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SUMMARY

Optimal design of dose-finding studies with an active control has only been considered in the
literature for regression models with normally distributed errors and known variances, where
the focus is on estimating the smallest dose that achieves the same treatment effect as the active
control. This paper discusses such dose-finding studies from a broader perspective. We consider
a general class of optimality criteria and models arising from an exponential family. Optimal
designs are constructed for several situations and their efficiency is illustrated with examples.
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1. INTRODUCTION

Dose-finding studies are important for investigating the effect of a compound on a response
and have applications in various fields. They are of particular importance in drug development,
because marketed doses have to be safe and provide clinically relevant efficacy (Ting, 2006). In
most of the statistical literature on dose-response studies, a placebo is included as a control group
(Bretz et al., 2008), and numerous authors have worked on optimal designs in such applications
because the use of efficient designs can substantially increase the accuracy of statistical analysis
(Dragalin et al., 2007; Miller et al., 2007; Bornkamp et al., 2011). Dose-response studies that
include a marketed drug as an active control are becoming more popular, especially in prepara-
tion for active-controlled confirmatory noninferiority trials, where the use of a placebo may be
unethical. Hence, there is growing interest in active-controlled studies. For example, Helms et al.
(2015) investigated the finite-sample properties of maximum likelihood estimators of the target
dose in an active-controlled study which achieves the same treatment effect as the active control.
However, optimal design problems for such studies have only been considered in one paper (Dette
et al., 2014). These authors investigated optimal designs for estimating the target dose under the
assumption of a normal distribution with known variances. In particular, they demonstrated the
superiority of the optimal designs over standard designs used in pharmaceutical practice.

In this paper we investigate optimal design problems for dose-finding studies with an active
control from a more general perspective. First, we consider a general class of optimality criteria.
Second, we study exponential families for modelling the distribution of the responses of the new
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drug and the active control, as in practice the assumption of normally distributed responses is
often hard to justify. This enables the design of experiments for active-controlled studies with
discrete data, as motivated by the consulting projects described in the next paragraph. Third,
we demonstrate that even when the assumption of a normal distribution is justifiable, the esti-
mation of the variances has a nontrivial effect on the optimal designs for an active-controlled
study.

The research in the present paper is motivated by two examples where the assumption of
normally distributed responses made by Dette et al. (2014) is hard to justify. The first example
involves a 24-week dose-ranging Phase II study in patients with gouty arthritis to determine the
target dose of a compound in preventing signs and symptoms of flares in chronic gout patients
starting allopurinol therapy. The primary endpoint is the number of flares occurring per subject
within 16 weeks of randomization, which is modelled using a negative binomial distribution for
all treatment arms. The second example is a Phase IIb multicentre, randomized, double-blind,
active-controlled dose-finding study in the treatment of acute migraine, as measured by the per-
centage of patients reporting freedom from pain at two hours post-dose.

For brevity, in this paper we restrict our attention to locally optimal designs (Chernoff, 1953).
Following Chaloner and Verdinelli (1995) and Dette (1997), the methodology introduced in the
present paper can be further developed to address uncertainty in the preliminary information for
the unknown parameters.

2. MODELLING ACTIVE-CONTROLLED STUDIES USING EXPONENTIAL FAMILIES

Consider a clinical trial in which patients are treated either with an active control, i.e., a
standard treatment administered at a fixed dose level, or with a new drug using different dose
levels in order to investigate a dose-response relationship. Let n1 and n2 = N − n1 denote the
numbers of patients randomized to the new drug and to the active control, respectively. We deter-
mine the optimal number of different dose levels for the new drug, the dose levels themselves,
and the optimal number of patients allocated to each dose level.

More formally, we assume that k different dose levels, d1, . . . , dk , are chosen in a dose range,
D ⊂ R

+
0 , for the new drug, and that at each dose level di the experimenter can investigate n1i

patients (i = 1, . . . , k), where n1 = ∑k
i=1 n1i . The optimal numbers n1i , or more precisely the

optimal proportions n1i/n1, will be determined by the design. The responses are modelled as
realizations of independent real-valued random variables Yi j ( j = 1, . . . , n1i ; i = 1, . . . , k). Sim-
ilarly, the responses of patients treated with the active control are modelled as realizations of
independent real-valued random variables Z1, . . . , Zn2 , where all responses are assumed to be
independent. We further assume that the random variables Z j and Yi j have distributions from an
exponential family, with the densities of the Y variables depending on the dose levels di :

f1(y | di , θ1)= exp{cT
1(di , θ1)T1(y)− b1(di , θ1)} h1(y), (1)

f2(z | θ2)= exp{cT
2(θ2)T2(z)− b2(θ2)} h2(z). (2)

Here, θ1 ∈�1 ⊂ R
s1 and θ2 ∈�2 ⊂ R

s2 are unknown parameters, and we use common termi-
nology for exponential families (Brown, 1986). In particular, the functions c1 : D ×�1 → R

�1 ,
b1 : D ×�1 → R, c2 :�2 → R

�2 and b2 :�2 → R are assumed to be twice continuously dif-
ferentiable, with ∂c1/∂θ1, ∂c2/∂θ2 |= 0, and T1 and T2 denote �1- and �2-dimensional statistics
defined on the corresponding sample spaces. The functions h1 and h2 are assumed to be positive
and measurable.
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Throughout the paper, let κ denote a variable indicating whether a patient receives the new
drug, κ = 0, or the active control, κ = 1. Further, let

X = (D × {0}) ∪ {(C, 1)} (3)

denote the design space of the experiment, where D is the dose range for the new drug, C is
the dose level of the active control, and the second component of an experimental condition
(d, κ) ∈X determines the treatment, κ = 0 or 1. The Fisher information matrix at the point
(d, κ) ∈X is

