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Abstract

We describe some new conceptual tools for the rigorous, mathematical description of the “set-complexity” of graphs.
This set-complexity has been shown previously to be a useful measure for analyzing some biological networks, and in
discussing biological information in a quantitative fashion. The advances described here allow us to define some
significant relationships between the set-complexity measure and the structure of graphs, and of their component
sub-graphs. We show here that modular graph structures tend to maximize the set-complexity of graphs. We point
out the relationship between modularity and redundancy, and discuss the significance of set-complexity in this
regard. We specifically discuss the relationship between complexity and entropy in the case of complete-bipartite
graphs, and present a new method for constructing highly complex, binary graphs. These results can be extended to
the case of ternary graphs, and to other multi-edge graphs, which are fundamentally more relevant to biological
structures and systems. Finally, our results lead us to an approach for extracting high complexity modular graphs from
large, noisy graphs with low information content. We illustrate this approach with two examples.
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Introduction
Most physical, communications, social, and biological
networks are usefully represented as graphs, with vary-
ing levels of complexity. The topology and the statistical
structures of these graphs are central to understanding the
functional properties of these systems. Our primary con-
cern here is the representation and properties of biological
networks, as reflected in the graphs used to represent
these complex systems. The application of our results,
however, is significantly broader. Previous attempts to elu-
cidate the fundamental concept of biological information
have led to a proposed, general measure of complexity,
or information content, based on Kolmogorov complex-
ity [1,2], that resolves some of the perplexing paradoxes
of biologically relevant meaning that arise in definitions
of information and complexity [1]. We used this approach
successfully in analyzing the information in gene inter-
action networks of yeast [3,4]. It was shown that the
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most informative networks are those with the highest set-
complexity (a detailed discussion about applications of
the set-complexity to biology and related problems can be
found in the cited articles). The properties of our measure,
which we call “set-complexity”, are expected to be fruitful
in describing a large class of problems in biology. It is clear,
however, that we need more mathematical understanding
of the properties of this complexity measure, and we have
therefore focused initially on the set-complexity of graphs,
and begun by analyzing the mathematical properties of
relatively simple structures.
The results here extend our previous results and

increase understanding of the structure of graphs and
sub-graphs with the highest set-complexity. We have pre-
viously suggested, for example, that highly complex graphs
have a more modular architecture than others [4]. The
aim of this article is twofold. First, we aim to provide
a mathematical foundation for this suggestion, the rela-
tion between the set-complexity and the graph structure.
Second, we show that this research has practical uses.
To accomplish the first goal we develop a formalism that
allows us to analyze the set-complexity in a rigorous fash-
ion and capture some of its essential properties. Our
approach uses stochastic methods to analyze graphs by
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defining specific random variables describing interactions
between nodes in a graph. Information-theoretical fea-
tures of the variables defined are then used to investigate
the set-complexity, � , measure. To accomplish the sec-
ond goal, we present two examples illustrating how the
set-complexity theory can be used to identify specific sub-
graphs with modular properties. Note that the theoretical
formalism of this article extends the ideas from our pre-
vious article [5] that presented a technical background of
set-complexity and its computation as well as initial anal-
ysis of complexity of some graphs. Article [5] does not
touch the application of this formalism in finding modular
structure from real-world networks, which is a major goal
of this article.
The article is structured as follows. First, we describe

basic definitions and notation, and present the relation
between the complexity and the entropy for complete
bipartite graphs (CBG), an important class of binary graph
for this analysis. We then describe amethod for construct-
ing highly complex binary graphs and provide two exam-
ples which show how to use the set-complexity to analyze
information content of a graph and its sub-graphs. We
conclude the article by discussing results, open questions
and plans for future work.

