
nanomaterials

Article

Multisensory System Used for the Analysis of the
Water in the Lower Area of River Danube

Constantin Apetrei * , Catalina Iticescu and Lucian Puiu Georgescu

Department of Chemistry, Physics and Environment, The European Centre of Excellence for the Environment,
Faculty of Sciences and Environment, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
catalina.iticescu@ugal.ro (C.I.); lucian.georgescu@ugal.ro (L.P.G.)
* Correspondence: apetreic@ugal.ro; Tel.: +40-727-580-914

Received: 15 April 2019; Accepted: 13 June 2019; Published: 17 June 2019
����������
�������

Abstract: The present paper describes the development of a multisensory system for the analysis
of the natural water in the Danube, water collected in the neighboring area of Galati City. The
multisensory system consists of a sensor array made up of six screen-printed sensors based on
electroactive compounds (Cobalt phthalocyanine, Meldola’s Blue, Prussian Blue) and nanomaterials
(Multi-Walled Carbon Nanotubes, Multi-Walled Graphene, Gold Nanoparticles). The measurements
with the sensors array were performed by using cyclic voltammetry. The cyclic voltammograms
recorded in the Danube natural water show redox processes related to the electrochemical activity
of the compounds in the water samples or of the electro-active compounds in the sensors detector
element. These processes are strongly influenced by the composition and physico-chemical properties
of the water samples, such as the ionic strength or the pH. The multivariate data analysis was
performed by using the principal component analysis (PCA) and the discriminant factor analysis
(DFA), the water samples being discriminated according to the collection point. In order to confirm
the observed classes, the partial least squares discriminant analysis (PLS-DA) method was used. The
classification of the samples according to the collection point could be made accurately and with
very few errors. The correlations established between the voltammetric data and the results of the
physico-chemical analyses by using the PLS1 method were very good, the correlation coefficients
exceeding 0.9. Moreover, the predictive capacity of the multisensory system is very good, the
differences between the measured and the predicted values being less than 3%. The multisensory
system based on voltammetric sensors and on multivariate data analysis methods is a viable and
useful tool for natural water analysis.

Keywords: water; Danube; sensor; nanomaterial; carbon nanotube; carbon nanofiber; graphene; gold
nanoparticle; cyclic voltammetry; data analysis

1. Introduction

The Danube is a vital river for Europe, forming one of the largest and most important water
systems on the continent. The Danube has played a major role in the socioeconomic, political and
cultural development of central and south-eastern Europe for centuries, and the people living in the
Danube area still use this river for drinking water, irrigation, hydroelectric power, naval transport,
recreation, etc. [1,2].

As a result of these activities, most of the Danube River waters had to be accumulated or
regularized because agricultural fertilizers have led to an excessive growth of nutrients in the Danube
and the industrial activity has significantly polluted River Danube and its tributaries [3].

Pollution is the most important problem faced by the Danube, this problem being more obvious
on the Romanian territory, especially in the lower Danube sector. Pollution is caused by various factors,
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among which are accidental industrial waste leakage, deliberate release of pollutants, spillage of oil
products from storage tanks and pipelines, use of pesticides and herbicides in agriculture, incorrect
disposal of waste and household waste, solubilization of pollutants from the atmosphere, rains acid,
etc. [4,5].

The concentration of water pollutants and water quality are determined by using systems based
on different physico-chemical detection principles, most of these methods being standardized [6–8].
The systems capable of determining in situ and of reporting on-line changes in water quality need to
be used in order to improve water quality monitoring, as well as to control the operations in water
treatment plants [9,10]. Classical analytical methods can be used to determine water quality with high
accuracy, but such methods are expensive (equipment, reagents), require long time analysis and highly
qualified staff and imply off-line determinations.

Electrochemical sensors can be used for rapid screening or for in situ and on-line monitoring
of several analytes concentration which are relevant for natural water pollution [11–13]. Simplicity,
versatility and rapidity are other advantages characteristics of electrochemical methods. Most
electrochemical sensors are based on potentiometry (e.g., ion selective membrane electrodes [14]) and
voltamperometry (e.g., noble metals electrodes, boron doped diamond electrodes [15]). However, the
determination of a limited number of parameters is not sufficient to determine water quality when
analyzing complex samples such as natural waters. The use of sensor networks coupled with advanced
methods for analyzing experimental data may significantly improve the results obtained [16]. These
multisensory systems (also called electronic tongue) have been developed for multiple applications
in various fields such as: Food [17–19] and pharmaceutical industry [20], as well as environmental
analysis [21,22].

In a research article, Witkowska Nery et al. described a method which used paper-based
potentiometric sensors (sensitive to Cl−, Na+/K+, Ca2+/Mg2+, NO3

−) in order to discriminate water
samples collected from tap or lake water and from bottled still or mineral water obtained directly from
springs. A 100% correct classification of the samples was obtained by means of Principal Component
Analysis (PCA) and K-nearest neighbor (KNN) methods, which prove that the system could be used
for adulteration control of bottled water [23].