I {(d, κ), θ} =
[

1{κ=0} I1(d, θ1) 0
0 1{κ=1} I2(θ2)

]
, (4)

where 0 denotes a matrix of appropriate dimension with all entries equal to 0, θ = (θT
1 , θ

T
2 )

T ∈
�1 ×�2 ⊂ R

s1+s2 is the vector of all parameters, 1{κ=0} is the indicator function of the event
{κ = 0}, and the matrices I1 and I2 are the Fisher information matrices of the two models (1) and
(2), that is,

I1(d, θ1)= E

[{
∂

∂θ1
log f1(Y | d, θ1)

} {
∂

∂θ1
log f1(Y | d, θ1)

}T ]
,

I2(θ2)= E

[{
∂

∂θ2
log f2(Z | θ2)

} {
∂

∂θ2
log f2(Z | θ2)

}T ]
,

(5)

where the random variables Y and Z have densities (1) and (2). The Fisher information matrix
in (4) is block-diagonal because of the independence of the samples, given that a patient is ran-
domized to either the new drug or the active control.

Example 1. To demonstrate the different structures of the Fisher information matrix arising
from different distributions of the exponential family, we consider several examples. Here we
restrict our attention to the normal and negative binomial distributions. Further examples can be
found in the Supplementary Material.

Dette et al. (2014) investigated normally distributed responses with known variances σ 2
1 for

the new drug and σ 2
2 for the active control. For the expectation of the response of the new drug at

dose level d they assumed a nonlinear regression model, η(d, ϑ)where ϑ = (ϑ0, . . . , ϑs)
T, while

the expectation of the response of the active control is assumed to equalμ for the active control. If
the variances must be estimated from the data, we have θ1 = (ϑ0, . . . , ϑs, σ

2
1 )

T and θ2 = (μ, σ 2
2 )

T

for the parameters in models (1) and (2), respectively. The Fisher information matrix at a point
(d, κ) ∈X is given by (4) with

I1(d, θ1)=

⎡
⎢⎢⎣

1

σ 2
1

{
∂

∂ϑ
η(d, ϑ)

} {
∂

∂ϑ
η(d, ϑ)

}T

0

0
1

2σ 4
1

⎤
⎥⎥⎦ , I2(θ2)=

⎛
⎜⎜⎝

1

σ 2
2

0

0
1

2σ 4
2

⎞
⎟⎟⎠ .

Next, assume a negative binomial distribution with parameter r1 ∈ N and a function π(d, θ1) ∈
(0, 1) for the probability of a success of the new drug at dose level d, and parameters r2 ∈ N and
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μ ∈ (0, 1) for the active control. Then we have θ2 =μ, and the Fisher information matrix is given
by (4) with

I1(d, θ1)=
r1

{
∂

∂θ1
π(d, θ1)

} {
∂

∂θ1
π(d, θ1)

}T

π2(d, θ1){1 − π(d, θ1)} , I2(θ2)= r2

μ2(1 − μ)
.

Here the parameters r1, r2 ∈ N are assumed to be known.

Throughout this paper we consider approximate designs in the sense of Kiefer (1974), which
are defined as probability measures with finite support on the design space X in (3). Therefore,
an experimental design is given by

ξ =
{
(d1, 0) . . . (dk, 0) (C, 1)
w1 . . . wk wk+1

}
, (6)

where w1, . . . , wk+1 are positive weights such that
∑k+1

i=1 wi = 1. Here, wi denotes the relative
proportion of patients treated at dose level di (i = 1, . . . , k) or, for i = k + 1, the active control.
If N observations are taken, a rounding procedure is applied to obtain integers n1i (i = 1, . . . , k)
and n2 from the possibly real-valued quantities wi N (i = 1, . . . , k + 1). The information matrix
of an approximate design ξ of the form (6) is defined by the (s1 + s2)× (s1 + s2) matrix

M(ξ, θ)=
∫
X

I {(d, κ), θ} dξ(d, κ)=
[
(1 − ωk+1)M1(ξ̃ , θ1) 0

0 ωk+1 I2(θ2)

]
. (7)

Here, the s1 × s1 matrix M1(ξ̃ , θ1) and the s2 × s2 matrix I2(θ2) are given by

M1(ξ̃ , θ1)=
∫
D

I1(d, θ1) dξ̃ (d)

and (5), respectively, where

ξ̃ =
(

d1 . . . dk

w̃1 . . . w̃k

)
(8)

denotes the design on the design space D for the new drug, which is induced by the design ξ in (6)
defining the weights w̃i =wi (1 − wk+1)

−1 (i = 1, . . . , k). If observations are taken according
to an approximate design, then the covariance of the maximum likelihood estimators θ̂1 and θ̂2 in
models (1) and (2) is given approximately by M−1(ξ, θ)/N , and consequently optimal designs
maximize an appropriate functional of the information matrix defined in (7).

In order to discriminate between competing designs, we consider Kiefer’s φp-criteria (Kiefer,
1974). To be precise, let p ∈ [−∞, 1) and let K ∈ R

(s1+s2)×t denote a matrix of full column
rank t . Then a design ξ∗ is said to be locally φp-optimal for estimating the linear combination
K Tθ in a dose-response model with an active control if K Tθ is estimable by the design ξ∗, i.e.,
K Tθ ∈ range{M(ξ∗, θ)}, and ξ∗ maximizes the functional

φp(ξ)=
(

1

t
tr
[{K T M−(ξ, θ)K }−p])1/p

(9)
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among all designs for which K Tθ is estimable, where tr(A) and A− denote the trace
and a generalized inverse of the matrix A, respectively. The cases p = 0 and p = −∞
correspond to the D- and E-optimality criteria, i.e., φ0(ξ)= det[{K T M−(ξ, θ)K }−1/t ] and
φ−∞(ξ)= λmin[{K T M−(ξ, θ)K }−1], where λmin(A) denotes the smallest eigenvalue of the
matrix A. An application of the general equivalence theorem (Pukelsheim, 2006, § § 7.19 and
7.21) yields the following result.