Preliminaries
Let G = (V , E) denote a graph, where V stands for the set
of vertices and E the set of edges. The number of nodes
in a graph is denoted by N, i.e., V = {1, . . . ,N}. Exis-
tence of an edge between nodes i and j is denoted by
(i, j) ∈ E, and M labels for the graph edges are assumed.
The labels are enumerated from 0 to M − 1. Let us take
a ∈ {0, . . . ,M − 1} . The notation (i, j) = a states that the
label of the edge connecting nodes i and j is equal to a.
We also assume that the graphs are fully connected in the
following sense. A graph can always be formally extended
to a multi-labeled, fully connected graph by defining an
edge label 0, the usual designation for no connection. For
example, in binary graphs, which are the main subject of
this article, (i, j) = 1 means that nodes i and j are con-
nected and (i, j) = 0 stands for a pair of disconnected
nodes.
For each node i ∈ V we define the probability distri-

bution Pi(a), which is the fraction of nodes connected to
node i by edges labeled a. In other words, if we choose a
particular i and then randomly select another node, j, from
the remaining N − 1 nodes, the value of Pi(a) is the prob-
ability of (i, j) = a. In a binary graph, Pi(1) is the number
of nodes connected to node i divided by N − 1.
If we select two nodes, i and j, and randomly choose a

third node k, Pij(a, b) is the probability that (i, k) = a and
(j, k) = b. For example, to calculate Pij(1, 0) in a binary
graph, we count the number of nodes connected to i and
not connected to j and divide it by N − 2. The notation

Pij(a, ·) and Pij(·, b) stands for marginalization of Pij(a, b)
over j and i respectively, i.e.,

Pij(a, ·) =
M−1∑

b=0
Pij(a, b) and Pij(·, b) =

M−1∑

a=0
Pij(a, b).

(1)

Finally, conditional probabilities are defined as:

Pij(a | b) = Pij(a, b)
Pij(·, b) . (2)

Remark 1. Pi(a) and Pij(a, ·) are two probability distri-
butions of random variables defined on the same alphabet
{0, . . . ,M − 1}. The difference between these two quanti-
ties is small: both tend to zero as N goes to infinity. Pi(a)
describes a situation when only one node is selected, and
we randomly choose another node. Pij(a, ·) describes a sit-
uation when we are given a pair of nodes and a third node
is chosen at random. The value of the random variable is
the label of the edge between i and the selected node.

Shannon’s entropy will be denoted by H[ ·], e.g.,

H[ Pi(a)]= − 1
logM

M−1∑

a=0
Pi(a) log Pi(a). (3)

All logarithms in this article are to the base two. To
normalize, the entropies are multiplied by 1/ logM. Note
that although the values of H[ Pi(a)] and H[ Pij(a, ·)] are
normalized to the interval [ 0, 1], the value of H[ Pij(a, b)]
is normalized to [ 0, 2], since the maximal value of the
entropy of a joint distribution is equal to the sum of
entropies of the single variables. We want to preserve
this property of entropies after normalization. The nota-
tion of H[ Pi(a)] and H[ Pij(a, b)] will be abbreviated as Hi
and Hij, respectively. The set-complexity of a graph G is
defined as

�(G) = C
N∑

i=2

i−1∑

j=1
max(Hi,Hj)mij(1 − mij), (4)

where C is a normalization factor of the form 8/(N(N −
1)) andmij is the normalized mutual information between
nodes i and j,

mij = 1
logM

M−1∑

a,b=0
Pij(a, b) log

Pij(a, b)
Pij(a, ·)Pij(·, b) . (5)

We previously introduced the definition ofmutual infor-
mation for graphs [1]. Intuitively, it measures the reduc-
tion of the uncertainty about the connectivity of one node
given the connectivity pattern of a second node. It is there-
fore natural to define this quantity as mutual informa-
tion between random variables described by distributions
Pij(a, ·) and Pij(·, b), c.f., Remark 1.
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In the remainder of the article we will be exploiting a
useful fact [6] thatmij can be rewritten as

mij = H[ Pij(a, ·)]+C1

M−1∑

a,b=0
Pij(a, b) logPij(a | b), (6)

where C1 = 1/ logM. Consequently,

mij = H[ Pij(a, ·)]+H[ Pij(·, b)]−Hij. (7)

