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Abstract: Human osteosarcoma (OS) is the most common primary malignant bone tumor occurring
most commonly in adolescents and young adults. Major improvements in disease-free survival have
been achieved by implementing a combination therapy consisting of radical surgical resection of the
tumor and systemic multi-agent chemotherapy. However, long-term survival remains poor, so novel
targeted therapies to improve outcomes for patients with osteosarcoma remains an area of active
research. This includes immunotherapy, photodynamic therapy, or treatment with nanoparticles.
Cold atmospheric plasma (CAP), a highly reactive (partially) ionized physical state, has been shown
to inherit a significant anticancer capacity, leading to a new field in medicine called “plasma oncology.”
The current article summarizes the potential of CAP in the treatment of human OS and reviews the
underlying molecular mode of action.
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1. Introduction

Cold atmospheric plasma (CAP) is a highly reactive (partially) ionized physical state containing a
mixture of physical and biologically active agents. Depending on the plasma force, physical action
is based on positive and negative ions, electrons, photons, and electromagnetic fields leading to
the emission of visible ultraviolet (UV) or vacuum ultraviolet (VUV) radiation, and thermal effects.
The probably most important components for biological effects, free radicals, include singlet oxygen
(1O2), superoxide (O2

-), ozone (O3), hydroxyl radicals (•OH), nitrogen radicals (N2
•), nitric oxide

(•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), hydrogen peroxide (H2O2), organic radicals,
electrons, energetic ions, and charged particles (RO•, RO2

•) (Figure 1) [1–8].
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Figure 1. Principle of reactive species generation by cold physical plasma. 

CAP operates at body temperature, making it feasible for a variety of medical applications, i.e., 
surface processing, inactivation of pathogens, or treatment of acute and chronic wounds [9,10]. 
Furthermore, plasma has been shown to inherit a significant anticancer capacity leading to a new 
field in medicine called “plasma oncology” [11]. Current cancer therapy aims at the complete 
eradication of cancer cells without affecting non-malignant tissue. However, complete surgical 
excision of tumor cells is challenged by microscopic tumor residues. CAP effects on cancer cells have 
been shown to involve the alteration of surface receptor functions, an activation of p53, induction of 
apoptosis or cell cycle arrest, and others. Together with its anticancer selectivity, CAP may therefore 
help to improve local tumor control when applied intraoperatively and further reduce the distance 
between the excised tumor and the surrounding healthy tissue necessary to achieve recurrence-free 
survival. The current review summarizes the potential of CAP in the treatment of human 
osteosarcoma (OS) and sheds light on the underlying molecular mode of action. 

Figure 1 shows the atmospheric pressure plasma jet kINPen. A noble gas, in this case argon, is 
driven into the head of the jet, where a high-frequency electrode ionizes argon molecules. This argon 
plasma is then driven out into the vicinity where reactive argon molecules react with ambient-air 
resident oxygen and nitrogen molecules to form dozens of different reactive oxygen and nitrogen 
species. Major reactive moieties also dominate the coloring of the plasma effluent. This reactive 
species cocktail can be applied to cells and tissues to manipulate their redox signaling and ultimately 
induce cellular responses and killing. 