LEMMA 1. If p ∈ (−∞, 1), a design ξ∗ with K Tθ ∈ range{M(ξ∗, θ)} is locally φp-optimal
for estimating the linear combination K Tθ in a dose-response model with an active control if
and only if there exists a generalized inverse G of the information matrix M(ξ∗, θ) such that the
inequality

tr
[
I {(d, κ), θ}G K {K T M−(ξ∗, θ)K }−p−1K TGT

]
� tr

[{K T M−(ξ∗, θ)K }−p] (10)

holds for all (d, κ) ∈X .
If p = −∞, a design ξ∗ with K Tθ ∈ range{M(ξ∗, θ)} is locally φ−∞-optimal for estimating

the linear combination K Tθ if and only if there exist a generalized inverse G of the informa-
tion matrix M(ξ∗, θ) and a nonnegative-definite matrix E ∈ R

t×t with tr(E)= 1 such that the
inequality

tr
[
I {(d, κ), θ}G K {K T M−(ξ∗, θ)K }−1 E{K T M−(ξ∗, θ)K }−1K TGT

]
� λmin

[{K T M−(ξ∗, θ)K }−1] (11)

holds for all (d, κ) ∈X .
Moreover, there is equality in (10) and (11) for all support points of the design ξ∗.

Below we assume that either p = −1 or the matrix K has the form

K =
(

K11 0
0 K22

)
∈ R

(s1+s2)×(t1+t2) (12)

with elements K11 ∈ R
s1×t1 and K22 ∈ R

s2×t2 , such that t1 + t2 = t . Roughly speaking, the choice
p = −1 or a block-diagonal structure of the matrix K in (12) leads to a separation of the param-
eters from models (1) and (2) in the corresponding optimality criterion. Hence, optimal designs
for dose-finding studies with an active control can be obtained from optimal designs for dose-
finding studies that include a placebo group, which maximize the criterion

φ̃p(ξ̃ )=
(

1

t1
tr
[{K T

11 M−
1 (ξ̃ , θ1)K11}−p])1/p

(13)

in the class of all designs ξ̃ for which K T
11θ1 is estimable, i.e., K T

11θ1 ∈ range{M1(ξ̃ , θ1)}. We call
these designs φ̃p-optimal for estimating the parameter K T

11θ1 in the dose-response model (1).
The proof can be found in the Appendix.

THEOREM 1. Suppose that p ∈ [−∞, 1), the matrix K is given by (12), and

ξ̃∗
p =

(
d∗

1 . . . d∗
k

w̃∗
1 . . . w̃∗

k

)
(14)
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is a locally φ̃p-optimal design for estimating K T
11θ1 in (1). Then the design

ξ∗
p =

{
(d∗

1 , 0) . . . (d∗
k , 0) (C, 1)

w∗
1 . . . w∗

k w∗
k+1

}

is locally φp-optimal for estimating K Tθ in the dose-response model with an active control, where
the weights are

w∗
k+1 = 1

1 + ρp
, w∗

i = ρp

1 + ρp
w̃∗

i (i = 1, . . . , k), (15)

with

ρp = (tr[{K T
22 I −

2 (θ2)K22}−p])1/(p−1)

(tr[{K T
11 M−

1 (ξ̃
∗
p, θ1)K11}−p])1/(p−1)

. (16)

The case p = −∞ is interpreted as the corresponding limit.

In the p = −1 case a more general statement is available, without the restriction to block
matrices of the form (12). The proof is obtained using similar arguments to those in the proof of
Theorem 1; we therefore omit it.

THEOREM 2. Assume that K T = (K T
11, K T

22) ∈ R
t×(s1+s2) with K T

11 ∈ R
t×s1 and K T

22 ∈ R
t×s2 ,

and let ξ̃∗
−1 denote the φ̃−1-optimal design for estimating the parameter K T

11θ1 in the dose-
response model (1). Then the design ξ∗

−1 defined in Theorem 1 is locally φ−1-optimal for esti-
mating K Tθ in the dose-response model with an active control.

The final result of this section concerns the special case of p = 0. The result is a direct con-
sequence of Theorem 1, upon considering a corresponding limit and observing that the quantity
ρp defined in (16) satisfies limp→0 ρp = t1/t2.

COROLLARY 1. Assume that the matrix K is given by (12), and let ξ̃∗
0 denote the locally

D-optimal design of the form (14) for estimating the parameter K T
11θ1 in the dose-response

model (1), which maximizes det[{K T
11 M−

1 (ξ̃ , θ1)K11}−1] in the class of all designs for which
K T

11θ1 is estimable. Then the design ξ∗
0 with masses t1(t1 + t2)−1w̃∗

1, . . . , t1(t1 + t2)−1w̃∗
k and

t2(t1 + t2)−1 at the points (d∗
1 , 0), . . . , (d∗

k , 0) and (C, 1), respectively, is locally D-optimal for
estimating the parameter K Tθ in the dose-response model with an active control.

Remark 1. The assumption of a block matrix K in Theorem 1 and Corollary 1 cannot be
omitted. A counterexample is given in the Supplementary Material.