Complexity of CBGs
A set of nodes in a CBG can be represented as a sum of two
disjoint sets O1 and O2 such that if nodes i and j belong
to different sets, then (i, j) = 1, and if they belong to the
same set, then (i, j) = 0. Sets O1 and O2 are referred to
as orbits. This is consistent with the graph theory defini-
tion of an orbit, which holds that an orbit is an equivalence
class of nodes under the action of an automorphism [7].
This means that all nodes in an orbit are connected in
the same way to other nodes. The symbol Km,N−m is
used to denote a CBG of size N, where m is the size
of O1.
Consider nodes i and j from the same orbit. By the

definition of CBGs, (i, k) = (k, j) for any third node k.
Thus, Pij(0, 1) = Pij(1, 0) = 0. Consequently, Pij(0, 0) =
Pij(0, ·) = Pij(·, 0) and Pij(1, 1) = Pij(1, ·) = Pij(·, 1). This
leads us to Pij(0 | 0) = Pij(1 | 1) = 1 and Pij(0 | 1) =
Pij(1 | 0) = 0. Similar reasoning holds for nodes from dif-
ferent orbits such that Pij(a | a) = 0 and Pij(a | b) = 1 for
a �= b. If we apply this result to Equation (6), we can see
that the second component of the sum on the right hand
side of the equation is zero. Therefore, we have proved the
following lemma.

Lemma 1. If G is a CBG, then for any pair of nodes i
and j

mij = H[ Pij(a, ·)] .

Next we elucidate the relationship between entropy and
the set-complexity of CBGs. However, we first have to deal
with the difference betweenHi andH[ Pi(a, ·)]. This prob-
lem can be resolved by introducing a common approxi-
mation for these two entropies. This is doable, because
the difference between Pij(a, ·) and Pi(a) converges to zero
with the increasing size of the graph, c.f., Remark 1. Let
us show a common approximation of these entropies in
the case of binary graphs. Suppose nodes i and j are in
O1, then Pi(0) = (m − 1)/(N − 1), Pij(0, ·) = Pij(0, 0) =
(m − 2)/(N − 2). Both values can be reasonably approxi-
mated by m/N for large N. A similar analysis reveals that
Pij(1, ·) and Pi(1) can be approximated by (N − m)/N .

Thus, the common approximation for Hi and H[ Pij(a, ·)]
should have the following form:

H(q) = −q log q − (1 − q) log(1 − q), (8)

where q=m/N . A similar analysis shows that Equation (8)
can also be used to approximate entropies when i, j ∈ O2
or i ∈ O1, j ∈ O2. The notation H(q) emphasizes that this
quantity depends only on the proportion of nodes in orbits
O1 and O2 and does not depend on the size of the graph.

Theorem 1. Let GN be a sequence of complete bipartite
graphs, such that the ratio q = m/N is constant for all N.
Then, lim

N→∞ �(GN ) = 4(H2(q) − H3(q)).

Proof. Lemma 1 allows us to rewrite each component
of the sum on the right hand side of Equation (4) as

max(Hi,Hj)H[ Pij(a, ·)] (1 − H[ Pij(a, ·)] ). (9)

Since the values of all entropies presented above con-
verge to H(q), it holds that

lim
N→∞ �(GN ) = C

N∑

i=2

i−1∑

j=1
(H2(q) − H3(q)). (10)

Note that the sum on the right hand side of
Equation (10) consists of N(N − 1)/2 identical elements.
Thus, Equation (10) can be rewritten to the equation of
the theorem. QED.
We see that the complexity of CBGs depends only on the

entropy (mutual information is fully expressible in terms
of the entropy for CBGs); thus, the complexity depends
only on the sizes ofO1 andO2. The equation in Theorem1
is maximized for H(q) = 2/3 leading to �max ≈ 0.59, the
highest obtainable value of � for CBGs. The complexity
of CBGs is maximized when q ≈ 0.174, i.e., when one of
two orbits contains about 17.4% of nodes, see Figure 1.
On the other hand, if both orbits are equal, entropies are
close to one (more formally, they tend to one, whenN goes
to infinity), and the value of the set-complexity is close to
zero.
We can easily see that the complexity can be bounded:

�(G) ≤ 2
N(N − 1)

N∑

i=2

i−1∑

j=1
max(Hi,Hj). (11)

Figure 1 shows that CBGs with low values of q have
complexity that is very close to the upper bound. Com-
plexity of CBGs with high node entropies tends to zero (as
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Figure 1 Set-complexity and entropy versus sizes of orbits. The
set-complexity of CBGs (red) and their entropy (green) as functions of
the proportion of nodes in one orbit to the other.

the upper bound raises at the same time). This suggests a
method for construction of complex graphs from CBGs.

