUMAnN generated abundance con-
tributions from specific organisms25 to the abundance of bacterial
pathways. For each bacterial pathway, we identified the contributing
genera and species (see “Metagenomic reads mapping and functional
profiling” in Methods) and examined the distribution of their con-
tributions in terms of RPKs.

Of the 346 bacterial pathways associated with metabolic health
measures, 74 (21.4%) were attributed to unclassified bacteria, while the
majority, 272 (78.6%), were linked to known bacterial species and
genera. The number of contributing genera and species varied across
bacterial pathways (Fig. S4), with an average of 13.02 (±20.03) species
and 7.4 (±10.05) genera contributing to the abundance of each bac-
terial pathway. Notably, most pathways (231 (66.8%)) had their abun-
dances contributed by multiple species.

The “key” bacterial pathways in Cluster I exhibited a diverse
contribution from multiple genera, with 10–24 genera, and
22–53 species contributing to each bacterial pathway’s abundance
(Figs. S5 and S6). This suggests a community-level functionality where
several genera and species are collectively responsible for the meta-
bolic functions associatedwith thesepathways. Similarly, thepathways
in Cluster III also showed contributions from a wide range of genera
and species,with 16–33 genera and40–65 species contributing to each
pathway’s abundance (Figs. S9 and S10). This pattern further supports
the concept of community-level functionality for these “key” bacterial
pathways. In contrast, the “key” bacterial pathways in Cluster II were
predominantly associated with unclassified bacteria (Figs. S7 and S8),
meaning we currently lack sufficient taxonomic resolution to attribute
these functions to specific known genera or species. As a result, it
remains unclear whether these pathways are driven by a single
microbial taxon or reflect a broader community-level functionality.
Only one pathway in this cluster, PWY0-1296, had contributions from
19 recognized genera and 23 recognized species (Figs. S7 and S8).

The variable distributions of the number of contributing genera
and species, and the diversity of genera and species contributing to the
“key” pathways suggests that these likely represent community-level
functionalities associated withmetabolic healthmeasures. In addition,
the presence of unclassified contributions for some pathways high-
lights the importance of analyzing gut microbiome data at the func-
tional level, as there are still under-characterized taxonomic groups
that could lead to a loss of valuable information.

Sensitivity analysis—nutritional habits from real-time food
intake logging
Nutritional habits potentially affect host metabolic health measures
suchas body composition, glucosecontrol, asmeasuredbyCGM51, and
gut microbiome composition and function52. To address this, we
integrated information from real-time food intake logging, reported
by participants during their CGM connection, and repeated all asso-
ciation analyses adjusting for 5 additional nutritional summaries;
Healthy Food Diversity (HFD) Index53, median total caloric intake, and
median amount of calories (as percentage) consumed from carbohy-
drates, proteins and lipids (see “Nutritional summaries as sensitivity
analysis” in Methods). 862 significant bacterial pathway associations
and 284,759 significant bacterial gene families associations with
metabolic health measures were discovered in our main analysis. Of
these, 539 (62.53%) bacterial pathway associations and 193,927 (68.1%)
bacterial gene families associations replicated when adjusting for
nutritional summaries. All replicated associations replicated with the
same correlation direction.

Android tissue fat (%) retained the highest number of associations
with bacterial gene families, with 53,186 significant associations repli-
cating 80.2% of the significant associations found in the main analysis.
BMI retained the highest number of associations with bacterial path-
ways, with 99 significant associations replicating 98.1% of the sig-
nificant associations found in the main analysis. Body composition
metabolic health measures in general largely preserved their sig-
nificant correlations, as well as liver attenuation and liver sound speed
from liver US, as illustrated in Fig. S11. Euglycemia measures derived
from CGM also showed similar correlations after adjusting for nutri-
tional summaries. The noticeable decrease in significant associations
for overall, short-term, and within-day variability measures after
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adjusting for nutritional summaries aligns with prior findings that
highlighted the correlations between nutritional summaries and CGM
variability measures54 (Fig. 2, Fig. S11). MAGE, a within-day glucose
variability measure known to be affected by nutritional habits, such as
carbohydrate consumption55,56, had 352 bacterial gene families and 3
pathways associated with it prior to the adjustment to nutritional
habits. Following the adjustment, no significant associations were
found.MODDon theother hand, a day today variabilitymeasure57, had
4438 and 19 significant associations with bacterial gene families and
pathways in the main analysis, and 436 (9.8%) bacterial gene families
and 5 (26.3%) pathways associations remained significant when
adjusting to nutritional summaries, suggesting these are indeed

associations of the bacterial functional levels with MODD, not medi-
ated nor confounded by diet.