1.1. Osteosarcoma (OS) Therapy Options 

Human OS is the most common primary malignant bone tumor displaying a bimodal age 
distribution. It occurs most frequently in the metaphysis of long bones of children, adolescents, and 
adults over the age of 65. Approximately 10–20% of the patients already have metastases at the time 
of initial presentation [12]. OS is histologically characterized by sarcomatous stroma and the 
production of osteoid or premature bone tissue by malignant cells. With the advent of effective 
chemotherapy, survival of patients with OS has improved over the past decades. However, mortality 
remains high, and novel therapeutic approaches are urgently needed to improve outcome of patients 
suffering from this devastating disease. The combination of radical surgical resection of the tumor 
and systemic multi-agent chemotherapy is considered the backbone in OS therapy, but the 
heterogeneous nature of OS complicates treatment. Two cycles of chemotherapy with methotrexate, 
doxorubicin and cisplatin (MAP) are usually followed by limb salvage surgery rather than 
amputation, although optimal timing of chemotherapy remains elusive. Relative resistance of OS to 
radiation therapy (RT) leaves it as an option in cases where complete surgical resection of the tumor 
cannot be achieved. Local surgical control can be followed by adjuvant chemotherapy. The addition 
of Mifamurtide (MTP-PE) has been shown to improve the overall survival rate [13,14]. However, the 
search for novel targeted therapies to improve outcomes for patients with OS remains an area of 
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CAP operates at body temperature, making it feasible for a variety of medical applications,
i.e., surface processing, inactivation of pathogens, or treatment of acute and chronic wounds [9,10].
Furthermore, plasma has been shown to inherit a significant anticancer capacity leading to a new field
in medicine called “plasma oncology” [11]. Current cancer therapy aims at the complete eradication of
cancer cells without affecting non-malignant tissue. However, complete surgical excision of tumor
cells is challenged by microscopic tumor residues. CAP effects on cancer cells have been shown to
involve the alteration of surface receptor functions, an activation of p53, induction of apoptosis or cell
cycle arrest, and others. Together with its anticancer selectivity, CAP may therefore help to improve
local tumor control when applied intraoperatively and further reduce the distance between the excised
tumor and the surrounding healthy tissue necessary to achieve recurrence-free survival. The current
review summarizes the potential of CAP in the treatment of human osteosarcoma (OS) and sheds light
on the underlying molecular mode of action.

Figure 1 shows the atmospheric pressure plasma jet kINPen. A noble gas, in this case argon,
is driven into the head of the jet, where a high-frequency electrode ionizes argon molecules. This argon
plasma is then driven out into the vicinity where reactive argon molecules react with ambient-air
resident oxygen and nitrogen molecules to form dozens of different reactive oxygen and nitrogen
species. Major reactive moieties also dominate the coloring of the plasma effluent. This reactive species
cocktail can be applied to cells and tissues to manipulate their redox signaling and ultimately induce
cellular responses and killing.

1.1. Osteosarcoma (OS) Therapy Options

Human OS is the most common primary malignant bone tumor displaying a bimodal age
distribution. It occurs most frequently in the metaphysis of long bones of children, adolescents,
and adults over the age of 65. Approximately 10–20% of the patients already have metastases at
the time of initial presentation [12]. OS is histologically characterized by sarcomatous stroma and
the production of osteoid or premature bone tissue by malignant cells. With the advent of effective
chemotherapy, survival of patients with OS has improved over the past decades. However, mortality
remains high, and novel therapeutic approaches are urgently needed to improve outcome of patients
suffering from this devastating disease. The combination of radical surgical resection of the tumor and
systemic multi-agent chemotherapy is considered the backbone in OS therapy, but the heterogeneous
nature of OS complicates treatment. Two cycles of chemotherapy with methotrexate, doxorubicin
and cisplatin (MAP) are usually followed by limb salvage surgery rather than amputation, although
optimal timing of chemotherapy remains elusive. Relative resistance of OS to radiation therapy (RT)
leaves it as an option in cases where complete surgical resection of the tumor cannot be achieved. Local
surgical control can be followed by adjuvant chemotherapy. The addition of Mifamurtide (MTP-PE)
has been shown to improve the overall survival rate [13,14]. However, the search for novel targeted
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therapies to improve outcomes for patients with OS remains an area of active research including
immunotherapy [15–17], photodynamic therapy [18], treatment with nanoparticles [19,20], and the
combination of CAP and iron nanoparticles [21].