Complex binary graphs
At the end of the last section we show that the graphs
with high values of � (close to one) should exhibit high
values of node entropies similar to KN/2,N/2 graphs. This
section shows that, even thoughKN/2,N/2 graphs have zero
complexity, they are a good starting point for constructing
highly complex graphs, in that a relatively small number
of modifications is needed to increase � substantially. We
propose a stochastic transformation Fp of a graph such
that for any pair of nodes i and j the label of (i, j) is flipped
to the opposite value with a probability p. We use G∗ to
denote the graph produced by this transformation applied
to G.
Let us consider a sequence of graphs GN . We have seen

already that in this case the non-zero joint probabilities
converge to 0.5 when N tends to infinity. Therefore, the
entropiesHi and mutual informationmij converge to one,
which implies

lim
N→∞ �(GN ) = 0. (12)

Let us apply the transformation Fp to GN . We want to
describe the complexity of the sequence of transformed
graphs G∗

N . To illustrate the impact of the transforma-
tion on the joint probabilities Pij(a, b), take nodes i, j, and
k from the same orbit, so that (i, k) = (j, k) = 0. The
probability that labels of both edges will be flipped to one
is equal to p2, the probability that only one label will be
flipped is 2p(1 − p), and the probability that both labels
will not be flipped is (1 − p)2. Thus, if for the original
graph Pij(a, a) ≈ 0.5 (i.e., nodes i and j are from the same
orbit as in the example above), then after the transforma-
tion we expect that the probabilities Pij(a, b) (for a �= b)

will be equal to p(1−p), and the probabilities Pij(a, a) will
become 1/2 − p(1 − p), or more formally

E[ Pij(0, 0)]= E[ Pij(1, 1)]= 1
2 − p(1 − p),

E[ Pij(1, 0)]= E[ Pij(0, 1)]= p(1 − p), (13)

where E[ ·] stands for the expected value. A similar analy-
sis conducted for nodes from different orbits reveals that
E[ Pij(a, a)]= p(1 − p) and E[ Pij(a, b)]= 1/2 − p(1 − p),
where a �= b.
We see that the expected value of the node entropies

remains one, i.e., the transformation preserves the entropy
of nodes in KN/2,N/2 graphs, but it alters the mutual infor-
mationmij. The complexity is maximized whenmij = 1/2.
Since the node entropies are close to one, it follows from
Equation (7) that mij = 1/2 when Hij = 3/2. We can
calculate that for the transformation Fp, E[Hij]= 3/2 iff
p ≈ 0.058428. This discussion can be summarized in the
following theorem.

Theorem 2. Let GN be a sequence of graphs, and let G∗
N

be a sequence of corresponding outputs of the transforma-
tion Fp with p ≈ 0.058428. Then, lim

N→∞E[�(G∗
N )]= 1.

This argument demonstrates that if we apply the trans-
formation Fp to large graphs, the outcome will be a
graph with the complexity close to one. Since the rela-
tive number of transformed edges is low, the bipartite
structure of the graph is largely preserved. The relation
between the probability of transforming an edge and the
expected value of the set-complexity of a CBG is plotted
in Figure 2. In this figure, we can see that the complex-
ity grows rapidly for small values of the probability. The
decrease after the maximum can be inferred from the fact
increased randomness beyond this point decreases the
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Figure 2 Dependency of the set-complexity on the flip
probability. The relation between the probability, p, that an edge of
a CBG will be flipped and the set-complexity,� , of the CBG.
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mutual information between nodes severely, degrading
the set-complexity.
To illustrate this theorem experimentally, we applied the

transformation to KN/2,N/2 graphs with N = 50, 100,
200, 300, 500 nodes. The average values of �(G∗) ranged
from 0.9154 (with standard deviation 0.0185 on 500 exper-
iments) for N = 50 to 0.9926 (with standard deviation
0.0004 on 50 experiments) for N = 500.