Repeating the analysis of “key” pathways with the adjusted asso-
ciations for nutritional summaries, we observed that 7 of the 11 “key”
pathways remained unchanged, and showed similar correlation pat-
terns to themain analysis (Fig. 3A, Fig. S12). The 13 “key”pathways after
adjusting to nutritional summaries, were also clustered to 3 groups,
with similar correlation patterns as the 11 “key” pathways in the main
analysis (Tables S2 and S5). Six additional “key” bacterial pathways
were introduced in the sensitivity analysis. PWY-6122:
5-aminoimidazole ribonucleotide biosynthesis II, PWY-6277: super-
pathway of 5-aminoimidazole ribonucleotide biosynthesis and PYR-
IDNUCSYN-PWY: NAD de novo biosynthesis I (from aspartate), in
cluster I, showing mostly positive correlations to metabolic health
measures. Bacterial pathway PWY-6122 was previously found to be
enriched in individuals with hyperuricemia (HUA) and high levels of
liver enzymes58. HUA, characterized by elevated uric acid levels in the
blood, is linked to both insulin resistance59 and diabetes60. In cluster II,
two bacterial pathways revealed in the sensitivity analysis were ARG-
SYN-PWY: L-arginine biosynthesis I (via L-ornithine) and ARGSYNB-
SUN-PWY: L-arginine biosynthesis II (acetyl cycle), both related to the
biosynthesis of arginine and showing mostly negative correlations to
metabolic health measures. Previous works suggest that L-arginine
may have potential to prevent and/or relieve type 2 diabetes via
restoring insulin sensitivity in vivo61. The last “key” pathway revealed in
the sensitivity analysis was in cluster III, PEPTIDOGLYCANSYN-PWY:
peptidoglycan biosynthesis I (meso-diaminopimelate containing),
showing mostly negative correlations to metabolic health measures.

Associations with BMI replicate in an independent cohort
Utilizing a cohort of 8205 Dutch individuals, with gut microbiome
metagenomic samples and information on age, sex, and BMI62 we
sought to assess the replicability of our results in an independent
cohort. 8205 individuals, of them 3451 (42.1%) men and 4754 (57.9%)
women were analyzed, with an average age of 48.4 (14.8) years and an
average BMI of 25.6 (4.4) (kg/m2) (Table S6). Metagenomic samples
were processed in the same manner as in the discovery cohort, and
association models were run only against BMI as the only metabolic
health measure available in the replication cohort (see “Replication in
independent cohort” in Methods).

128 pathways and 66,697 bacterial gene families were significantly
correlated with BMI in the discovery cohort. 83 (64.84%) pathways
were also significantly correlated with BMI in the replication cohort,
where 78 (93.9%) replicated with the same correlation direction.
33,302 (49.9%) bacterial gene families were significantly replicated in
the replication cohort, where 33,294 (99.9%) replicated with the same
correlation direction.

Figure 4 displays the association coefficients and p-values of
bacterial pathways, from the discovery and the replication cohorts,
illustrating a consistent pattern in the distribution of significantly
correlated pathways, both negative and positive. Importantly, the
pathways that exhibited the strongest correlations—identified by the
highest association coefficients from the significantly associated bac-
terial pathways —were consistent across both cohorts (Fig. 4). The top
two bacterial pathways with the strongest positive correlations with
BMI in both cohorts were PWY0-1586: peptidoglycan maturation
(meso-diaminopimelate containing) and ASPASN-PWY: superpathway
of L-aspartate and L-asparagine biosynthesis. These pathways, also
identified as “key” pathways in our main analysis, demonstrated mul-
tiple significant correlations with metabolic health measures in the
discovery cohort. The top two pathways that exhibited the strongest
negative correlations with BMI in both cohorts were PWY-6609: ade-
nine and adenosine salvage III, and TRNA-CHARGING-PWY: tRNA
charging, both also selected as “key” bacterial pathways in the dis-
covery cohort analysis, as well as the sensitivity analysis adjusting for

