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Abstract

Integrin-linked kinase (ILK) is a multidomain focal adhesion protein implicated in signal 

transduction between integrins and growth factor/extracellular receptors. We have previously 

shown that ILK expression is increased in liver fibrosis and that ILK appears to be a key regulator 

of fibrogenesis in rat hepatic stellate cells, effectors of the fibrogenic response. Here we 

hypothesized that the mechanism by which ILK mediates the fibrogenic phenotype is by engaging 

the small GTPase, Rho in a signal transduction pathway linked to fibrogenesis.

Methods—ILK function in quiescent (non fibrogenic) and activated (fibrogenic) stellate cells 

was examined in cells isolated from rat livers. ILK, Rho, and Gα12/13 signaling were manipulated 

using established chemical agents or specific adenoviral constructs.

Results—ILK activity was minimal in quiescent stellate cells, but prominent in activated stellate 

cells; inhibition of ILK activity had no effect in quiescent cells, but had prominent effects in 

activated cells. Overexpression of ILK in activated stellate cells increased Rho activity, but had no 

effect in quiescent cells. Further, endothelin-1 (ET-1) stimulated Rho activity in activated stellate 

cells, but not in quiescent cells. Rho, RhoGEF and Gα12/13 expression were increased after stellate 

cell activation. Inhibition of Gα12/13 signaling, by expression of the RGS domain of the p115-

Rho- specific guanine nucleotide exchange factor (p115-RGS) in activated stellate cells, 

significantly inhibited type I collagen and smooth muscle α actin expression, both classically 

upregulated after stellate cell activation. The data suggest that ILK mediates Rho dependent 

functional effects in activated stellate cells, and raise the possibility that ILK is important in cross 

talk with the GPCR system.
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Introduction

It is well established that activated hepatic stellate cells play an important role in the 

development of liver fibrosis/cirrhosis (1–4). In the normal liver, stellate cells exhibit a 

quiescent phenotype, but after liver injury, they undergo differentiation into myofibroblast-

like cells with subsequent proliferation, synthesis of extracellular matrix, and de novo 

expression of smooth muscle α-actin (4, 5). Upregulation of smooth muscle α-actin in 

particular, appears to have a number of important functional consequences, including in 

cytoskeletal maintenance, cellular contraction, and cell motility.

The family of Rho GTPases play an important role in the cellular cytoskeleton, and therefore 

are essential components of important cellular processes such as contractility and motility. 

RhoA, a prominent GTPase, promotes formation of actin structures such as stress fibers, 

while Cdc42 and Rac1 family members form filopodia and lamellipodia, respectively (6). 

Further, there appears to be a link between Rho family GTPases and the extracellular matrix, 

via integrin binding proteins (7, 8). RhoA may also be activated in response to GPCR 

ligands (9–11), and appears to be coupled to the heterotrimeric G12/13 proteins (12). This 

response is catalyzed by guanine nucleotide exchange factors (GEFs), several of which are 

direct targets (effectors) of G12/13 alpha subunits (13, 14).

A key signaling component downstream of integrin engagement is integrin-linked kinase 

(ILK) (15, 16). ILK is a PI3-kinase-dependent, serine/threonine protein kinase that interacts 

with the cytoplasmic domains of both β1 and β3 integrins, possesses bonafide kinase 

activity, and regulates diverse signaling pathways (17–19). This modular protein, consisting 

of four amino-terminal ankyrin repeats followed by a pleckstrin homology (PH)-like domain 

and a protein kinase catalytic domain near its carboxyl-terminus (20, 21), plays an important 

functional role in cell motility and other cellular processes (22).

Given that integrin signaling depends on the effects of RhoA on the actin cytoskeleton, and 

that ILK is likewise important in activation of RhoA and the actin cytoskeleton, we have 

hypothesized here that ILK serves as a critical upstream regulator of Rho GTPases in a 

primary rat stellate cells, and that it is likely to be inactive in quiescent cells, but active in 

activated cells. We have also postulated that ILK is important in cross talk with the G 

protein coupled receptor (GPCR) system, and moreover that it has effects in stellate cells 

that are likely to be related to their function during activation. In the present study, we have 

demonstrated that ILK is differentially active in quiescent and activated stellate cells, and 

moreover that it appears to at least in part serve as a regulator of Rho GTPase activation in 

this cell type. We have also characterized a downstream ILK signaling pathway that 

includes the GPCR system, which mediates critical functional stellate cell attributes.