Applications
We have shown how to construct high � graphs. The
method used for this construction enforces modular
structure of these graphs. One may ask whether modu-
larity is a property of all complex graphs. The answer,
for these binary graphs, is yes. In [8], we proved that any
complex graph must exhibit a modular structure; how-
ever, there can be some “noise” in the structure. The
nature of that noise is similar to that described above.
In other words, a binary graph with the set-complexity
score close to one exhibits a structure similar to an out-
come of the transformation Fp applied to KN/2,N/2 with
p ≈ 0.058. This result was generalized to graphs with
M > 2, so-called multi-colored graphs. For this general-
ization we extended the definition of a CBG, and defined
complete multi-partite graphs (see [8] for more details). In
the same article we analyzed some examples of complex
graphs (� of these graphs was close to one). To describe
the information content of these graphs we used a
histogram of

φij = max(Hi,Hj)mij(1 − mij). (14)

It is obvious that � can be expressed as the average
of φij.
One way of extending the analysis of a graph may be

described as a problem similar to retrieving a signal from
a noisy transmission of information. Here, the signal is a
sub-graph showing some type of regular structure, e.g.,
a set of nodes with similar connectivity pattern, and the
noise comes from all the nodes that do not exhibit any
regular connectivity patterns, such as the nodes of a ran-
dom graph. Structures like this arise in biology whenever
we locate members of a large set of objects based on some
common properties, for example, when we select genes
based on their correlated expression levels. In contrast
to [8], we focus our attention on graphs with very low
values of the complexity score. Low complexity graphs
can have different characters: some of them may be sim-
ple random graphs, while others can have a very regular
structure, like CBGs. Both of these types of graphs are
uncommon in biological applications. On one hand, bio-
logical systems are not random; thus, characteristics of
their network representations cannot exhibit values sim-
ilar to those of randomly generated graphs. On the other
hand, such graphs are not completely regular. In biological

sciences we almost always deal with an interestingmixture
of randomness and regularity. We will focus our attention
here on graphs whose structure is a mix of random and
regular connectivity patterns.
Generally speaking the proposed approach focuses on

finding a specific subset of nodes, a sub-graph, with a high
contribution to � . In order to do this we construct a his-
togram of φij, the complexity score for a specific pair of
nodes, and for every node i define the following quantity:

�i(T) =
N∑

j=1
〈φij > T〉, (15)

where T is a threshold for values of φij and 〈·〉 stands for
the Iverson’s bracket, i.e., a logic function that takes value
1, if the statement inside the bracket is true, and 0 other-
wise. In summary, for a specific i, �i(T) is the number of
pairs (i, j) in the graph such that φij > T . By looking at the
rightmost tail of the histogram of �i(T) we can identify
nodes with the highest contribution to � .
We now present two examples. The first one is an arti-

ficially generated graph and the second is based on a
biological data set. The two examples are followed by the
discussion of the proposed approach: relation to commu-
nity detection, modularity of networks/data sets, possible
applications and plans for future work. We want to stress
that the purpose of this discussion is to show that the set-
complexity, and its components φij, of a graph gives us an
insight into the graph’s structural properties. Neverthe-
less, this approach may also be interesting for analyzing
real biological data.

Example 1: artificially generated graph
In the first example we use a 300 node graph consisting of
two sub-graphs. The first sub-graph is a K25,25 graph and
the second is a random graph (also randomly connected to
the CBG) in which the probability that two nodes are con-
nected is 1/2. The probability of an edge between a pair
of nodes from different sub-graphs is 1/2. Another exam-
ple, based on real biological data, is given in the second
example.
The graph overall exhibits a very low value of � , rela-