A potentiometric e-tongue based on lipid membranes sensors was employed to differentiate 34
water samples including still, sparkling and flavored mineral waters. The 96% correct classification
rate was obtained based on the model developed by K-folds cross-validation technique. Additionally,
some physico-chemical parameters, such as pH and conductivity were quantitatively estimated by
using the multi-parametric model [24].

Carbó et al. describe the use of a voltammetric electronic tongue based on noble metal electrodes
(iridium, rhodium, platinum, and gold) for the analysis of quality parameters in 83 spring water
samples. Pulse voltammetry was the detection technique used and nitrate, sulfate, fluoride, chloride,
sodium and pH were the parameters estimated. The multivariate model was based on partial least
squares (PLS) analysis and showed good predictive capability for all the parameters with errors below
10% or 15% [25].

Kumar and collaborators analyzed the taste of eight packaged mineral/drinking waters, one tap
water and two purified waters, obtained by reverse osmosis or deionization in commercial purification
systems. The electronic tongue used was a commercial system based on potentiometric sensors. The
data analysis models based on PCA, discriminant factor analysis (DFA) and soft independent modelling
of class analogy (SIMCA) were able to discriminate and classify the waters according to the samples
ionic content, which conditions the taste of the water [26].

Mahato and Adhikari report an electronic tongue based on functionalized polymer membrane
electrodes used to monitor drinking water quality. Potentiometric sensors provide different response
patterns for each drinking water sample. PCA results show good discrimination among the waters.
Moreover, the monitoring of dissolved minerals was successfully achieved by using standard calibrated
sensing data [27].
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In one study, the experiments were conducted using an electronic tongue to monitor the drinking
water quality, analyzed from the raw water in the river to the tap water of the consumer. The statistical
multivariate methods of the voltammetric signals of the sensors immersed in the water samples were
able to estimate the water quality [28].

Although there are numerous examples reported in various articles and studies, the global
qualitative analysis of water and the quantitative determination of water parameters by using
multisensor systems are still challenging, the new discoveries in this research area possibly being
very important. The analytical performance of multisensor systems may be increased by using
voltammetric sensors based on electroactive materials [29,30]. Such sensors may detect ionic or
covalent substances, electro-active or inactive compounds, by means of various types of physical,
chemical and electrochemical interactions [31,32]. The sensitivity of chemically modified sensors may
be further increased by using nanomaterials such as: Carbonaceous nanomaterials (carbon nanotubes,
graphene, carbon nanofibers, etc.) or nanoparticles of noble metals (Au, Pt, etc.) in the detector
element [33,34]. The innovation of this work consists in the development of sensors array based
on electroactive compounds and nanomaterials coupled with multivariate data analysis system, for
monitoring the Danube water quality and for estimating important physico-chemical parameters from
the electrochemical data. Based on our current knowledge, it is for first time when such system was
used for the analysis of natural waters.

Starting from such prerequisites, the present paper focuses on a multi-sensor system based
on commercial screen-printed sensors chemically modified with electroactive compounds and
nanomaterials. The cyclic voltammetry was the detection method applied and the data obtained
were used to construct discrimination and classification models of the water samples according to the
collection point and regression models for predicting important parameters regarding the Danube
water in different collection points near Galati.

2. Materials and Methods

2.1. Reagents and Solutions

KCl (Sigma-Aldrich, Saint Louis, MO, USA) and ultrapure water obtained using a Milli-Q
Simplicity® Water Purification System (Merk, Darmstadt, Germany) were used to prepare 0.1 M KCl
solution. This was used as reference solution for checking the sensor signal before recording the signals
in the water samples to be analyzed.

2.2. Water Samples

The water samples were taken from 7 places near Galati, as shown in Table 1.

Table 1. Water samples under study.

# Sample Site Geographical
Coordinates

1 PD Before the confluence with River Siret (Priza Dunării) 45◦22′ N, 28◦01′ E
2 DS After the confluence with River Siret 45◦24′ N, 28◦01′ E
3 DL At Libertatea Restaurant 45◦25′ N, 28◦03′ E
4 CP Before the confluence with River Prut (Cotu Pisicii) 45◦25′ N, 28◦11′ E
5 DP After the confluence with River Prut 45◦27′ N, 28◦14′ E
6 GR In the neighborhood of Grindu village 45◦24′ N, 28◦16′ E
7 LN In the neighborhood of Luncaviţa village 45◦19′ N, 28◦20′ E

The water samples were collected according to the current legislation in force [35]. The experimental
procedure included the immersion in the mass of water of a closed container. At the depth provided in
the standard procedure, the stopper was removed, the container was filled, and then it was lifted to the
surface. Thereafter, the water samples for the analysis were placed in plastic vials provided with a
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stopper with a hermetically sealed cap. The vials for sampling were previously very well washed,
rinsed with ultrapure water and dry. At the place of water sample collection, the vial was rinsed 3
times with the water to be sampled, and then filled to the refuse and the stopper was fixed so that no
bubbles of air remained in the vial. The vials were transported to a laboratory where they were kept in
a refrigerator until all measurements with the multi-sensor system and physico-chemical analyzes
were performed.