Materials and Methods

Materials

Anti-Gα12, -Gα13 and -RhoGEF antibodies were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA); monoclonal anti-ILK antibody was purchased from BD Transduction 

Laboratories (Lexington, KY). Endothelin-1 (ET-1) was from American Peptide Co. Inc. 
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(Sunnyvale, CA). Recombinant human PDGF-BB was from R&D Systems (Minneapolis, 

MN), polyclonal phospho-Akt (Ser-473), total-Akt, and GSK3β antibodies were from Cell 

Signaling (Beverly, MA). Anti-rabbit IgG/horseradish peroxidase conjugate or anti-mouse 

IgG/horseradish peroxidase conjugate were from Promega (Madison, WI). Anti-β-actin, and 

anti-smooth muscle α-actinantibodies were from Sigma (St. Louis, MO). The G-LISA Rho 

and Rac1 activation assay kits were from Cytoskeleton (Denver, CO). QLT was a gift of 

QLT, Inc. (Vancouver, BC, Canada) and Y-27632 was purchased from Sigma (St. Louis, 

MO).

Cell Isolation and Culture

Hepatic stellate cells were isolated from male Sprague-Dawley rats (450 to 500g, Harlan, 

Indianapolis, IN) as previously described (23, 24). In brief, after in situ perfusion of the liver 

with 0.20 mg/100 mL of pronase (Roche Molecular Biochemicals, Indianapolis, IN), 

followed by 0.013 mg/100 mLof collagenase (Crescent Chemical, Hauppauge, NY), 

dispersed cell suspensions were layered on a discontinuous density gradient of 8.2% and 

15.6% accudenz (Accurate Chemical and Scientific, Westbury, NY); the resulting upper 

layer consists of more than 95% stellate cells, confirmed by microscopic analysis. Cells 

were suspended in modified medium 199, containing 20% serum (10% horse serum and 

10% calf serum; Life Technologies, Inc., Gaithersburg, MD) at a densityof 1×106 cells/mL. 

Cultures were incubated in a humidified incubator containing 95% O2/2.5% CO2. Cell 

viability was greater than 95% in all of the cultures used for study.

Immunoblotting

Cell lysates were prepared in a buffer containing 1% Triton X-100, 150 mM NaCl, 20 mM 

Tris, pH 7.5, 1mM EDTA, 50 mM NaF, 50 mM sodium-2-glycerophosphate, 0.05 mM 

Na3VO4, 10 mg/mL leupeptin, 10% glycerol, and 100 mM phenylmethylsulfonyl fluoride. 

Samples containing 50 mg of total protein were subjected to SDS-PAGE, after which 

proteins were transferred to nitrocellulose membranes (Schleicher & Schuell, Keene, NH). 

Membranes were incubated for 1 h at room temperature in blocking buffer (10 mM sodium 

phosphate, 0.5MNaCl, 0.05% Tween 20, and 2.5% dry milk) and then with primary 

antibody (1:1000) overnight at 4 °C. Membranes were then washed of excess primary 

antibody at room temperature in a phosphate-buffered saline Tween buffer (TBST: 10 mM 

0.05%, Tris pH 8, 0.9% sodium chloride, Tween 20 0.05%) and incubated for 1 h at room 

temperature with secondary antibody. After washing, specific signals were visualized using 

enhanced chemiluminescence detection pursuant to the manufacturer’s instructions (Pierce). 

Specific bands were scanned and data collected over a narrow range of x-ray film (Eastman 

Kodak Co., Rochester, NY) linearity and quantitated by scanning densitometry.

Rho and Rac assays

The G-LISA Rho activation assay is an ELISA based system that measures the level of Rho 

activation, which was used per the manufacturer’s instructions (Cytoskeleton, Denver, CO). 

In brief, the active GTP bound form of Rho is captured on a substrate and then detected by 

incubation with specific Rho primary antibody followed by a secondary antibody conjugated 

to HRP. Controls include both excluded and non-activated lysates.
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Active Rac was determined with a pull-down assay according to the manufacturer’s 

instructions (Cytoskeleton, Denver, CO). Briefly, stellate cells were stimulated and then 

collected in 300 μL of lysis buffer (50 mM Tris, pH 7.5, 1% Triton X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, 500 mM NaCl, and 10 mM MgCl2) and centrifugedto remove 

cellular debris. The supernatant was then mixed with PAK-PBD beads and rotated at 4 °C 

for 45 min. The beads were then centrifuged, washed multiple times, and the proteins were 

eluted in SDS sample buffer and separated on a 12% SDS-PAGE gel. After transfer to 

nitrocellulose membranes, immunoblot analysis was performed with Rac1 antibody and 

specific signals were detected by immunoblotting as above.

Cell Migration Assay

Cell migration was assessed by measuring the repair of a linear wound generated in the 

confluent monolayer of cells. Hepatic stellate cells were isolated, plated at an equivalent 

density on chamber slides (Lab-Tek, Westmont, IL), and allowed to undergo activation for 7 

days. They were then infected with constructs (all at a multiplicity of infection of 100) or 

went untreated for 24 h. Some cells were exposed to Y-27632 (10 μM) for 60 min prior to 

the application of a linear scratch in cell monolayers using a sterile plastic pipette tip. Cell 

migration was recorded for 24 h using an Applied Precision deconvolution microscope (UT 

Southwestern imaging center).