3. D-OPTIMAL DESIGNS FOR THE MICHAELIS−MENTEN AND Emax MODELS

In this section we determine some D-optimal designs under different distributional assump-
tions for the Michaelis–Menten model ϑ1d(ϑ2 + d)−1 and the Emax model ϑ0 + ϑ1d(ϑ2 + d)−1,
where the dose range is the interval [L , R] ⊂ R

+
0 . Both models are widely used in practice and are

therefore treated in detail. If the dose-response function describes a probability, some restrictions
on the parameters are required. For example, if π(d, θ1)= ϑ1d(ϑ2 + d)−1 denotes the success
probability for the negative binomial distribution in Example 1, then we implicitly assume that
ϑ1 R(ϑ2 + R)−1 < 1 in the following discussion. In other models similar assumptions have to
be made, but for brevity we do not mention them explicitly. In the following, x ∨ y denotes the
maximum of x, y ∈ R.
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THEOREM 3 (Michaelis–Menten model).

(i) If the distributions of the responses corresponding to the new drug and active control are
normal with parameters {ϑ1d(ϑ2 + d)−1, σ 2

1 } and (μ, σ 2
2 ), respectively, then the locally

D-optimal design for the dose-response model with an active control allocates 30% of
patients to each of the dose levels L ∨ ϑ2 R(2ϑ2 + R)−1 and R of the new drug and 40%
of patients to the active control.

(ii) If negative binomial distributions with probabilities π(d, θ)= ϑ1d(ϑ2 + d)−1 and μ are
used, then the locally D-optimal design for the dose-response model with an active con-
trol allocates 33·3% of patients to each of the dose levels L and R of the new drug and
33·3% of patients to the active control.

(iii) If binomial distributions with probabilities π(d, θ)= ϑ1d(ϑ2 + d)−1 and μ are used,
then the locally D-optimal design for the dose-response model with an active control allo-
cates 33·3% of patients to each of the dose levels L ∨ {ϑ2 R + 3ϑ2

2 − ϑ2(9R2 − 8R2ϑ1 +
18Rϑ2 − 8Rϑ1ϑ2 + 9ϑ2

2 )
1/2}(4ϑ1ϑ2 − 4R + 4Rϑ1 − 6ϑ2)

−1 and R of the new drug
and 33·3% of patients to the active control.

(iv) If Poisson distributions with parameters λ(d, θ1)= ϑ1d(ϑ2 + d)−1 and μ are used in
(1) and (2), then the locally D-optimal design for the dose-response model with an active
control allocates 33·3% of patients to each of the dose levels L ∨ ϑ2 R(3ϑ2 + 2R)−1 and
R of the new drug and 33·3% of patients to the active control.

The proof of Theorem 3 follows directly from Corollary 1, if the locally D-optimal designs
for model (1) are known. For example, in the case of a normal distribution, it follows from Dette
et al. (2010) that the D-optimal design for the Michaelis–Menten model has equal masses at the
points L ∨ ϑ2 R(2ϑ2 + R)−1 and R, which yields statement (i) of Theorem 3. In the other cases,
the D-optimal designs for model (1) are not known and the proof can be found in the Appendix.

The differences in the D-optimal designs derived under different distributional assumptions
can be substantial. For example, if the design space is [0, R] with a large right boundary R, the
nontrivial dose level for the new drug is approximately ϑ2 under the assumption of a normal
distribution and ϑ2/2 under a Poisson distribution.

We now give the corresponding results for the Emax model. The proof uses similar arguments
and is therefore omitted.

THEOREM 4 (Emax model).

(i) If the distributions of responses corresponding to the new drug and active control are
normal with parameters {ϑ0 + ϑ1d(ϑ2 + d)−1, σ 2

1 } and (μ, σ 2
2 ), respectively, then the

locally D-optimal design for the dose-response model with an active control allocates
22·2% of patients to each of the dose levels L, d∗ = {R(L + ϑ2)+ L(R + ϑ2)}{(L +
ϑ2)+ (R + ϑ2)}−1 and R of the new drug and 33·3% of patients to the active control.

(ii) If negative binomial distributions with probabilities π(d, θ)= ϑ0 + ϑ1d(ϑ2 + d)−1 and
μ are used, then the locally D-optimal design for the dose-response model with an active
control allocates 25% of patients to each of the dose levels L, d∗ and R of the new drug
and 25% of patients to the active control, where d∗ is the solution of the equation

2

d − L
+ 2

d − R
− ϑ0 + ϑ1 − 1

d(ϑ0 + ϑ1 − 1)+ (ϑ0 − 1)ϑ2

− 2(ϑ0 + ϑ1)

ϑ0(ϑ2 + d)+ ϑ1d
− 1

ϑ2 + d
= 0.
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Table 1. D-optimal designs in the two examples under different distributional assumptions,
together with the efficiencies of the designs which were actually used in the study

Gouty arthritis example Acute migraine example
Distribution D-optimal design effD D-optimal design effD

Normal (0, 0) (9·81, 0) (300, 0) (C, 1) 0·25 (0, 0) (10·95, 0) (200, 0) (C, 1) 0·84
22·2% 22·2% 22·2% 33·3% 22·2% 22·2% 22·2% 33·3%

nB/Bin (0, 0) (8·23, 0) (300, 0) (C, 1) 0·11 (0, 0) (9·05, 0) (200, 0) (C, 1) 0·86
25% 25% 25% 25% 25% 25% 25% 25%

nB, negative binomial; Bin, binomial.

(iii) If binomial distributions with probabilities π(d, θ)= ϑ0 + ϑ1d(ϑ2 + d)−1 and μ are
used, then the locally D-optimal design is of the same form as in (ii), where d∗ is the
solution of the equation

2

d − L
+ 2

d − R
− ϑ0 + ϑ1 − 1

d(ϑ0 + ϑ1 − 1)+ (ϑ0 − 1)ϑ2

− ϑ0 + ϑ1

ϑ0(ϑ2 + d)+ ϑ1d
− 2

ϑ2 + d
= 0.