Fig. 4 | Bacterial pathways correlate with BMI replicate in an independent
cohort. Coefficients (top) and P-values (−log scale) (bottom) of the associations
between bacterial pathways and BMI, in the discovery vs. the replication cohort.
Associations were performed using two-sided linear regression adjusted for age
and sex. Multiple comparisons were corrected using the Bonferroni method, and
associations with Bonferroni-corrected p-value < 0.05 were considered significant.
Colored dots present bacterial pathways with significant associations in both
cohorts, and with either a negative (red) or positive (green) correlation coefficient
in both cohorts. Light green (Square and Asterix) mark the top two bacterial
pathways with positive coefficients in both cohorts, Orange (Triangle and X) mark
the top two bacterial pathways with negative coefficients in both cohorts.

Article https://doi.org/10.1038/s41467-024-53832-y

Nature Communications |         (2024) 15:9358 7

www.nature.com/naturecommunications


nutritional summaries. The similar patterns of correlations coefficients
and p-values were also found for bacterial gene families, as depicted in
Fig. S13.

Discussion
In recent years the human gut microbiome has emerged as a relevant
factor in many host metabolic disorders, including obesity, T2D, non-
alcoholic fatty liver and cardiometabolic diseases17. Microbiome
composition, richness and functionality has been found to differ in
individuals with metabolic disorders17,63. This led to the attempts to
harness the microbiome as a therapeutic target; probiotic, prebiotic
and synbiotic supplements were examined to improve glucose control
measures as fasting glucose and HbA1C in individuals with T2D and
prediabetes64: high fiber diet demonstrated protective impact on the
gut ecosystem which in turn improved glucose homeostasis in indivi-
duals with T2D65: fecal microbiota transplantation (FMT) was tested as
a therapeutic for several metabolic diseases as obesity, insulin resis-
tance, and metabolic syndrome66.

There are several mechanisms by which the gut microbiome
possibly affects host metabolic health; Damage to the gut barrier and
increased gut permeability results in increased translocation of bac-
terial endotoxins, mainly lipopolysaccharide (LPS), which might wor-
sen glucose homeostasis via increased metabolic endotoxemia67: Gut
bacteria are involved in the metabolism of various metabolites that
play a role in host metabolic health, among them SCFAs, associated
with severalmetabolic diseases andBCAAs,which irregularities in their
metabolism contribute to obesity and T2D68: The gut microbiota reg-
ulates BA homeostasis through different bio-transformation, and
recent studies support the role of BA inNAFLDang glucose control67,69.
Yet, despite the advances in both research and clinical work - many
gaps remain in our knowledge on the functional bacterial pathways in
which the gut microbiome affects host metabolic health17.

In this study, we aimed to bridge this gap by using a large-scale
unique cohort of more than 9000 individuals, measured with gut
microbiomemetagenomic sequences, DXA scans, liver US and CGM24.
Analyzing the gut microbiome on a functional level of bacterial gene
families and pathways, associating themwith clinically validated CGM-
derived metrics, body composition and measures from liver US, we
uncovered 87,678 unique bacterial gene families and 145 unique bac-
terial pathways significantly associated with metabolic health mea-
sures. The majority of the bacterial gene families’ significant
associations were to body composition such as Android fat tissue (%)
and BMI, with 21,871 unique bacterial gene families associated with at
least one metabolic health measure of body composition, and no
metabolic health measure from other categories of liver US and CGM-
derived measures. 86.9% of bacterial pathways were associated with 2
or more metabolic health measures. Interestingly, most of the asso-
ciations identified were negative, indicating an inverse relationship
between certain bacterial functions and metabolic health measures of
the host. This pattern is somewhat aligned with previous findings,
where gut microbiome diversity and gene count were inversely asso-
ciated with metabolic health measures such as obesity70, insulin
resistance and dyslipidemia71. This high percent of negative associa-
tionsmight point to unexploredmicrobial-host interactions impacting
the host metabolic health, and further investigations are necessary to
fully understand these.