Cell Adhesion Assay

Hepatic stellate cells were isolated, plated at an equivalent density, and allowed to undergo 

culture-induced activation for 5 days. They were then infected with Ad-GFP and Rho A 

(V14) (at a multiplicity of infection of 100) or went untreated. Forty-eight hours after viral 

infection, the cells were detached from the culture dishes with trypsin. Some cells were 

exposed to Y-27632 (10 μM) for 60 min. The detached cells were suspended in Dulbecco’s 

modified Eagle’s medium, 20% serum was added, and the cells were then replated on fresh 

tissue culture dishes. Two hours after replating, the cells were washed twice with PBS to 

remove unattached cells, trypsinized, and the adherent cells were counted.

Real-Time PCR

Total RNA was extracted with TRIzol reagent according to the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA). One microgram of RNA was reverse-transcribed using an oligo 

(dt) primer and Superscript RNase H-reverse transcriptase as per the manufacturer’s 

directions (Invitrogen, Carlsbad, CA). Amplification reactions were performed using SYBR 

Green PCR Master Mix (Applied Biosystems, Foster City, CA). Primer sequences were as 

follows: GAPDH - forward, 5′-ATT GAC CAC TAC CTG GGC AA -3′ and reverse, 5′-

GAG ATA CAC TTC AAC ACT TTG ACC T -3′; collagen I a1 forward, 5′-GAG TGA 

GGC CAC GCA TGA 3′; and reverse, 5′-AGC CGG AGG TCC ACA AAG -3′; smooth 

muscle a-actin forward, 5′-CCG AGA TCT CAC CGA CTA CC -3′ and reverse, 5′-TCC 

AGA GCG ACA TAG CAC AG -3′; ET-1 forward, 5′-GCT CGG AGT TCT TTG TCT GC 

-3′; and reverse, 5′-ACT TCT GCC ACC TGG ACA TC -3′; Rho GEF forward, 5′-ATA 

CCC AGG CTT CCC TTC CG -3′; and reverse, 5′-GCC GCT GGT AAT CCT TGA GC 

-3′; Rho GAP forward, 5′-CCA CTA TCG AGA CAT TGC GC -3′; and reverse, 5′-CGC 

TGT TCA CAG GTT GTA AAG G -3′;Rho GDI forward, 5′-GAA GGA AGG TGT GGA 
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GTA CCG --3′; and reverse, 5′-GCC TGA CAC GAT CTC TCT GTT CA --3′. Five ml of 

diluted cDNA samples (1:5 dilution) were used in a quantitative two-step PCR (a 10-min 

step at 95 °C followed by 50 cycles of 15 s of 95 °C and 1 s at 65 °C) in the presence of 400 

nM specific forward and reverse primers and SYBR Green PCR Master Mix. Each sample 

was analyzed in triplicate using an ABI system (7900HT Fast Real-Time PCR). As negative 

controls, water was used as a template for each reaction.

Adenoviral Gene Transfer

Stellate cells were infected with constitutively active Rho (V14), a dominant negative Rho 

(N19) (each kindly provided by Dr. Aviv Hassid, University of Tennessee), p115-RGS (a 

gift of Dr. Patrick Casey, Duke University Medical Center), or a matched adenovirus 

containing GFP as a control, at multiplicity infection of (MOI) of 100. Adenoviral constructs 

encoding ILK and a short hairpin inhibiting ILK were as previously described (25). The 

infection efficiency of the adenovirus was monitored by the expression of green fluorescent 

protein (GFP) and typically reached 80–90% within 48 h. Viral titers were measured by 

standard plaque assay using 293 cells.

Immunohistochemistry

Cells were cultured as above, washed, and fixed and permeabilized with 2% 

paraformaldehyde and 0.5% Triton X-100 in PBS for 10 min. For detection of ILK, cells 

were exposed to monoclonal anti-ILK antibody (1:1,000) in PBS for 1 hour at RT. After 

washing, primary antibody was detected with Alexa Fluor- 488 (Molecular Probes)-

conjugated anti-mouse and Dapi (Alexis Corp., San Diego, CA) to identify nuclei. After 

washing and mounting, signals were visualized with a Zeiss LSM 510 META confocal 

microscope. A solution of bovine serum albumin/PBS at 3% and a non-immune mouse IgG 

were employed as a negative control. For detection of actin, cells were fixed with 4% 

paraformaldehyde and permeabilized with 0.1% Triton X-100 followed by labeling with 

AL-488-Phalloidin (Molecular Probes). After washing and mounting, signals were 

visualized as described above.

Statistical Analysis

Data are expressed as means ± SEM. Statistical analysis was performed by using an 

independent Student t test or 1-way analysis of variance with the Tukey post hoc test when 

appropriate. A P value less than 0.05 was considered to be statistically significant.