(iv) If Poisson distributions with parameters λ(d, θ1)= ϑ0 + ϑ1d(ϑ2 + d)−1 and μ are used
in (1) and (2), respectively, then the locally D-optimal design is of the same form as in
(ii), where

d∗ = ϑ2
4m(L)m(R)− ϑ1{Lm(R)+ Rm(L)} − ϑ0

√
ι

−4m(L)m(R)− ϑ1ϑ2{m(R)+ m(L)} + (ϑ1 + ϑ0)
√
ι
,

with ι= {(ϑ2 + L)m(R)+ (ϑ2 + R)m(L)}2 + 12(ϑ2 + L)(ϑ2 + R)m(R)m(L) and
m(d)= ϑ0ϑ2 + ϑ1d + ϑ0d.

Example 2. We now discuss D-optimal designs for the two clinical trials described in § 1.
First let us consider the gouty arthritis example. The primary endpoint is modelled by a neg-

ative binomial distribution with parameters r1 and π(d, θ1)= ϑ0 + ϑ1d(ϑ2 + d)−1 for the new
drug and parameters r2 and θ2 for the comparator. The dose range is [0, 300] mg, and we obtained
from the clinical team the following preliminary information on the unknown parameters: ϑ0 =
0·26, ϑ1 = 0·73, ϑ2 = 10·5, σ1 = 0·05, θ2 = 0·9206 and σ2 = 0·05. In addition, r1 = r2 = 10 are
fixed. The D-optimal design is obtained from Theorem 4 and summarized in Table 1. The stan-
dard design actually used in this study allocates 14·3% of patients to each of the dose levels 25,
50, 100, 200 and 300 mg of the new drug and 28·5% of patients to the active control. To com-
pare these designs, we also show in Table 1 the D-efficiency effD(ξ, θ)= φ0(ξ, θ)/φ0(ξ

∗
D
, θ),

where ξ∗
D

is the locally D-optimal design. We observe that, in this example, the optimal design is
substantially more efficient than the standard design.

Next, consider the acute migraine example, which measured the percentage of patients
reported to be free of pain two hours post-dose. We assume a binomial distribution for this
case. The probabilities of success are π(d, θ1)= ϑ0 + ϑ1d(ϑ2 + d)−1 for the new compound,
where the dose level varies in the interval [0, 200] mg, and θ2 for the active control. The sample
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sizes are n1 = 517 and n2 = 100, and the preliminary information obtained from the clinical
team consists of ϑ0 = 0·098, ϑ1 = 0·2052, ϑ2 = 12·3, σ1 = 0·05, θ2 = 0·2505 and σ2 = 0·05.
The locally D-optimal designs under normal and binomial distributional assumptions are listed
in Table 1. The design actually used for this study allocated 21, 5, 7, 10, 10, 11, 10 and 10% of
the patients to dose levels 0, 2·5, 5, 10, 20, 50, 100 and 200 mg of the new drug, respectively,
and 16% of the patients to the active control. Again, a substantial improvement can be observed
under both distributions.

4. OPTIMAL DESIGNS FOR ESTIMATING THE TARGET DOSE

4·1. AC-optimal designs

In this section we investigate the construction of locally optimal designs for estimating the
smallest dose of the new compound that achieves the same treatment effect as the active control.
We consider a dose range of the form D = [L , R] ⊂ R

+
0 and write

Eθ1(Yi j | di )= η(di , θ1) ( j = 1, . . . , n1i ; i = 1, . . . , k), (17)

Eθ2(Zi )=� (i = 1, . . . , n2), (18)

for the expected values of responses corresponding to the new drug for dose level di and the
active control, respectively. We assume that the function η in (17) is strictly increasing with
respect to d ∈D and that d∗(θ)= η−1(�, θ1) is an element of the dose range D for the new
drug. The expectation� in (18) is a function of the s2-dimensional parameter θ2, say�= k(θ2).
Consequently, a natural estimator of d∗ is given by d̂∗ = d∗(θ̂)= η−1(�̂, θ̂1), where �̂= k(θ̂2)

and θ̂ = (θ̂T
1 , θ̂

T
2 )

T denotes the vector of the maximum likelihood estimators of the parameters θ1
and θ2 in models (1) and (2), respectively. Standard calculations show that the variance of this
estimator is var{d∗(θ̂)} ≈ N−1ψ(ξ, θ), where

ψ(ξ, θ)= 1

1 − ωk+1

{
∂

∂θ1
d∗(θ)

}T

M−
1 (ξ̃ , θ1)

{
∂

∂θ1
d∗(θ)

}

+ 1

ωk+1

{
∂

∂θ2
d∗(θ)

}T

I −
2 (θ2)

{
∂

∂θ2
d∗(θ)

}
. (19)

Here, ξ̃ denotes the design for the new drug induced by the design ξ , see (8), and M−
1 (ξ̃ , θ1) and

I −
2 (θ2) are generalized inverses of the information matrices M1(ξ̃ , θ1) and I2(θ2), respectively.