1.2. Cold Atmospheric Plasma (CAP) and Plasma Oncology

CAP applications have shown remarkable anticancer effects [22–24]. Inactivation and/or killing
was observed in vitro in many tumor types, including melanoma [25–27], glioblastoma [28–30],
pancreatic cancer [31], head and neck cancer [32–34], prostate cancer [35–38], colon cancer [39–41],
lung cancer [42–44], leukemia [45–47], and gastric cancer [48]. Tumor damage and decline was observed
in several in vivo models investigating, for example, pancreatic cancer [49,50], melanoma [51–53],
ovarian cancer [54], breast cancer [55], and colon cancer [56]. It needs to be mentioned that many
of these murine cancer models were not orthotopic, primarily because of technical deficits to reach
with the plasma or plasma-treated liquid inside the animal body. Table 1 summarizes in which cancer
systems CAP effects have been studied. Meanwhile, first case reports exist on beneficial plasma effects
in cancer patients. The kINPen MED is accredited as medical device in Germany and the European
Union for skin surface treatment and decontamination [57], although the classification as a device
is at least controversial for wound treatment [58]. Final stage head and neck cancer patients often
suffer from microbial infections [59]. These are difficult to eradicate due to tumor surface bleeding and
irritation upon physical contact. Moreover, they cause strong odors, complicating social interaction,
and thus palliation. Accordingly, head and neck tumors received gas-plasma treatment with the
aim to decrease microbial burden. Unexpectedly, some tumors responded to plasma treatment [60],
and cancer cell apoptosis was identified [31,61–63]. First reports on the use of CAP for tumor removal
dates back to 1989 [64], followed by successful ablation of non-neoplastic Barrett’s mucosa [65] and
neoplastic diseases. Recently, the first patient worldwide profited long lasting from plasma tumor
therapy [66].

Table 1. Cancer systems used for investigating cold atmospheric plasma (CAP) effects.

Species Tumor Cell Line

human non-small cell lung cancer (NSCLC) MR65, SW900
human hepatocellular carcinoma HepG2, BEL-7402
human melanoma cells A2058, G361, SK-MEL-28
human cervical cancer HeLa
human colon carcinoma COLO320DM, HCT-116, SW480, LoVo
mouse melanoma cells B16-F10, 1205Lu, Mel Juso, Mel Ei, Mel Ho, Mel Im, Mel Ju, HTZ19, A375
human breast cancer MCF-7, MDA-MB-231
human glioblastoma cells U87, T98G, LN18, LN229
human bladder cancer cells SCaBER
mouse lung carcinoma cells TC-1
human acute lymphoblastic leukaemia cells CCRF-CEM
human pancreatic cancer cells MIA PaCa2-luc, Colo-357, PaTu8988T
human ovarian cancer cells SKOV-3, HRA
mouse pancreatic cancer cells 6606PDA
human acute monocytic leukaemia cells THP-1
human skin cancer PAM212
human lung cancer H460, A549
mouse neuroblastoma Neuro2a
human head and neck squamous cell carcinoma cells JHU-022, JHU-028, JHU-029, SCC25, FaDu, OSC 19
human prostate cancer LNCaP, BPH-1, PC-3
human oral squamous cell carcinoma cells HSC-2, SCC-15
human multiple myeloma cells RPMI8226, LP-1
human lymphoma U937
human osteosarcoma U2-OS, MNNG, SaOS-2

1.3. CAP Devices and General Biological Impact

There are two groups of cold plasma sources. The majority are experimental sources (please refer
to other reviews about information on them [67–69]). The second group are accredited devices.
In Europe, so far four devices are available as medical devices. As a first step, the technical standard
DIN SPEC 91315:2014-06 was developed, which characterizes the basic physical and technical
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performance parameters of CAP sources to be used for bio-medical or biological experiments and
for further development to become medically applicable plasma sources [70]. Three CAP sources
received accreditation through clinical observations/studies [59], but none of them is licensed for
oncological applications yet. All CAP sources expel a plethora of reactive species [71]. These have
been implicated as active agents in oncotherapy [72]. For a long time, it was assumed that cancer cells
suffer oxidative stress per se, making them more vulnerable to additional exposure to oxidants [73].
Accordingly, anticancer effects of plasma are often referred to as being selective to tumor over
non-tumor cells [74–76]. However, this view is challenged by the understanding that oxidative
damage is also mediated via redox signaling [77], i.e., its translation to cell death can in principle be
counter-regulated in cancer cells [78]. A number of studies comparing several cell lines corroborate this
notion, showing that the sensitivity of a given cell type or cell line seems not always to depend on its
tumorigenic potential [79–81]. Yet, without a doubt plasma effects are primarily mediated via reactive
species [82–84]. Some studies highlighted a possible role of, for instance, UV/VUV radiation [85–87]
or electrical (field) effects [88], but clear evidence of any major contribution similar to reactive species
is lacking.