Results

ILK kinase activity in activated and quiescent stellate cells

We have hypothesized in the current study that there is an intrinsic difference in ILK kinase 

activity in normal (quiescent) and activated stellate cells, consistent with an inherent 

divergent biology in the 2 states of cell differentiation. We initially found that ILK 

expression appeared to be remarkably different in quiescent and activated cells (Figure 1a/b) 

and that it increased progressively during classic cell culture induced stellate cell activation 

(26), suggesting the possibility of differential signaling and function in these two states of 

activation. To further explore the possible differential activity of ILK in quiescent and 
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activated cells, we used two methods. In initial experiments, we used a second-generation 

ILK inhibitor, known as QLT-0267 (Figure 1), which specifically inhibits the kinase activity 

of ILK (27). We found that inhibition of ILK kinase activity in activated stellate cells caused 

a concentration dependent decrease in phosphorylation of GSK-3β and AKT (both known 

ILK substrates), but had no effect in quiescent stellate cells (Figure 1d–g).

Rho- GTPase activity is increased during activation of stellate cells

Previous data have linked ILK and Rho in a variety of signaling pathways (28). We 

therefore further postulated that in stellate cells, ILK and Rho signaling might be connected 

to a functional endpoint or endpoints. To investigate Rho activity during stellate cell 

activation, we used a model in which freshly isolated cells from livers of normal rats were 

grown in serum containing medium and allowed to undergo culture induced activation for 3, 

5, 7 and 14 days. In this model, essentially all cells become activated by day 7. We found 

that Rho activity increased during the stellate cell activation process (Figure 2b), and 

moreover, that in quiescent cells, Rho activity was stimulated in a dose dependent manner 

by ILK (Figure 2b). Of note, Rho activity was also inhibited by blocking ILK (in a “dose-

dependent” fashion) (Figure 2c). Since the wounding response is characterized by 

production of endothelin-1, which helps drive the wounding response, we also examined 

whether the endothelin-1 might regulate Rho activity. Rho activity was stimulated by ET-1 

(2 nM), prominently after 30 minutes (Figure 2d). As a control, LPA, which is known to 

activate Rho, rapidly stimulated Rho activity in stellate cells.

ILK differentially regulates Rho and Rac in quiescent and activated stellate cells

To better understand the role of ILK in regulation of Rho and Rac activity in quiescent and 

activated stellate cells, we utilized adenoviruses previously shown to either overexpress or 

block ILK expression (25). In quiescent stellate cells, either inhibition of or overexpression 

of ILK had no effect on either Rho or Rac activity (Figure 3a, c). In contrast, in activated 

stellate cells, overexpression of ILK led to enhanced Rho and Rac activity, while ILK 

knockdown was inhibitory (Figure 3b, d).

The relationship between Rho and ILK in regulating fibrogenic fingerprints

Important functional features of stellate cell activation include expression of type I collagen 

and/or other matrix proteins as well as expression of the cytoskeletal protein smooth muscle 

α-actin (the latter, a well-accepted marker of stellate cell activation that not only imparts 

cellular contractility on stellate cells, but also labels stellate cells as hepatic myofibroblasts). 

To clarify the role of ILK and the Rho-ROCK pathway in regulating these stellate cell 

functional fingerprints, we employed several tools including QLT and Y-27632, specific 

ILK kinase and ROCK inhibitors, respectively as well as a dominant active Rho construct 

(29). Stimulation of stellate cells with ET-1 led to an increase in smooth muscle α-actin and 

type I collagen mRNA expression (Figure 4a/b), while and inhibition of either ILK or Rho 

alone led to a decrease in smooth muscle α-actin and type I collagen mRNA expression, 

respectively (Figure 4a/b). Interestingly, when both ILK and Rho were blocked, we found an 

additive effect on smooth muscle α-actin and type I collagen mRNA expression, 

respectively. To further evaluate the relationship of Rho and ILK in the functional regulation 

of smooth muscle α-actin, we over expressed Rho in isolated stellate cells. Overexpression 
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of RhoA (RhoA V14) overexpression led to up-regulation of smooth muscle α-actin mRNA 

expression (Figure 4c). When RhoA was overexpressed, and followed by inhibition of ILK, 

there was a reduction in smooth muscle α-actin to control values (Figure 4c), suggesting that 

Rho A and ILK signaling were linked. Additionally, blocking both ILK and RhoA led to a 

greater reduction in smooth muscle α-actin than blocking ILK alone, but not than blocking 

RhoA alone. Although the results for collagen I mRNA paralleled smooth muscle α-actin, 

there were subtle differences (Figure 4c). Stimulation of RhoA led to an increase in collagen 

I mRNA expression, and following, inhibition of ILK following activation of RhoA led to 

reduction in collagen I mRNA to levels below control values, indicating a particularly 

prominent effect of ILK (Figure 4d). Further, blocking both ILK and RhoA led to a greater 

reduction in collagen I mRNA than blocking either ILK or RhoA alone (Figure 4d). Finally, 

we examined smooth muscle α-actin levels after manipulation of Rho and ILK. Initial 

immunoblotting experiments revealed that, analogous to ET-1’s effect on smooth muscle α-

actin, inhibition or ILK or Rho reduced serum induced smooth muscle α-actin expression 