Following Dette et al. (2014), we say that a design ξ∗
AC

is locally AC-optimal if ∂d∗(θ)/∂θ1 ∈
range{M1(ξ̃ , θ1)}, ∂d∗(θ)/∂θ2 ∈ range{I2(θ2)}, and ξ∗

AC
minimizes the function ψ(ξ, θ) among

all designs satisfying the above estimability conditions. Criterion (19) corresponds to a φ−1-
optimal design for estimating the parameter K Tθ in a dose-response model with an active con-
trol, where K = [{∂d∗(θ)/∂θ1}T, {∂d∗(θ)/∂θ2}T]T. In particular, Theorem 2 is applicable and
locally AC-optimal designs can be derived from the corresponding optimal designs for model
(1). The following result provides an alternative representation of the criterion (19) in the case
where s2 = 1. As a consequence, the design ξ̃ required in Theorem 2 is a locally c̃-optimal
design in model (1) for a specific vector c̃, i.e., the design minimizing c̃T M−

1 (ξ̃ , θ1)c̃ where
c̃ = ∂η(d∗, θ1)/∂θ1. The proof can be obtained using arguments similar to those in Dette et al.
(2014) and is given in the Supplementary Material.
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THEOREM 5. In the case where s2 = 1, the function in (19) can be expressed as

ψ(ξ, θ)=
{

∂
∂θ2

d∗(θ)
}2

{
∂
∂θ2

k(θ2)
}2

[
1

1 − wk+1

{
∂

∂θ1
η(d∗, θ1)

}T

M−
1 (ξ̃ , θ1)

{
∂

∂θ1
η(d∗, θ1)

}

+
{
∂

∂θ2
k(θ2)

}2 I −
2 (θ2)

wk+1

]
.

4·2. Some explicit results for two-dimensional models

In this subsection we present some examples illustrating different structures of locally
AC-optimal designs. We suppose that the Fisher information matrix I1(d, θ1) defined in
(5) is of the form I1(d, θ1)= diag{ f (d, θ1) f T(d, θ1),�(θ1)} ∈ R

s1×s1, where f (d, θ1)=
{ f1(d, θ1), f2(d, θ1)}T denotes a two-dimensional vector and�(θ1) a (s1 − 2)× (s1 − 2)matrix,
which does not depend on the dose level. By Theorem 2, the locally AC-optimal design can
be determined from the design ξ̃∗ that minimizes the expression c̃T M−

1 (ξ̃ , θ1)c̃ in the class
of all designs defined on the dose range D for the new drug, where the vector c̃ is given by
c̃ = ∂d∗(θ)/∂θ1. Because of the block structure of the Fisher information matrix I1(d, θ1), with
a lower block not depending on the dose level, we may assume without loss of generality that
s1 = 2, i.e.,

M1(ξ̃ , θ1)=
∫
D

f (d, θ1) f T(d, θ1) dξ̃ (d). (20)

By Elfving’s theorem (Elfving, 1952) a design ξ̃∗ with weights w̃∗
i at the points d∗

i (i = 1, . . . , k)
minimizes c̃T M−

1 (ξ̃ , θ1)c̃ if and only if there exist a constant γ > 0 and ε1, . . . , εk ∈ {−1, 1} such
that the point γ c̃ is a boundary point of the Elfving set

R= conv
{
ε f (d, θ1) : d ∈D, ε ∈ {−1, 1}} (21)

and the representation γ c̃ = ∑k
i=1 εi w̃

∗
i f (d∗

i , θ1) is valid. Note that R= conv{C ∪ (−C)}, where
the curve C is defined by C = { f (d, θ1) : d ∈D}. The structure of the Elfving set R depends sen-
sitively on the distributional assumptions, and we now consider several examples in the context
of the Michaelis–Menten model.

Example 3. If the dependence on the dose in model (1) is described by the Michaelis–Menten
model, then the vector f in (20) has the form v(d, θ1){d(ϑ2 + d)−1,−ϑ1d(ϑ2 + d)−2}T, where
the function v varies with the distributional assumption.

If the responses are normally distributed, we have v(d, θ1)= 1, and it follows by an obvious
generalization of Theorem 5 that we must consider a c̃-optimal design problem in model (1),
where the vector c̃ is now given by c̃ = ∂η(d∗, ϑ)/∂ϑ = {d∗(ϑ2 + d∗)−1,−ϑ1d∗(ϑ2 + d∗)−2}T.
From Fig. 1(a) we see that the line {γ c̃ : γ > 0} intersects the boundary of the Elfving set R at
some point C ∪ (−C) whenever L � x∗ � d∗ < R, where

x∗ = L ∨
√

2R2ϑ2 + (
√

2 − 1)Rϑ2
2

2R2 + 4Rϑ2 + ϑ2
2

.

A typical situation is shown for the vector c̃2 in Fig. 1(a) for ϑ1 = ϑ2 = 2 and D = [0·1, 50].
Consequently, Elfving’s theorem shows that a one-point design minimizes c̃T M−

1 (ξ̃ , θ1)c̃.
An application of Theorem 2 yields a locally AC-optimal design which allocates σ1
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Fig. 1. The Elfving set (21) in model (1), where the expected response is given by the Michaelis–Menten model:
(a) normal distribution; (b) negative binomial distribution.

(σ1 + σ2)
−1100% of the patients to dose level d∗ = η−1(�, ϑ) for the new drug and the remain-

ing patients to the active control. On the other hand, if L < d∗ � x∗ < R, the line {γ c̃ : γ > 0}
does not intersect the set C ∪ (−C) at the boundary of the Elfving set R, and the situation is more
complicated. A typical situation in this case is shown in Fig. 1(a) for the vector c̃1. The locally
AC-optimal design allocates ρω̃1100% and ρω̃2100% of patients to dose levels x∗ and R of the
new drug, respectively, where ρ = √

δσ1(
√
δσ1 + σ2)

−1, and allocates the remaining patients to
the active control; here

ω̃1 = v(R, θ1)R(R − d∗)(ϑ2 + x∗)2

v(R, θ1)R(R − d∗)(ϑ2 + x∗)2 + v(x∗, θ1)x∗(x∗ − d∗)(ϑ2 + R)2
, (22)

ω̃2 = 1 − ω̃1, δ = c̃T M−1
1 (ξ̃∗, θ1)c̃ and d∗ = η−1(�, θ1).