2. CAP Effects on OS Cells

Due to aggressive chemotherapy regimen, OS therapy is frequently attended by the risk of
treatment toxicity, and there is thus an unmet clinical need for novel therapeutic strategies [12].
The multifunctional impact of CAP on cancer cell response and survival has been demonstrated in
several solid cancer entities. Therefore, CAP treatment might be a promising alternative in future OS
therapy concepts. However, the underlying molecular mechanisms are not completely understood.

2.1. CAP-Induced Redox Effects and Redox Signaling

Cancer cells display weaker antioxidant mechanisms compared to normal cells [33,89]. In prostate
cancer cells, redox detoxification capacity is altered by decreased intracellular glutathione (GSH)
levels compared to non-malignant prostate cells [36]. Thus, they can be attacked selectively by a
CAP-induced increase of extracellular and intracellular reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (reactive oxygen and nitrogen species, RONS). By utilizing a preclinical in vitro
OS model system consisting of the permanent OS cell lines U2-OS and MNNG/HOS, a singular
CAP treatment of 10 s of tumor cells in suspension was sufficient for the significant inhibition of
cellular growth [90]. Notably, this antiproliferative effect was neutralized by supplementation of
N-acetylcysteine (NAC), a low-molecular weight substance related to the glutathione-dependent
cellular redox system [91]. Transmembrane diffusion of extracellular ROS such as H2O2 plays a critical
role in intracellular ROS increase. Macromolecules below a radius of 6.5 nm were able to enter HeLa
cells following CAP treatment and consecutively induced temporary cell permeabilization [92,93].
Aquaporin (AQP) expression has been shown to be upregulated in tumors, increasing H2O2 uptake
in malignant compared to non-malignant cells explaining diverse responses of cancer cells following
CAP treatment [94,95]. Furthermore, increased mitochondrial transmembrane permeability via a CAP
induced depolarization of the mitochondrial membrane potential results in the release of proapoptotic
factors [96]. After absorption into the cell, NAC can serve as a substrate for the biosynthesis of
GSH. GSH itself as well as GSH-dependent enzymes are essential factors in the GSH-dependent
redox homeostasis system and have been demonstrated to play a crucial role in chemoresistance
mechanisms of OS cells representing a detoxification pathway [97]. For this reason, and due to the
composition of CAP containing reactive species, an involvement of cellular redox processes appears
most likely. For instance, it has been shown that CAP treatment leads to lipid peroxidation and
mitochondrial membrane potential decrease [98–100]. In cell culture, CAP treatment triggers the de
novo formation of hydrogen peroxide (H2O2) in the cell culture medium, with a production rate
depending on the composition of the medium used [101]. Subsequently, H2O2 may overcome the
cytoplasmic membrane elevating the intracellular H2O2 level. Furthermore, CAP induced redox stress
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activates cellular detoxification systems and provokes the enzymatic formation of intermediary H2O2

in the cells [102]. Generally, processes of redox signaling cascades and detoxification pathways are
activated immediately.

In OS cells, CAP specifically controls members of an antioxidant enzyme family, namely
peroxiredoxins (Prx). After CAP treatment, cytosolic Prx isoforms Prx-1 and Prx-2, but not the
mitochondria-specific isoform Prx-3, were reduced to the non-catalytic monomeric form [91]. Moreover,
CAP activated the secretion of Prx-2, but not Prx-1 and Prx-3, into the extracellular space. The cellular
functionality of cell-free Prx-2, however, is unclear. Beside an inactivation of Prx-1 and Prx-2 enzymes
by protein's redox status, CAP additionally affects Prx-mediated signal transduction controlling
cell growth arrest, apoptosis and proliferation [77]. These findings point to a role for redox-specific
signaling pathways in CAP induced proliferation control.