2.3. Measurements with the Multisensory System

The multisensor system used in this study is based on cyclic voltammetry and was developed
by the Laboratory of Sensors and Biosensors of the Lower Danube University in Galati (https:
//erris.gov.ro/European-Centre-of-Excellenc-1).

It consists of a potentiostat/galvanostat (Biologic SP 150, Bio-Logic Science Instruments SAS, Claix,
France), a software for controlling electronic equipment and data acquisition (EC-Lab Express software
V5.52, Claix, France) installed in a PC and a set of commercially screened electrodes (Metrohm-Dropsens,
Llanera, Spain). The galvanostat/potentiostat applies a potential in the range between −0.4 and +0.8 V
over the pseudo-reversing electrode (Ag) and records the current at the work electrode level. The
current-potential-time dependence was collected for each sensor and sample to be analyzed and sent
to the PC for storage and further processing.

The sensors used in this study are shown in Table 2.

Table 2. Voltammetric sensors array.

Sensor Abbreviation

Screen-printed Co-phthalocyanine/Carbon electrode CoPc-SPE

Screen-printed Meldola’s Blue/Carbon electrode MB-SPE

Screen-printed Prussian Blue/Carbon electrode PB-SPE

Multi-Walled Carbon Nanotubes-Gold Nanoparticles
modified screen-printed electrode MWCNT/GNP-SPE

Multi-Walled Carbon Nanofibres-Gold Nanoparticles
modified screen-printed electrode MWCNF/GNP-SPE

Multi-Walled Graphene-Gold Nanoparticles modified
screen-printed electrode MWGPH/GNP-SPE

The sensors used to build the system detect dissolved organic and inorganic compounds, i.e.,
compounds with redox properties and compounds electrochemically inactive, and ionic and covalent
compounds [34,36,37]. The detection mechanism is based on the redox reactions from the sensor
surface (of the electrode compounds in the solution and/or immobilized in the sensor detector element)
which is accompanied by the movement of the ions in the solution to compensate for the electrical load
of the sensor during potential scanning [34,36,37]. The sensors have cross-sensitivity to the compounds
found in natural water, thus obtaining a chemical fingerprint of the analyzed sample.

The measurement protocol used to record the cyclic voltammograms of sensors in the Danube
water samples was the following. Measurements were performed at room temperature and the scan
rate was 0.1 V s−1. For each sensor, 5 cyclic voltammograms (CV) in 0.1 M KCl solution were recorded.
The 5th CV was considered the reference CV. The sensors were removed from the KCl solution and
rinsed with ultrapure water. Next, each sensor was inserted into the Danube water sample and 3 CVs
were recorded, the last cycle being saved and considered the sensor response to the analyzed sample.
After this, the sensor was rinsed with ultrapure water and 5 CVs were recorded again in 0.1 M KCl. The
5th CV was compared to the reference cyclic voltammogram. If the coefficient for determining the linear
adjustment between the two CVs was greater than 0.9, the sensor was used for another determination.
If this performance criterion has not been met, the sensor was replaced by a new sensor. The reason
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for choosing these CVs (the 3rd and the 5th) in the analysis is the stability and reproducibility of the
sensor signal. First CVs are varying somehow because the electrochemical processes do not reach the
steady state. After these first cycles, the sensors responses are highly reproducible.

All water samples were analyzed 7 times each (7 replicates), first sequentially and then randomized,
with all 6 sensors and the CVs constituted the input data matrix. So, the number of files used to
construct the matrix were 7 samples × 6 sensors × 7 replicates. Due to the very high number of pairs of
i,E values from the CVs, a kernel reduction method was applied, and this method is being reported
as successful in previous studies [17,38]. Briefly, the kernel method performed by means of Matlab
software (v. 5.3., Mathworks, Natick, MA, USA), consist is the splitting of cyclic voltammogram in
anodic and cathodic parts, the multiplication of anodic part with 10 kernel functions (bell-shaped
and of unitary area), and the calculation of the areas under the anodic voltammetric curve. The 10
resulting area values, called kernel coefficients, collect the information from the cyclic voltammograms
reducing the i,E pairs to 10 representative values for each curve. Therefore, the data resulted for
the measurements with the 6 sensors consists in a matrix with 60 columns (6 sensors × 10 kernel
coefficients) and 49 lines (7 water samples × 7 replicates).