(Figure 4e). Blocking ILK and Rho together reduced smooth muscle α-actin to a greater 

degree than either alone. When Rho was overexpressed, inhibition of ILK was able to 

reduced smooth muscle α-actin, and combined Rho and ILK inhibition reduced smooth 

muscle α-actin to below those for Rho inhibition alone (Figure 4f). Immunocytochemical 

results paralleled those for immunoblotting (Figure 4g). Serum, ILK, and Rho each 

stimulated stress fibers, while ILK inhibition partially blocked these responses. Inhibition of 

Rho led to a similar response while inhibition of both ILK and Rho caused and even greater 

disruption in actin filaments, leading to cell rounding (Figure 4g).

Migration of stellate cells is also a prominent cell phenotype during wound healing. 

Therefore we tested weather Rho could mediate stellate cell migration. We found that 

overexpression of Rho with Rho A (V14) led to a marked increase in stellate cell migration, 

whereas inhibition of Rho with y-27632 led to reduced cell migration (Figure S1a). Cell 

adhesion, also appeared to be Rho dependent, because exposure of cells to Rho A (V14) 

increased cell adhesion and inhibition of Rho with y-27632 reduced cell adhesion (Figure 

S1b).

Regulation of Rho-GEF, Rho-GAP and Rho-GDI during stellate cell activation

We found that Rho kinase activity was increased in activated stellate cells (Figure 2). Thus, 

since Rho GTPase cycling is regulated by guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs), and guanine nucleotide-dissociation inhibitors(GDIs) 

(30), we postulated that these upstream regulators of RhoA might be regulated during 

stellate cell activation. We found that the level of RhoGDI and RhoGAP mRNA decreased 

with activation, while RhoGEF mRNA levels increased during activation (Figure 5a). We 

verified that the level of RhoGEF (protein) increased during activation using immunoblot 

analysis (Figure 5b), and interestingly, ILK appeared to regulate RhoGEF expression 

(Figure 5c).

Gα12/13 are up regulated during stellate cell activation

RhoA is activated via GPCRs that couple to heterotrimeric Gα12/13 proteins; this response is 

catalyzed by GEFs, several of which are direct targets (effectors) of Gα12/13 (10, 31). Thus, 
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we further hypothesized that RhoA signaling in stellate cells might be mediated by Gα12/13. 

To evaluate this possibility, we examined the effect of stellate cell activation on induction of 

Gα12/13 expression; there was gradual spontaneous increase of Gα12/13 expression during 

the activation process (Figure 6a, b), and manipulation of ILK using specific adenoviruses as 

above led to changes in Gα12/13 expression (Figure 6c, d), including that differential ILK 

activity modulated the levels of Gα12 and Gα13 (Figure 6c, d). Of note, overexpression of 

ILK had no effect on Gα12 or Gα13 expression in quiescent cells (Figure 7a, c), but had 

significant effects on activated cells (Figure 7b, d). Likewise, inhibition of ILK played a role 

in Gα12/13 expression in activated cells (Figure 7e, f).

A functional effect for Ga12/13 in stellate cells

To determine whether Gα12/13 could be important in mediating functional effects on 

activated stellate cells, we inhibited these G protein subunits with the RGS domain of 

p115RhoGEF which is an efficient GAP specifically for Gα12/13, and thus blocks only 

Gα12/13 signaling (32). We found that inhibition of Gα12/13 together caused a significant 

decrease in smooth muscle a-actin mRNA at all-time points after day 3 of the activation 

process (Figure 8a). Similar results were identified for type I collagen mRNA (Figure 8b). 

As before, ILK stimulated smooth muscle α-actin mRNA; inhibition of Gα12/13 partially 

inhibited the ILK mediated smooth muscle a-actin mRNA stimulation (Figure 8c). 

Analogous results were found for type I collagen (Figure 8d). These data suggest that ILK 

and Gα12/13 are linked in a signaling pathway to functional effectors in stellate cells.

Discussion

A novel finding of this study was that at a cellular level, ILK had prominent functional 

effects that are likely to be of critical importance in wound-healing. Most importantly, ILK 

stimulated smooth muscle α actin and type I collagen expression in activated, but not in 

quiescent cells. We speculate that this latter phenomena may be related to the presence (or 

absence) of intermediate molecules important in executing ILK’s functional effects (for 

example, multiple signaling and transcriptional partners) (16). For example, ILK deficient 

fibroblasts appear to exhibit abnormalities in the actin cytoskeleton, apparently restricting 

their capacity to differentiate into myofibroblasts (33, 34), which would be expected to alter 

their fibrogenic phenotype. Additionally, we clearly demonstrated that Gα12/13 is important 

in mediating ILK activity (Figure 7), and this signaling partner appears to also be 

differentially regulated during stellate cell activation. What we don’t know at this point is 

whether ILKs effect on smooth muscle actin expression is necessary for the fibrogenic 

phenotype observed or whether ILK’s effect on fibrogenesis is independent of the actin 

cytoskeleton.