Several “key” bacterial gene families, with multiple robust
associations across metabolic health measures, were annotated as
uncharacterized proteins, yet were sourced from species with known
relations to host metabolic health—such as Faecalibacterium praus-
nitzii (F.prausnitzii) and Blautia. F.prausnitzii is known for its pro-
tective effects against metabolic disorders50, and changes in its
abundance have been linked to obesity and T2D50, and a recent study
also found several SNPs in an energy metabolism coding region of
F.prausnitzii associated with BMI in healthy individuals7. Different

species of Blautia have been tied to Visceral Fat Accumulation
(VFA)72, and indicators of impaired lipid and glucose metabolism73.
The fact that these “key” bacterial genes are uncharacterized pro-
teins, and are currently unknown, stresses the need to further study
and annotate microbial genes and functions. “Key” bacterial path-
ways identified were involved in the metabolism of several amino-
acids and metabolites previously tied with obesity, insulin sensitivity
and T2D such as aspartate, asparagine, methionine, leucine, NAD+,
5-aminoimidazole ribonucleotide and purine36,37,58–60,74. Only a few of
these bacterial pathways were shown to be associated withmetabolic
disorders58, and for most this is the first time, to the best of our
knowledge, that a direct connection is shown between them and
metabolic health measures such as glucose control measured by
CGM and measures from liver US. Taxonomy contributions analysis
revealed variability in the number of species and genera contributing
to the abundance of bacterial pathways analyzed, with a mean of
13.02 (±20.03) species and 7.4 (±10.05) genera contributing to the
abundance of each bacterial pathway. Several diverse genera con-
tributed to the abundance of the majority (8 of 11) of the “key”
bacterial pathways, while the remaining “key” pathways (3 of 11) all
originated from unclassified genera, possibly due to lack of taxo-
nomic resolution. These findings support the assumption that the
associations identified present community-level functionalities that
associate with host metabolic health, and further stress the impor-
tance of moving towards functional-based analysis of the
microbiome75.

Sensitivity analysis revealed that many associations remained
significant when adjusting for nutritional summaries obtained from
real-time food loggings. Specifically, associations with body compo-
sition measures and liver US measures were almost not affected and
most remained significant. CGMderivedmeasures of variability, which
were previously shown to be correlated with nutrition54, showed a
decrease in the number of significant associations. Seven of the 11
“key” bacterial pathways were still selected as “key” bacterial pathways
following adjustment for nutritional summaries. These 7 replicated
“key” bacterial pathways were also significantly associated with BMI, in
a technically and geographically independent cohort62, along with
64.8% of the bacterial pathways from the discovery cohort. These
findings suggest that the associations detected here point to potential
functional relations between the gut microbiome and host metabolic
health measures, not affected by dietary habits, and environmental
factors as they replicated in a population with differing background
and environment. Since the replication cohort only contained infor-
mation on BMI, only associations to BMI were tested for replication,
and future research will be needed to examine the replication of
associations with other metabolic health measures.

While our study provides valuable insights into the interactions
between the gut microbiome and host metabolic health, several lim-
itations must be acknowledged. One significant limitation is the esti-
mation of bacterial functional level based on DNA sequencing. Despite
the advances in both tools and databases, functional estimations from
metagenomic data are still limited by the accuracy and completeness
of reference databases76. The reliance on reference genomes can
introduce biases, as these databases may not capture the full diversity
of the microbiome, particularly for less well-studied or novel bacterial
species. Another limitation is the uniformity of our study population,
which is a relatively healthy one. Since BMI being the only metabolic
health measure available in our replication cohort, the additional
associations revealed in this study will need further validation in
diverse populations to ensure their generalizability. Future examina-
tion of the associations depicted here in a population including indi-
vidualswith obesity or diabetesmight reveal stronger signals. Lastly, as
any computational analysis of the associations of gut microbiome
features with host phenotypes, further investigation into the causal
relationship of the results will be needed.
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As evidence on the importance of the gut microbiome in host
health, andmultiplemetabolic outcomes such as obesity, liver disease,
and diabetes are accumulating17,67, the need to elucidate the functional
pathways through which the gut microbiome is involved in these
conditions is becoming increasingly critical. Understanding these
pathways offers the potential to develop targeted microbiome inter-
ventions that could ameliorate or prevent thesemetabolic disorders77.
Findings revealed in this study, discovered on a large relatively healthy
population and showed generalizability under sensitivity analysis and
in an independent cohort, could serve as a starting point for future
research to further clarify the connections between the gut micro-
biome and host health, and develop microbiome-targeted treatments
to improve host metabolic health.