As a further example, consider the Michaelis–Menten model for the probabil-
ity of a negative binomially distributed response. We have s1 = 2, s2 = 1, π(d, θ1)=
ϑ1d(ϑ2 + d)−1, c̃ = ∂η(d∗, θ1)/∂θ1 = r1(ϑ1d∗)−1{−(ϑ2 + d∗)ϑ−1

1 , 1}T and v(d, θ1)=
({r1(d + ϑ2)

3}/[d2ϑ2
1 {d(1 − ϑ1)+ ϑ2}])1/2. A corresponding Elfving set is depicted in

Fig. 1(b) for ϑ1 = 1, ϑ2 = 0·5 and D = [0, 10]; the locally AC-optimal design is always
supported at three points. A straightforward calculation shows that the locally AC-optimal
design allocates ρω̃1100% and ρω̃2100% of the patients to dose levels L and R of the new
drug, respectively, where ρ = [δθ2

2 − {(1 − θ2)δθ
2
2 r2}1/2]{δθ2

2 − (1 − θ2)r2}−1, and allocates
the remaining patients to the active control; in this case

ω̃1 = v(R, θ1)R(R − d∗)(ϑ2 + L)2

v(R, θ1)R(R − d∗)(ϑ2 + L)2 + v(L , θ1)L(d∗ − L)(ϑ2 + R)2
, (23)

ω̃2 = 1 − ω̃1, δ = c̃T M−1
1 (ξ̃∗, θ1)c̃ and d∗ = η−1(�, θ1).

Next, consider the Michaelis–Menten model for binomially distributed responses. In this
case we have s1 = 2, s2 = 1, π(d, θ1)= ϑ1d(ϑ2 + d)−1, c̃ = ∂π(d∗, θ1)/∂θ1 and v(d, θ1)=
|d + ϑ2|[dϑ1{d(1 − ϑ1)+ ϑ2}]−1/2. The corresponding Elfving set is depicted in Fig. 2(a) for
ϑ1 = 1, ϑ2 = 0·1 and D = [0·02, 2]; we have to distinguish three different situations. Observe
that the line {γ c̃ : γ > 0} intersects the boundary of the Elfving set R at some point C ∪ (−C) if
and only if L � x∗

1 � d∗ � x∗
2 � R, where

x∗
1 = L ∨ ϑ2[1 − {1 − π(R, θ1)}1/2]

2ϑ1 − 1 + {1 − π(R, θ1)}1/2
, x∗

2 = R ∧ ϑ2[1 + {1 − π(R, θ1)}1/2]

2ϑ1 − 1 − {1 − π(R, θ1)}1/2
.

A typical situation is shown for the vector c̃1 in Fig. 2(a). Consequently, the same arguments as
in the previous examples show that in this case the locally AC-optimal design allocates ρ100%
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Fig. 2. The Elfving set (21) in model (1), where the expected response is given by the Michaelis–Menten model:
(a) binomial distribution; (b) Poisson distribution.

of the patients to the dose level d∗ of the new drug, where ρ = [δ − {δ(1 − θ2)θ2}1/2]{δ − (1 −
θ2)θ2}−1 with δ = c̃T M−1

1 (ξ̃∗, θ1)c̃ and d∗ = η−1(�, θ1), and allocates the remaining patients
to the active control. If L < d∗ � x∗

1 , the locally AC-optimal design allocates ρω̃11100% and
ρ(1 − ω̃11)100% of patients to dose levels x∗

1 and R of the new drug, respectively, and allocates
the remaining patients to the active control, where ω̃11 is of the form (22) with x∗ = x∗

1 . A typ-
ical situation is shown for the vector c̃2 in Fig. 2(a). The case L � x∗

2 � d∗ � R corresponds to
the vector c̃3. Here the locally AC-optimal design allocates ρω̃21100% and ρ(1 − ω̃21)100% of
patients to dose levels x∗

2 and R of the new drug and the remaining patients to the active control,
where, with L = x∗

2 , ω̃21 is of the form (23) and d∗ = η−1(�, θ1).
Finally, we consider the case of Poisson-distributed responses. We have s1 = 2, s2 = 1,

λ(d, θ1)= ϑ1d(ϑ2 + d)−1 and v(d, θ1)= {(ϑ2 + d)/(ϑ1d)}1/2; by Theorem 5, we have to solve
a c̃-optimal design problem with c̃ = ∂λ(d∗, θ1)/∂θ1 = {d∗(ϑ2 + d∗)−1,−ϑ1d∗(ϑ2 + d∗)−2}T.
It is easy to see that the line {γ c̃ : γ > 0} intersects the boundary of the Elfving set R at
some point C ∪ (−C) if and only if L � x∗ � d∗ < R, where x∗ = L ∨ Rϑ2(3R + 4ϑ2)

−1; see
Fig. 2(b) for illustration of the case with ϑ1 = 2·5, ϑ2 = 1·5, D = [0·02, 10] and the vector
c̃2. Consequently, the same arguments as in the previous examples show that in this case the
locally AC-optimal design allocates ρ100% of patients to dose level d∗ of the new drug,
where ρ = √

δ(
√
δ + √

θ2)
−1 with δ = d∗ϑ1(ϑ2 + d∗)−1 and d∗ = λ−1(�, θ1), and allocates

the remaining patients to the active control. If L < d∗ � x∗ < R, the locally AC-optimal design
allocates ρω̃1100% and ρ(1 − ω̃1)100% of patients to dose levels x∗ and R of the new drug
and allocates the remaining patients to the active control, where ω̃1 is of the form (22) with
δ = {∂η(d∗, θ1)/∂θ1}T M−

1 (ξ̃
∗, θ1){∂η(d∗, θ1)/∂θ1}. A typical situation is shown for the vector

c̃1 in Fig. 2(b).