An explanation for the differential ILK activity in quiescent and activated cells is simply 

that the ILK activating machinery is missing in quiescent stellate cells. For example, it is 

possible that a critical extracellular signal is required to activate ILK in stellate cells; 

integrins or molecules linking integrins to the ILK signaling cascade are either in low 

affinity or are absent in quiescent cells, but are present and/or are in high affinity in 

activated cells (35). Another possibility is that ligand binding in quiescent stellate cells does 
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not initiate the required conformational change in integrins that are needed to activate ILK 

(36). Finally, since integrin binding to ECM leads the integrin cytoplasmic domain to form a 

complex with ILK and isoforms of PINCH and parvin to subsequently form an IPP complex 

in the cytoplasm (37), it is possible that quiescent cells lack these downstream components 

of a multiprotein complex that would be required for activation of downstream signaling 

(Figure 9).

Another novel finding of this work was that the vasoactive peptide, ET-1, appeared to be a 

critical upstream mediator of ILK activation. We showed that ET-1 is capable of inducing 

ILK activation and subsequent smooth muscle α actin and type I collagen expression. This 

unique finding is consistent with previous data that showed that ET-1 was able to stimulate 

ILK dependent tumor cell migration, synthesis of MMP, and tumor invasion/growth in vivo 

(38).

We also found Rho-GTPase activity to be stimulated during stellate cell activation. 

Interestingly, not only Rho itself appeared to be upregulated by stellate cell activation, but 

also, ILK appeared to modify Rho’s activity (Figure 3B). Further, ILK also modified the 

activity of Rac (Figure 3D), consistent with a broad effect of ILK on Rho GTPases. We also 

found that Rho-GEF, Rho-GAP and Rho-GDI - all capable of modifying Rho activity - were 

regulated during stellate cell activation (Figure 5), and likely facilitated Rho’s activity. 

These data suggest that ILK and Rho are tightly linked in stellate cells.

A final novel finding of this work was that Gα12/13 was up regulated during stellate cell 

activation and further, Gα12/13 also mediated functional effects on stellate cells. Inhibition of 

Gα12/13 function specifically inhibited smooth muscle α actin and type I collagen expression 

in stellate cells (Figure 7A/B). Further, inhibition of Gα12/13 blocked ILK’s stimulation of 

smooth muscle α actin and type I collagen (Figure 7C/D), suggesting crosstalk between 

Gα12/13 and ILK in execution of stellate cell functional effects.

In summary, we have shown that ILK, rho and Gα12/13 interact to facilitate important 

functional effects in activated stellate cells. Further, these molecules appear to be 

predominantly (if not exclusively) active in the activated state. The findings lead us to 

speculate the a G-protein coupled receptor signaling pathway involving ET-1 and Gα12/13 

converges to mediate critical functional effects important in the wounding milieu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Differential ILK activity in quiescent and activated stellate cells
In (a) and (b), stellate cells were isolated from normal rats livers as in Methods, allowed to 

adhere to glass-coated culture dishes, and grown in 20% serum-containing medium for 1 day 

(a, quiescent) or 7 days (b, activated). Cells were fixed, and immunohistochemistry was 

performed as described in Methods. Representative images are shown (ILK is labeled with 

AL-488 (green)), and nuclei are labeled with DRAQ5 (pink)). The bar shown in the lower 

right hand corner of (a) represents 10 microns. In (c), stellate cells were as in (a/b); cell 

lysates were subjected to immunoblotting (50 μg total protein) with anti-ILK antibody. 

Representative blots are shown in the top portion of the panel and in the bottom portion of 

the panel, specific bands were scanned and quantitated, and presented graphically (n = 4; *p 
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< 0.05, vs. day 0 or day 2). In (d), quiescent cells were exposed to serum overnight and were 

exposed to the indicated concentrations of QLT-0267 in medium containing 0.1% serum for 

18 hours. Lysates were harvested and GSK3-β phosphorylation was detected by 

immunoblotting as in Methods. Signals were scanned, normalized to the control value, and 

displayed in the graph below the immunoblot (n=3). In (e), activated cells and sample 

processing were as in (d), (n=3, *p < 0.05, compared to control - without QLT). In (f/g), 

cells were as in (d/e) (i.e. quiescent and activated cells, respectively), and phospho-Akt was 

detected by immunoblotting as in Methods (n=3, *p < 0.05, compared to control - without 

QLT).
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Figure 2. Rho-GTPase activity is increased during stellate cell activation
Hepatic stellate cells were isolated as in Figure 1. In (a), stellate cells were grown for the 

time periods shown, cell lysates were harvested and Rho activity measured as in Methods 