tive to most CBGs, about 0.011. Low complexity indicates,
in this case, a graph with a high number of randomly
connected nodes. On the other hand, a low � graph can
be characteristic of a very regular graph structure. Look-
ing at mutual information simply allows us to distinguish
between a very regular and a very random graph. In the
present example mutual information is low: itsmean value
is about 0.02. At the same time all node entropies are
close to one. This indicates that the structure of the graph
is more random than regular. Nevertheless, there is a
modular sub-graph in this graph.
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There are 299 φij values for every node i in the graph
(number of undirected pairs that include i). The values
of φij for nodes within the CBG sub-graph should be, on
average, higher than for nodes from a random sub-graph.
Figure 3a,b show values of φ1j and φ51j respectively. We
can see that for i = 51 most of φij values are lower than
0.05, while for i = 1, a considerable fraction of pairs (i, j)
have φij > 0.05 (most of these belong to the complete
bipartite sub-graph).
Figure 3c shows the histogram of φij. As expected, most

of these values are concentrated close to zero, and the
right tail is almost invisible. Nevertheless, the right tail
is present, and the comparison of φij for i = 1 and i =
51 indicates that nodes from the complete bipartite sub-
graph make stronger contributions to the tail than nodes
from the random sub-graph. To illustrate this we fixed the
threshold, T = 0.05, and calculated the number of pairs
with φij > 0.05, defined as �i(0.05). Figure 3d shows the
histogram of �i(0.05).
Two groups of nodes are clearly distinguishable.

The nodes in the right component of the histogram
(�i(0.05) > 25) are the 50 nodes of the complete bipartite

sub-graph, whereas the nodes in the left component are
from the random sub-graph. Figure 4 illustrates the entire
graph and highlights the detected component.
Let us take a closer look at what happens when we

change T. Figure 3e,f show histograms of �i(0.025) and
�i(0.1), respectively. The complete bipartite sub-graph
can be identified in both cases; however, in the first case
(T = 0.025) both groups of nodes are close to one another.
Decreasing T below 0.025 will result in misclassification
of a significant number of nodes (mixing the two classes
clearly separable in the present case). On the other hand,
increasing T makes the group on the right more flat,
therefore it becomes more difficult to distinguish between
these groups. For example, in Figure 3f we show the his-
togram of �i(0.1) where the right group looks almost like
a long tail of the group on the left.
As we can see the choice of the threshold T can be

somewhat arbitrary at the outset. Our approach yields
a tool for analyzing graphs. Thus, it could be used in
a supervised mode, where T is specified by the user,
or the threshold could be systematically scanned in an
unsupervised mode.
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Figure 3 Complexity analysis of the artificially generated graph. Plots of (a) φ1j and (b) φ51j . (c) Histogram of φij for all pairs of nodes in the
graph. Histograms of �i(T) for (d) T = 0.05, (e) T = 0.025, and (f) T = 0.1.
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Figure 4 Capturing the regular structure in the artificially
generated graph. This graph (disregarding the color) represents the
binary graph from the first example of the article. The graph, which is
mainly random, contains a complete bipartite sub-graph K25,25. This
highly structured sub-graph, highlighted in the figure, was
successfully detected by the set-complexity-based approach. The two
modules of the K25,25 graph are shown in red and blue.

Example 2: biological data set
The second example is based on a real biological data set,
and is both more realistic and more difficult. The data is a
set of cross-correlations between time series of expression
levels of 547 genes showing periodic variations during
the cell cycle of the HeLa cells. These correlations were
computed from data presented in [9]. Figure 5 shows a
histogram of this data set. We represented this data as a
network with three types of edges (I, II, III) correspond-
ing to high positive correlation (>0.8) between two genes,
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Figure 5 The data from the biological example. Histogram of
cross-correlations between time series of expression levels of 547
genes during the cell cycle of the HeLa cells.

high negative correlation (<−0.8), and intermediate-to-
no correlation (between−0.8 and 0.8). Up to now we have
considered only binary graphs. This example, however,
requires a ternary graph,M = 3.
We want to solve the problem of finding a set, or sets,

of nodes with a similar connectivity pattern, which might
represent amodular sub-graph. This case is more difficult,
because we do not know a priori that there is any modular
structure. Consequently, we initially choose low values for
T, to avoid omitting potentially relevant nodes.
We start by analyzing the set-complexity and its com-

ponents, φij. The value of � is small: about 0.06. Figure 6a
shows the histogram of φij for the correlation graph. The
histogram is similar to the one discussed in the previous
example (see Figure 3c). We set the threshold, T, to 0.05
and compute �i(0.05) for all i, resulting in the histogram
in Figure 6b. Note that this histogram is different from
that presented in Figure 3d, where a subgroup of nodes is
clearly separated from the others. We define a sub-graph
of the original correlation graph by identifying only nodes
for which �i(0.05) > 200. We then redefine the graph
as the sub-graph containing only these nodes, and then
repeat the analysis. Since only nodes within the sub-graph
are used in this calculation, the φij will, in general, all be
different, and a new threshold will need to be set.
The new graph consists of 251 nodes. Recomputing