2.2. CAP-Induced Apoptosis

The induction of programmed cell death (apoptosis) by cytostatic agents is a common mode of
action in cancer treatment and in OS chemotherapy in particular [103–105] and mitochondria act as the
major regulator of apoptosis [96]. Triggered by specific signaling cascades, apoptosis results in cellular
degradation and cell death without liberation of degradation products and critical biomolecules,
which may induce systemic processes of inflammation or immune response [106]. The induction of
apoptotic effects in cancer cells has been shown in several solid tumors including carcinoma of prostate,
breast, and pancreas [21,31,36].

In human cervical cancer HeLa cells, CAP induced various intracellular and extracellular signals
by oxidative stress converge in mitochondria, increasing their transmembrane potential and promoting
the release of pro-apoptotic factors including cytochrome c. This process is regulated by the Bcl-2
protein family and ultimately leads to the activation of the caspase cascade [96]. In a melanoma cell
line, pro-apoptotic changes such as Rad17 and tumor suppressor p53 phosphorylation, cytochrome c
release, and caspase-3 activation were initiated by CAP [107].

Using an in vitro cell culture model, induction of apoptotic events in CAP-treated OS cells has
been demonstrated based on diverse methods and measured at different stages of the apoptotic
cascade [90,108]. CAP-induced anti-proliferative efficacy in OS cells was accompanied by the induction
and phospho-activation of the tumor suppressor protein p53 [90]. This so-called “guardian of the genome”
can block entry into the cell cycle and can induce apoptosis via both intrinsic and extrinsic apoptotic
pathways. In anticancer therapy, the increase of p53 activity is frequently part of treatment-induced
efficacy and may initiate the apoptotic effects in CAP treated OS cells.

Beside energy-dependent signal transduction pathways and enzymes like nucleases and proteases,
apoptosis is also characterized by stage-dependent morphological alterations, e.g., cell shrinking,
chromatin condensation, nuclear deformation, and finally the formation of small apoptotic bodies
as one of the last stages before final degradation [109]. In U2-OS and MNNG/HOS OS cell lines,
CAP treatment activated the apoptosis-specific proteases caspase-3 and caspase-7 [unpublished data].
Later in the apoptotic cascade, cell shrinking has been demonstrated by fluorescence dye stained
OS cell nuclei [110]. Microscopic analysis revealed decreased nuclei measured by a reduced nuclear
area and perimeter. Furthermore, the condensation of chromosomal DNA was detected, expressed as
the intensified total fluorescence signal within the nuclei [unpublished data]. The apoptosis-specific
degradation of the chromosomes could be demonstrated by performing TUNEL assay as well as comet
assay [unpublished data].

Another mechanism is the alteration of the cell cycle. CAP increased the percentage of apoptotic
tumor cells by blocking the cell cycle at the G2/M checkpoint, and this effect was mediated by reduced
intracellular cyclin B1 and cyclin-dependent kinase 1 (Cdc2), increased p53 and cyclin-dependent
kinase inhibitor 1 (p21), and increased Bcl-2-like protein 4 (Bax)/B cell lymphoma 2 (Bcl-2) ratio [111].
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2.3. CAP-Induced Gene Expression and Epigenetic Changes

In addition to direct effects on tumor cells as aforementioned, CAP interferes with a number
of other processes that indirectly influence tumor cell growth. For instance, CAP treatment of
physiological solutions and cell culture media have been shown to exert antiproliferative effects
on tumor cells [112].

Oxidative stress induced by CAP can modify the expression of nearly 3000 genes encoding
structural proteins and inflammatory mediators, such as growth factors, cytokines [113], interleukins
and members of the tumor necrosis factor (TNF) superfamily. Cytokine and chemokine expression has
been demonstrated to be targeted by CAP treatment followed by the modulation of systemic processes,
e.g., inflammation and immune response [114–116].