(n=3, *p < 0.05, compared to day 0). In (b/c), stellate cells (cultured for 5 days) were 

exposed to the indicated concentrations of adenovirus-ILK (Ad-ILK) (b) or adenovirus Sh-

ILK (c), and Rho activity was measured (n=3, *p < 0.05, compared to no adenovirus). In (d), 

stellate cells were grown for 6 days and serum starved over night and ET-1 (20 nM) and 

LPA (10 mg/mL) were added for the times shown. Cell lysates were harvested and Rho 

activity measured.
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Figure 3. ILK differentially regulates Rho and Rac activity in quiescent and activated stellate 
cells
In (a) and (b), stellate cells were isolated from the livers of normal rats as in methods and in 

(a), cells were studied after growth for 24 hours, while in (b), cells were allowed to undergo 

spontaneous culture induced activation for 6 days. Cells were exposed to the indicated 

adenoviral constructs (adenovirus-expressing ILK (Ad-ILK), adenovirus-expressing ILK 

small interfering short hairpin RNA (Ad-shILK), or a control adenovirus-expressing GFP 

(Ad-GFP) as in Methods and stimulated with ET-1 (20 nM) for 30 minutes prior to harvest. 

Cell lysates were harvested and Rho activity was measured as in Methods (n=3, *p<0.05 

compared to Ad-GFP, #p<0.05 compared to Ad-GFP + ET-1). In (c) and (d), cells were 

isolated and treated same as above and Rac1 activity was measured as in Methods. In the 

upper panel of each (c/d), a Rac activity is visualized in cell lysates subjected to 

immunoblotting to detect active Rac. Specific signals were scanned, normalized to 

appropriate control values, and displayed in the graph below the immunoblot (n=3, *p<0.05 

compared to Ad-GFP, #p<0.05 compared to Ad-GFP + PDGF).
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Figure 4. ILK and Rho regulate smooth muscle β-actin and collagen mRNA expression
In (a) and (b), stellate cells were isolated from the livers of normal rats as in Methods and 

were allowed to undergo spontaneous culture induced activation. Cells were serum starved 

over night and infected with Ad-ShILK, and exposed to ET-1 (20nM), QLT (16 nM), and/or 

Y-27632 (10μM). Smooth muscle α-actin (a), and type I collagen mRNA (b) were measured 

by RT-PCR as in Methods and the data presented graphically (n=3; *p<0.05 vs. control (i.e. 

no serum); #p< 0.01 vs. ET-1; †p<0.05 vs. ET-1 plus QLT and Y-27632 alone). In (c) and 

(d), stellate cells were as above. Cells were serum starved overnight, infected with the 

indicated adenoviral constructs, and exposed to ET-1 (20nM), QLT (16 nM), and/or 

Y-27632 (10μM). Smooth muscle α-actin (c), and collagen (d) were measured by RT-PCR 

as in Methods and the data presented graphically (n=3; * p<0.05, vs. control (i.e. no serum); 

#, p< 0.01 vs. Rho A (V14); † p<0.05 vs. ET-1 plus QLT and Y-27632 alone). In (e), stellate 

cells as above were serum starved over night, infected with Ad-ShILK, and exposed to QLT 

(16 nM), and/or Y-27632 (10μM) for a further 24 hours. One sample of cells was exposed to 

serum as a control. Cell lysates were harvested and subjected to immunoblotting to detect 

smooth muscle α-actin and β-actin and a representative immunoblot is shown in top panel. 

Specific signals were scanned, normalized to control, and displayed graphically (n=3, 

*p<0.05, versus serum; #, p< 0.01 versus QLT and Y-27632 alone). In (f), cells were as in 

(e), with the exception that adenovirus expressing active Rho A (V14) was introduced 24 

hours prior to other compounds (n=3, *p<0.05, versus Rho A V14; #, p< 0.01 versus QLT 

and Y-27632 alone. In (g), cells, adenoviruses, and inhibitors were as in (e), and cells were 
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fixed and actin was detected as in Methods. Images are representative of 10 others. The bar 

represents 10 microns.
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Figure 5. Regulation of Rho proteins during stellate cell activation
In (a), stellate cells were isolated from the livers of normal rats as in Methods and were 

allowed to undergo spontaneous culture induced activation for the indicated number of days. 