Methods
All participants signed an informed consent form upon arrival to the
research site. All identifying details of the participants were removed
prior to the computational analysis. The HPP cohort study is con-
ducted according to the principles of the Declaration of Helsinki and
was approved by the Institutional ReviewBoard (IRB) of theWeizmann
Institute of Science.

Study population
The cohort analyzed in this study was collected as part of the Human
Phenotype Project (HPP). A complete description of the inclusion and
exclusion criteria to the study, the measures obtained and the mea-
surement techniques can be found in the original paper describing the
HPP24. The study includes individuals between the age of 40–70 years
old, recruited to the study between January 2019 and May 2023. Data
collected at baseline includes self-reported sex, medical history, life-
style and nutritional habits, vital signs, anthropometrics,metagenomic
sequencing of the gut microbiome, blood tests results, electro-
cardiography, carotid ultrasound, liver US, dual-energy X-ray absorp-
tiometry (DXA) scan and retinal imaging. Continuous measurements
include glucose levels using a CGMdevice for 2 weeks, along with real-
time food intake loggins and sleep monitoring by a home sleep apnea
testdevice for 3nights. In this studywe includedparticipantswith both
CGM and gut-microbiome data, excluding participants who reported
taking diabetes-related medications (medications starting with A10 in
ATC code), which resulted in 8859 participants, of them 4778 (53.9%)
women and 4081 (46.1%) men, with an average age of 51.8 (7.8) years
and average BMI of 26.01 (4.1).

Metabolic health measures
Participants recruited to the HPP were connected to a FreeStyle Libre
Pro Flash continuous glucose monitoring (FSL-CGM) system for two
weeks. Data from the first and last days of the CGM connection were
removed prior to the analyses performed here, to maximize data
accuracy. 30 CGM-derived measures of glucose control and glucose
variability were calculated using the iglu R package78. A short
description of the calculatedmeasures can be found in Table S7. CGM-
derived measures were divided into 7 categories: Euglycemia, Hyper-
glycemia, Hypoglycemia, Overall variability, Short-term variability,
Within-day variability, Between-day variability, and Composite mea-
sures & risk scores.

BMI measured at baseline visit along with fat mass, scanned VAT
mass and android tissue fat percent obtained usingDXA scanwere also
analyzed in the category of Body composition, and liver measures
obtained from ultrasound tests—liver attenuation, viscosity, elasticity,
and sound speed, were examined in the category of liver US. Overall,
38 measures of metabolic health were included in this study.

Microbiome sample collection and processing
Microbiome sampling was done using an OMNIgene·GUT (OMR-200,
DNA Genotek) stool collection kit, which has the advantage of

maintainingDNA integrity in typical ambient temperaturefluctuations.
Each participant was given a kit and was requested to collect a fecal
sample at home. The collected samples were transferred at room
temperature to our participant reception center atWeizmann Institute
of Science, where they were documented and frozen at −20 °C
immediately. Then, samples were transferred in a cooler to our
research facilities where they were stored at −20 °C until DNA extrac-
tion was performed. Laboratoryworkwas done in the Segal laboratory
at the Weizmann Institute of Science. Metagenomic DNA was purified
using PowerMag Microbial DNA Isolation Kit (MO BIO Laboratories,
27200-4) optimized for the Tecan automated platform. Libraries for
next-generation sequencing were prepared using NEBNext Ultra II
DNA Library Prep Kit for Illumina (New England Biolabs, E7775) and
sequenced on a NovaSeq sequencing platform (Illumina). Sequencing
was performed with a 100-bp single-end reads kit and a depth of 10
million reads per sample, using Illumina unique dual sequencing
indexes (IDT–Syntezza Bioscience). DNA purification, library prepara-
tion, and sequencing were performed in batches of 384 samples. A
standard microbial community (ZymoBIOMICS Gut Microbiome
Standard, D6331) was inserted into each batch for quality control. No
batch corrections were performed. We filtered metagenomic reads
containing Illumina adapters and low-quality reads and trimmed low-
quality read edges. We detected host DNA by mapping reads to the
human genome using Bowtie 279 with inclusive parameters and
removed those reads.

Metagenomic reads mapping and functional profiling
Processed metagenomic reads were mapped to a genome reference
set, representing bacterial species from the human gut microbiome.
The reference set used, alongside the methods for its taxonomic
annotation are described in detail in Levitan et al.80. To determine the
relative abundance of species in samples the URA algorithm was
used23, using genomic sequences that are unique to single species in
the reference set to determine the existence of each bacterial species
in each sample. Relative abundance was clipped at a minimum of
0.0001, meaning this is the smallest possible value of relative abun-
dance for any species.