� and φij shows that the set-complexity of this graph
is significantly higher—about 0.32. The histogram of the
recalculated φij, presented in Figure 6c, is very different
from the histogram in Figure 6a. We set a new threshold
T equal to 0.5 and calculate the values of �i(0.5) for all i.
The histogram of this is presented in Figure 6d. Selecting
97 nodes for which �i(0.5) > 60 results in a graph whose
complexity is about 0.7. It exhibits a bi-modular structure
containing 33 and 64 nodes in each of the two modules.
The nodes within each module are strongly connected via
edges of type I (strong positive correlation), and nodes
from different modules are usually connected via edges of
type II (strong negative correlation). Some nodes are also
connected via the type III edges. Table 1 shows the exact
number of edges of different types within and between the
modules. The genes present in the modules indicated in
Table 1 are significantly enriched for genes known to be
directly involved in the cell cycle. The detailed analysis of
this network, however, its structure and biology, will be
discussed in a future publication.

Conclusion
We have shown that, in general, a modular structure
maximizes the set-complexity of a graph. It has been for-
mally proved, however, that this is not always the case.
If a binary graph is composed of two modules of iden-
tically connected nodes (orbits) and the modules have
the same sizes, then the complexity of such a graph is
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Figure 6 Complexity analysis of the graph generated from the biological data. Histograms of (a) φij and (b) �i(0.05) for the original graph.
Histograms of (c) φij and (d) �i(0.5) for the selected 251 node sub-graph.

almost zero. The complexity grows rapidly, however, when
we perturb the graph structure by breaking this symme-
try. The symmetry can be broken in two ways: either the
number of nodes in the components of the CBG can be
made unequal, or the complete bipartite character can
be broken by adding or deleting edges [8]. Actually, the
number of altered edges that can significantly increase �

is a relatively small number; and the bi-modular struc-
ture of the graph is essentially preserved in a graph with
significant � . Similar results can be obtained for multi-
colored edge graphs, with M > 2 [8]. We presented a
method and two examples here that suggest useful appli-
cations of the described theory to analyzing real biological
data—finding highly informative modular sub-graphs in a
large graph.
There are several technical aspects of the analysis pre-

sented above that need to be considered. First, in the
second example, the procedure was applied iteratively,

twice. We chose a sub-graph of interest and repeated the
procedure on this sub-graph. It is important to note that
in the iterations the values of φij were recomputed for the
sub-graph only: the nodes and edges that are not in the
sub-graph are omitted from computation. Since the set-
complexity is defined as a context dependent measure, we
treat one subset of nodes as a context for the other sub-
set. Therefore, by omitting a group of nodes we change
the context for the remaining nodes and change the com-
plexity. It is clear that the subset of nodes considered is an
important part of the definition of the set-complexity.
Our examples illustrate how to use set-complexity to

capture the information content of a graph. For instance,
histograms on Figure 6a,c show the increase of informa-
tion when we narrow the original graph from 541 to 251
nodes. This information gain is also quantified by the
set-complexity, which increases from 0.06 to 0.32. This
can be useful for an evaluation of a network. Even if a

Table 1 Distribution of different types of edges in the 97 node sub-graph of the original correlation graph

Type I edges Type II edges Type III edges

(strong positive correlation) (strong negative correlation)

Module 1 (33 nodes) 373 (70.6%) 25 (4.7%) 130 (24.6%)

Module 2 (64 nodes) 1644 (81.6%) 46 (2.3%) 326 (16.2%)

Connections between modules 109 (5.2%) 1405 (66.5%) 598 (28.3%)