Rho GAP (left), Rho GDI (center), and Rho GEF (right) mRNA were measured by RT-PCR 

as in Methods and the data presented graphically (n=3, *p<0.05, compared to the level for 

day 1). In (b), stellate cells as above were subjected to immunoblotting (50 μg of total 

protein) with anti-Rho-GEF antibody. A representative immunoblot is shown in the upper 

panel, and below it, a stripped blot re-probed for β-actin; subsequently, specific bands were 

quantified, normalized to the signal for β-actin and the data presented graphically below (n = 

5; *p<0.05, compared with the signal for day 1). In (c), cells were allowed to grow for 6 

days, and cells were exposed to the indicated concentrations of QLT-0267 in medium 

containing 0.1% serum for 18 hours. Lysates were harvested and RhoGEF was detected by 

immunoblotting as in Methods. Signals were scanned, normalized to the control value, and 

displayed in the graph below the immunoblot (n=3, *p<0.05, compared to control - without 

QLT).
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Figure 6. Ga12 and Ga13 expression is stimulated during stellate cell activation
In (a) and (b), stellate cells were isolated from normal rat livers and were allowed to undergo 

spontaneous culture induced activation for the indicated number of days. Cell lysates were 

subjected to immunoblotting to detect Gα12 and Gα13, respectively as in Methods. A 

representative immunoblot is shown in the upper panel, and below it, a stripped blot re-

probed for β-actin; subsequently, specific bands were quantified, normalized to the signal for 

β-actin and presented graphically (n = 3; *p<0.05, compared with the signal for day 0). In 

(c) and (d), stellate cells were allowed to grow for 5 days in culture, and were then infected 

with the indicated adenoviral constructs as in Figure 3. Forty-eight hours later, cell lysates 

(50 μg total protein) were subjected to immunoblotting to detect Gα12 and Gα13. A 

representative immunoblot is shown in the top panels, and immediately below it, a stripped 

blot re-probed for β-actin; subsequently, specific bands were quantified, normalized to the 

signal for β-actin and presented graphically (n = 3; *p<0.05, compared to control or Ad-

GFP).
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Figure 7. ILK modulates expression of Ga12 and Ga13 in activated stellate cells
In (a) through (d), stellate cells were as in Figure 1; each quiescent (cultured for one day) 

and activated cells (cultured for 7 days) were exposed to adenovirus-expressing ILK (Ad-

ILK) for 24 hours. Forty-eight hours later, cell lysates (50 μg total proteins) were subjected 

to immunoblotting to detect Gα12 (a/b) or Gα13 (c/d). Representative immunoblots are 

shown in the upper panels, and below them, a stripped blot re-probed for β-actin; 

subsequently, specific bands were quantified, normalized to the signal for β-actin and 

presented graphically (n = 3; *p<0.05, compared to “0”). In (e) and (f), activated stellate 

cells were exposed to different concentrations of QLT for 18 hours in medium containing 

0.1% serum, cell lysates were harvested (50 μg total protein) and subjected to 

immunoblotting to detect Gα12 and Gα13. A representative immunoblot is shown in the 

upper panel, and below it, a stripped blot re-probed for β-actin; specific bands were 

quantified, normalized to the signal for β-actin and presented graphically (n = 3; *p<0.05, 

compared to “0”).
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Figure 8. A functional effect for Ga12 and Ga13 activated stellate cells
In (a) and (b), stellate cells were isolated from normal rat livers and were allowed to undergo 

spontaneous culture induced activation for 48 hours. Cells were serum starved overnight and 

infected with the adenoviral p115-RGS construct as in Methods. Cells at the indicated day in 

culture were harvested and smooth muscle α actin and collagen mRNA were measured by 

RT-PCR as in Methods and the data presented graphically (n=3, *p<0.05, compared to day 

3; # p < 0.05 compared to control). In (c & d), cells were as in (a & b), with the exception 

that adenovirus over expressing ILK (Ad-ILK) was introduced 24 hours after the p115-RGS 

construct. Cells were harvested 24 hours later and smooth muscle α actin and collagen 

mRNA were measured by RT-PCR as in Methods and the data presented graphically (n=3, 

*p<0.05, compared to control (no viral constructs; # p < 0.05 compared to Ad-ILK alone).
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Figure 9. A working model for ILK signaling in quiescent and activated hepatic stellate cells
This figure highlights previously established ILK signaling partners and emphasizes data 

from the current study. In quiescent cells, integrins likely have low affinity for extracellular 

matrix (ECM) molecules (i.e. such as collagen I, fibronectin, etc... - which are in low 

abundance) and are therefore in a low affinity or inactive confirmation. Thus, ILK is 

relatively inactive. In addition, the Gα12/13 pathway is inactive (delineated by dotted lines). 

Upon ligand binding (i.e., collagen I, fibronectin, etc), the confirmation of the integrin 

changes and ILK binds to the cytoplasmic tail of β-integrin, resulting in formation of 

PINCH-ILK-parvin ternary complexes. ILK subsequently recruits other signaling molecules. 

In stellate cells, ILK is engaged in G-protein receptor signaling cross talk, where it appears 

to amplify Gα12/13 mediated signals. Activation of this ILK/Gα12/13 signaling pathway 

has several functional consequences, including in actin reorganization (and actin synthesis), 

cell spreading, cell migration, and extracellular matrix synthesis. The pathways leading to 

synthesis of ECM are likely to be multiple, and likely include both ILK direct pathways, as 

well as those that cross talk through the Gα12/13 and the Rho pathway. The activated 

stellate cell cartoon is meant to depict these both.
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