4·3. Locally AC-optimal designs in the Emax model

Explicit expressions for the AC-optimal designs in the Emax model are complicated, so for
brevity we conclude this paper by discussing AC-optimal designs for the two examples from
§ 1. All designs presented in this subsection were calculated numerically using particle swarm
optimization (Clerc, 2006), and the optimality has been checked by applying Lemma 1.
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Table 2. AC-optimal designs in the two examples under different distributional
assumptions, together with the efficiencies of the designs used in the study

Gouty arthritis example Acute migraine example
(target dose d∗ = 100 mg) (target dose d∗ = 35·6 mg)

Distribution AC-optimal design effAC AC-optimal design effAC

Normal
(101·06, 0) (C, 1)

49·99% 50·01%
0·66

(35·739, 0) (C, 1)
49·99% 50·01%

0·48

nB/Bin
(5·44, 0) (300, 0) (C, 1)

7·6% 35·6% 56·8%
0·48

(0, 0) (200, 0) (C, 1)
7·34% 41·95% 50·71%

0·47

nB, negative binomial; Bin, binomial.

We begin with the gouty arthritis clinical trial, for which we use the same prior information
as in Example 2. AC-optimal designs under the assumption of normal and negative binomial
distributions are shown in Table 2. For instance, under the assumption of normally distributed
endpoints, the AC-optimal design allocates almost half of the patients to the dose level 101·06 mg
and the rest to the active control. In order to compare these results with the standard design intro-
duced in Example 2, we also report values of the efficiency eff AC(ξ, θ)=ψ(ξ∗

AC
, θ)/ψ(ξ, θ),

where ψ(ξ, θ) is defined in (19) and ξ∗
AC

is the locally AC-optimal design. For example, the effi-
ciency of the standard design for estimating the target dose under the assumption of a normal or
negative binomial distribution is 66% or 48%, respectively.

For the acute migraine clinical trial, we again use the prior information from Example 2. AC-
optimal designs for normally and binomially distributed responses are summarized in Table 2.
The efficiencies of the standard designs are 48% and 47% under the assumptions of normal and
binomial distributions, respectively.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes further examples and the proof
of Theorem 5.

APPENDIX

Proof of Theorem 1. If the matrix K is of the form (12), we obtain from (7) and (12) that
K T M−(ξ, θ)K = [{(1 − wk+1)

−1 K T
11 M−

1 (ξ̃ , θ1)K11, 0}T, (0, w−1
k+1 K T

22 I −
2 (θ2)K22)

T], which gives, for
the criterion (9), φp(ξ)= (t−1{(1 − wk+1)

pt1}{φ̃p(ξ̃ )}p + w
p
k+1t−1tr[{K T

22 I −
2 (θ2)K22}−p])1/p when

p |= 0,−∞, where t = t1 + t2 and the function φ̃p is as defined in (13). It is easy to see that the function
φp is an increasing function of φ̃p(ξ̃ ). Consequently, the locally φp-optimal design problem for the
dose-response model with an active control can be solved by determining a design ξ̃ ∗

p which maximizes

the criterion (13) in a first step. If φ∗ = φ̃p(ξ̃
∗
p)= maxξ̃ φ̃p(ξ̃ ) denotes the optimal value for this criterion,

it remains to maximize the function φp with respect to the weight wk+1 assigned to the active control,
which gives the expression (15) and proves the assertion for the case where p |= 0,−∞. The remaining
cases of p = 0 and p = −∞ are proved similarly. �
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Proof of Theorem 3. The proof of (i) was given in § 3. For the remaining cases we restrict ourselves
to the Poisson distribution, for which the Fisher information matrix in model (1) is I1(d, θ1)= d{ϑ1(ϑ2 +
d)}−1({1,−ϑ1(ϑ2 + d)−1}T, [−ϑ1(ϑ2 + d)−1, ϑ2

1 {(ϑ2 + d)2}−1]T). All other cases are treated similarly. By
Corollary 1, the D-optimal design can be obtained from the D-optimal design ξ̃ ∗ in a regression model
with Fisher information matrix I1(d, θ1). If M1(ξ̃ , θ1)=

∫
D I1(d, θ1) dξ̃ (d) denotes an information matrix

of a design ξ̃ in this model, then ξ̃ ∗ is D-optimal if and only if the inequality tr{I1(d, θ1)M
−1
1 (ξ̃ ∗, θ1)} � 2

holds for all d ∈D; see Lemma 1. Moreover, there must be equality at the support points of the design ξ̃ ∗.
This inequality is equivalent to an inequality of the form P3(d)� 0 where P3 is a polynomial of degree 3
with P(0) < 0. A straightforward argument now shows that ξ̃ ∗ has exactly two support points d∗

1 > 0 and
d∗

2 = R. Consequently, the D-optimal design ξ̃ ∗
1 for the regression model with information matrix I1(d, θ1)

has equal masses at the points d∗
1 and R, where d∗

1 maximizes the function f (d)= R(R − d)2d{4(R +
ϑ2)

3(ϑ2 + d)3}−1 in the interval [L , R], that is, d∗
1 = L ∨ ϑ2 R(3ϑ2 + 2R)−1. The assertion now follows

from an application of Corollary 1, upon observing that t1 = 2 and t2 = 1 in the case under consideration.
�
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