In parentheses we show the percentage of edges of each type in the set of all edges for each module as well as between the modules. In bold we indicate the largest
edge type for each graph component.
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network seems to be uninformative, we can attempt to
extract an informative set of hidden regular patterns by
narrowing down the set of nodes. This can be especially
useful for networks with multiple types of edges (multi-
color graphs), for which existing community detection
and clustering methods are not suitable.
We wish to point out a significant potential relationship

between two ideas presented here. The notion of mod-
ularity, based on the common connectedness of sets of
nodes, as reflected in the measure of mutual information
in the graph, is closely related to the idea of redundancy.
This is because the modularity often stems from sets of
nodes that are connected in similar ways to other nodes.
Redundancy, in turn, has a strong functional significance
in all functional systems, which is that it provides a robust-
ness against damage or loss. If there are two ormore nodes
that are connected in almost the same fashion, loss of one
of these nodes or its connection(s) can be mitigated to
some extent by having a stand in, or partial stand in, in
another node. Clearly this is a quantitative issue that needs
more attention to fully characterize. What is also clear is
that with too much redundancy, or regularity, the range
of responses and the sensitivity to a variety of inputs is
limited. This qualitative notion parallels the very idea of
maximizing � in that regularity (similar to redundancy)
is balanced against variety (similar to randomness). The
idea is appealing in thinking about biology, in that the
robustness to perturbation or damage and the sensitivity
to perturbation of damage are two general properties that
biological evolution seeks to balance in many ways. It may
be that � can provide some quantitative insight into this
biological balancing act.
Though the concept of set-complexity, defining a bal-

ance between regularity and randomness, is promising
for future applications in biology, the two examples in
this article are illustrations of a possible approach based
on set-complexity and should be viewed as complemen-
tary to traditional community detection algorithms. At
the current stage of development, the proposed approach
requires supervision, but it is clear that scanning through
threshold parameter space will be a key to automating
the method. Since this article (as well as [8]) provides
a rigorous theoretical background for the set-complexity
of graphs, it should be possible to derive an automated
approach for performing an analysis as illustrated in the
examples. One possible direction for future research is to
combine the search for a maximally complex sub-graph
with optimization techniques, such as hill-climbing, using
stochastic sampling methods.
Another interesting extension to our work is to look

at how to use set-complexity as a specific measure of
the modularity of graphs and of data sets. This exten-
sion would allow us to analyze modularity of multi-labeled
graphs, which is currently impossible using traditional

measures of modularity, since there is no defined inter-
pretation of modularity for graphs with various types of
labels. This will be a direction for future work.
The set-complexity was originally defined as a measure

of complexity of sets of binary strings [1]. This defini-
tion can easily be used for characterizing the complexity
of dynamics of various types of Boolean networks (for
example, random, probabilistic), in which a binary string
represents a state of a network and, thus, a dynamic tra-
jectory of a network is a set of strings [1,10]. We have
defined the set-complexity in terms of Kolmogorov com-
plexity [1]. Unfortunately, since Kolmogorov complexity
is incomputable, it needs to be approximated by algorith-
mic compression of binary strings, which represent states
of the network. This approach has two drawbacks: (1) the
approximated set-complexity is not normalized, so it is
difficult to compare complexities of networks with differ-
ent size, and (2) we can say nothing about the structure of
the sequences: we can only hypothesize that these strings
should be somewhat similar to one another but, in con-
trast to the graph case, we cannot quantify these relations.
It may be interesting to calculate the complexity of a set of
strings in amanner similar to that presented in the current
article. We have begun this type of analysis, and the pre-
liminary results look promising. We believe that such an
approach may give us interesting insights into the dynam-
ics and information structures of various types of Boolean
networks.
We have demonstrated that the probabilistic descrip-

tion of the set-complexity sets up a formal framework for
reasoning about some properties of our measure of com-
plexity. We are able to prove some important properties
of the set-complexity of graphs. Such an approach can be
fruitful in the further investigations of this subject. This
may result in better understanding of the nature of com-
plexity in system biology, which may play a key role from
the perspective of practical applications of that theory.
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