Metagenomic gene and pathway abundance data were obtained
using HUMAnN v3.6.125 and MetaPhlAn v4.0.626 utilizing the Jan21
MetaPhlAn database, and the UniRef database47. Genes and pathways
detection thresholds were determined based on the first percentile of
all positive, non-zero abundance values across the dataset, derived
from HUMAnN3 outputs. UNMAPPED reads and UNINTEGRATED reads
were excluded from threshold determinations for genes andpathways,
accordingly. Zero abundance values were adjusted to half the detec-
tion threshold value. Abundances were sum-normalized, followed by
scaling by a factor of 1,000,000 to achieve parts per million and a
log10 transformation.

HUMAnN abundance contributions from specific individual
organismswere used to analyze contributing genera and species to the
abundance of bacterial gene families and pathways. RPKs were sum-
med over all species belonging to each genus. A genus or species were
determined ascontributing to the abundanceof abacterial gene family
or pathway when it contributed any reads (RPKs > 0) in at least
500 samples.

Upfront gene filtering
Upfront gene filtering was applied to identify uncorrelated bacterial
gene families prior to running the associations with metabolic health
measures. Bacterial gene families were randomly divided into groups
of up to 5000. Within each group, pairwise Spearman correlations
were calculated, and hierarchical clustering was applied to the result-
ing distance matrix using average linkage clustering with a correlation
threshold of 0.3. For each cluster, the gene with the highest average
abundance was selected as the representative. This process was
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repeated three times to further refine the gene representatives and
minimize feature redundancy, resulting in 12 groups of ~5000bacterial
gene representatives in each group. To derive a final set of repre-
sentatives, each pair from the 12 groups was re-processed by calcu-
lating Spearman correlations and applying hierarchical clustering with
the same correlation threshold of 0.3. The final list of filtered bacterial
gene families was defined as the unique set of representatives from all
pairs of the 12 groups. The weighted mean correlation and pooled
standard deviation were computed based on the correlations within
each group pair. The final list of bacterial genes included 55,925 bac-
terial genes, with a weighted mean correlation of 0.01 and a pooled
standard deviation of 0.03.

Bacterial gene families/pathways—metabolic measures
associations
Bacterial gene/pathway associations with each metabolic health mea-
sure were performed using linear regression with statsmodels OLS81,
adjusting for age and sex. For each model, we only included partici-
pants that had no missing values in any of the covariates or the
metabolic measure. Metabolic health measures were cleaned for out-
liers prior to model running. For each metabolic measure we first
identified the fraction of the data that includes 95%of the valueswithin
the smallest range. Using this data we calculated the mean and std of
the metabolic measure distribution, removed measures more than
8 SD away from the mean, and clipped measures more than 5 SD away
from the mean. Models were only run for bacterial genes/pathways
that were detected in at least 500 samples, based on the bacterial
genes/pathways detection thresholds calculated from the data (see
“Metagenomic reads mapping and functional profiling”). Bonferroni
correction was applied separately for bacterial gene families and
pathways, considering all metabolic health measures collectively
within each category. Specifically, the correction was performed on
the entire set of p-values from the analysis of bacterial pathways across
all outcomes, and this process was repeated independently for bac-
terial gene families. Correlations with Bonferroni-corrected p-
values < 0.05 were considered statistically significant.

Gene clumping
Clumping was applied to identify independent genes associated with
each metabolic health measure. For each measure, we compiled a list
of bacterial gene families significantly associated with it, by a
Bonferroni-corrected p-value < 0.05. These bacterial gene families
were ranked by their p-values. Beginning with the top-ranked bacterial
gene family, we added it to our final list of independent bacterial gene
families for the metabolic measure. Subsequently, we evaluated the
remaining bacterial gene families for correlation with this top-ranked
bacterial gene family, using Spearman’s correlation. Bacterial gene
families exhibiting a correlation coefficient of 0.3 or higher, with a
significance level below 0.05, were clustered with the leading bacterial
gene family and excluded from further consideration. This iterative
process continued until no bacterial gene families remained in the
initial list, ensuring each bacterial gene family in the final list repre-
sented an independent association with themetabolic healthmeasure.