Regarding OS tumor biology and particularly future OS therapy concepts, a transcriptomic
profiling of CAP-treated cells utilizing a cytokine and chemokine-specific DNA array was performed.
Altogether, a total of 84 cytokines and chemokines were analyzed by quantitative polymerase chain
reaction (qPCR). Here, the expression rate of several factors was significantly modulated after CAP
treatment of OS cell lines U2-OS and MNNG/HOS. Of the 84 investigated cytokines, 9 (U2-OS) and
8 (MNNG/HOS) factors, respectively, were differentially regulated compared to control approaches
[unpublished data]. Within these factors, 3 chemokines (C5, CCL5, CXCL1) but primarily 5 interleukins
(IL-1A, IL-1B, IL-18, IL-22, IL-23A), and 7 growth factors (CNTF, CSF1, CSF3, MSTN, NODAL, TGFB2,
THPO) were significantly induced in the presence of CAP. Notably, only vascular endothelial growth
factor (VEGFA), an inductor of angiogenesis, was suppressed by CAP application.

Taken together, the presented examination suggests that the modulation of cytokines and
chemokines after CAP treatment interferes with proliferation, and chemotaxis and may affect tumor
angiogenesis, invasion, and metastasis development.

In a fibroblast culture and in a wound healing mouse model CAP increased the expression of
type I collagen and genes encoding proteins involved in wound healing processes (interleukin 6
[IL-6], IL-8, chemokine [C–C motif] ligand 2 [CCL2], transforming growth factor β1 [TGF-β1], TGF-β2,
CD40 ligand, chemokine [C–X–C motif] ligand 1 [CXCL1], interleukin 1 receptor antagonist [IL-1RA],
and plasminogen activator inhibitor-1 [PAI-1]) without affecting cellular migration, proliferation,
and apoptosis [117]. In the context of psoriasis CAP has been shown to induce downregulation of IL-12
and upregulation of IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor α (TNF-α), interferon gamma (IFN-γ),
and vascular endothelial growth factor (VEGF) mRNAs in human keratinocytes [118]. Park et al., (2015)
first demonstrated changes in DNA methylation pattern in a breast cancer cell line expressing the
estrogen receptor (MCF-7) and one that does not express it (MDA-MB-231). Epigenetic modifications
were more extensive in MCF-7 cells, affecting the promoter region of genes related to “cell mobility”,
“connective tissue function and development”, “motility development”, “cell–cell communication and
cell–cell interaction”, and “cell survival and cell death” (Figure 2) [119].
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Figure 2. CAP effects on osteosarcoma cells. CAP, cold atmospheric plasma; reactive oxygen species
(ROS), reactive nitrogen species (RNS), glutathione (GSH), transcription factors (TF), c-Jun N-terminal
kinases (JNK).

CAP-induced intracellular and extracellular redox stress impairs OS redox homeostasis,
GSH dependent enzymes, and cell growth and alters chemokine expression patterns. Direct effects on
signal transduction cascades leads to apoptosis.

3. Clinical Prospects and Conclusions

First in vitro studies suggest cold plasma to be effective against osteosarcoma. Animal models
are needed to stratify this conclusion in more biologically relevant systems. Plasma is regarded as
potential adjuvant therapy. Its therapeutic efficacy should therefore be assessed in combination with
current drugs used for OS therapy in vitro and in vivo. Furthermore, prior to the clinical application
of CAP, several technical parameters need to be studied in more detail, including penetration depth,
optimal dosage, and repetitive applications. Also, recent evidence suggests a potential synergy of
nanoparticles in combination with CAP that leads to a maximized targeted efficacy [120]. At the
same time, the killing efficacy of plasma should be tested on chemoresistant cancer cells. Vice versa,
repetitive applications of plasma on these cancers in vitro will show the presence or absence of
adaption processes to frequent oxidative challenge by the tumor cells. Once validated for OS therapy in
pre-clinical models, plasma therapies need to be embedded within specific cancer treatment modalities.
This could be, for example, as an adjuvant tool during chemotherapy and resection, as a potent killer
of micrometastases outside the surgically removed bulk tumor, or during palliative care.
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