Selecting “key” associated bacterial gene families and pathways
To focus on a subgroup of bacterial gene families and pathways, we
devised a process to identify “key” bacterial gene families and path-
ways from those who were found to significantly correlate to meta-
bolic health measures. For each metabolic health measure, we ranked
microbial pathways that were significantly correlated to it by their
Bonferroni-corrected p-value. Then, we divided our metabolic health
measures into three groups, by their categories; Body composition,
Liver US and all CGM-derived measures. Each pathway was then
represented by its sum of rankings, along with the number of meta-
bolic health measures it was significantly correlated to in each group.

Top 5 “key” pathways were chosen for each group of metabolic health
measures—those with the highest number of metabolic measures, and
the lowest ranking. For the bacterial gene families, a similar process
was repeated both for the pre-filtered genes, and for each of the top 5
(lowest p-value) clumped clusters, to ensure the “key” bacterial gene
families will be uncorrelated. Clumped bacterial gene families were
ranked within each cluster for eachmetabolic health measure by their
Bonferroni-corrected p-value, and one “key” gene family, with the
highest number of metabolic health measures in each group and
lowest summed ranking, was chosen for each clumped cluster.

Nutritional summaries as sensitivity analysis
To analyze the potential confounding of nutritional habits on the
associations between bacterial gene families/pathways and metabolic
health measures, we repeated the association analysis, adjusting for
summaries of nutritional habits. Using data from continuous real-time
food intake logging that was reported by participants while wearing
theCGM,we created summaries of nutritional habits. To assurequality
control of the data we first removed individual loggings of food items
containing more than 5000 calories, and days in which less than 500
calories were reported. Following, we aggregated loggings from the
same date to create a daily summary of the amount of calories con-
sumed from carbohydrates, proteins, and lipids, and the total calories
(kcal) consumed. For each day we calculated the percent of calories
consumed from carbohydrates, proteins, and lipids, and summarized
the median of these over all days, along with the median total caloric
intake over all days. In addition, the Healthy Food Diversity (HFD)
Index, which measures dietary variety and quality53 was calculated by
determining the proportion of each food in the diet, multiplying by
health factors, and computing the Berry Index. The HFD Index was
normalized by themaximum index value in the study population.With
the nutritional summaries calculated for each participant, we repeated
the association process described in the “Bacterial gene families/
pathways—metabolic measures associations” section, adjusting each
OLS model for age and sex as well as all nutritional summaries; HFD
Index, median daily caloric intake, and median daily percent of caloric
intake from carbohydrates proteins and lipids.

Replication in independent cohort
Replication of the results in an independent cohort was done using
metagenomic samples obtained fromGacesa et al.62. We only included
individuals who had microbiome samples, and complete information
on age, sex, andBMI, which resulted in8205participants, of them4754
(57.9%)womenand3451 (42.1%)men,with anaverage ageof 48.4 (14.8)
years and average BMI of 25.6 (4.4). To process gut microbiome
samples in the samemanner as the discovery cohort we used only one
of the paired-end reads, and truncated reads at 75 bp. Metagenomic
gene and pathway abundance data were then obtained in the same
process as the discovery cohort (see Metagenomic read mapping and
functional profiling). As only BMI information was available for the
replication cohort, gene/pathway associations were tested for this
measure only, in the same process as in the discovery cohort (see
Bacterial gene families/pathways—metabolic measures associations).
Bonferroni correction was performed separately for bacterial gene
families and pathways, across all models, and correlations with
Bonferroni-corrected p-value < 0.05 were considered statistically sig-
nificant. Comparisons to the discovery cohortweremade based on the
Bonferroni-corrected p-values of all models of the BMI measure alone,
to align with the statistical analysis of a single measure in the replica-
tion cohort.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Data in this paper are part of the Human Phenotype Project (HPP). The
rawmetagenomic data and basic phenotypes (age, sex, and BMI) used
in this study are available at the European Genome-phenome Archive
(https://ega-archive.org/) under accession EGAS00001007204. The
other data are accessible to researchers from universities and other
research institutions at https://humanphenotypeproject.org/home.
Interested bona fide researchers should contact info@pheno.ai to
obtain instructions for accessing the data.

Code availability
Analyses in this study were performed using publicly available Python
libraries, as detailed in the “Methods” section.
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