The multivariate data analysis techniques used for the analysis of the experimental data were
carried out using the following software: The Unscrambler (X v. 10.4, Camo, Oslo, Norway), Matlab,
and Excel (v. 2010, Microsoft, Redmond, WA, USA).

2.4. Measurements with the Multisensory System

The physico-chemical analysis was carried out by standardized procedures (https://www.asro.ro/

lista-standarde-calitatea-apei/). The pH was determined by using a pH meter (WTW, Inolab pH 7310,
Weilheim, Germany), equipped with a combined glass electrode/Ag/AgCl, calibrated in three points
(pH 4.01, 7.00, 10.01) (SR EN ISO 10523: 2012). Resistivity (ρ) and total dissolved solids (TDS) were
determined with a laboratory conductometer (WTW, Inolab Cond 7310, Weilheim, Germany) (SR EN
27888: 1997). Turbidity was determined with a three-point (NFU/NTU 0.02, 10.0, and 1000) (SR EN ISO
7027-1: 2016) laboratory turbidimeter (WTW, Model TURB 430IR, Weilheim, Germany).

Determination of iron content in water with 1,10-phenanthroline was performed according to SR
ISO 6332: 1996. Thus, for the determination of total iron content, hydroxylamine hydrochloride needs
to be added in order to reduce iron(III) to iron(II). A solution of 1,10-phenanthroline is added to the
treated water sample, and the absorbance of the red colored complex is measured at the wavelength of
510 nm.

Determination of nitrate ion in water was performed according to SR ISO 7890-3: 2000. The
principle of this method consists in the spectrophotometric measurement of the absorbance of the yellow
compound formed by the reaction between the sulfosalicylic acid and the nitrate in the alkaline solution.

Spectrophotometric experiments were performed with a Rayleigh UV-1601 spectrophotometer
(Beijing Rayleigh Analytical Instrument Corporation, Beijing, China) equipped with a 1 cm optical
length quartz cell.

2.5. Data Analysis

An unsupervised method, namely the main component analysis (PCA), was applied to study the
data structure and to identify the sample groups. The PLS discriminant analysis (PLS-DA) was used to
classify water samples according to quality or to the sampling point. The PLS1 regression method was
used to estimate the correlations between the voltammetric data and the physico-chemical parameters
and the predictive capacity of the sensor network.

PCA is usually the first step of data analysis. Reducing data sizes allows one to view the model
by keeping as much information as possible in one’s original data. Each main component (PC) is
independent (orthogonal) and it is a linear combination of variables initially measured. The first main
component (PC1) accounts for the maximum of the total variance, the second (PC2) for the residual
maximum variance, and so on until the total variance is taken into account. Practically, it is sufficient

https://www.asro.ro/lista-standarde-calitatea-apei/
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to keep only the components which represent a large percentage of the total variance. The correlation
coefficients between the initial variables and the main components are called loadings of the main
components. The values representing the samples in the space defined by the main components are
called scores [39].

The Discriminant Factor Analysis (DFA) is a method based on looking for a direction along which
the sample clusters are as far as possible and the samples of the same group are as close as possible.
The results of the mathematical model may be represented in two or three dimensions. This method is
usually used to identify and to classify unknown samples. In order to do this, an assignment function is
used, which is based on the proximity of the sample to the gravity center of the group. The result of the
classification is obtained by projecting the sample data on a 2D gradient of the two best discriminating
functions in relation to the samples classification [40].

Detection of an electrochemical pattern for each sampling point in the Danube was done by
using PLS-DA, which is a special case of partial square minimal regression for both categorical and
non-quantitative variables. The 60 variables resulting from the measurements of the 49 samples with
voltammetric sensors were subjected to PLS-DA regression, in which the collinearity effect of model
data may be effectively reduced and the correlation between the predictive voltammetric measurements
and the sample type is maximized. In order to minimize the PLS-DA regression errors, the latent
variables were allocated according to the classification error rate provided by the full cross validation
process [41,42].

PLS is a versatile modelling technique for multivariate data used to analyze multiple relationships
between one or more sets of variables measured for a series of samples. The basic idea of PLS is to
reduce the dimensionality by multiple regression by extracting latent factors which collect most of
the experimental data variance, guaranteeing that the first orthogonal latent variables improve the
variable prediction in the set of variables to be predicted. PLS1 is the regression method which studies
a single variable explained and predicted by a set of explanatory variables [38,40].

3. Results and Discussion

3.1. Sensor Response to Water Samples

The first stage of the research was the registering of the cyclic voltammograms of all sensors in 0.1
M KCl solution, with a scan rate of 0.1 V × s−1. These CVs were used as reference signals for the sensor
quality check (Figure S1—Supplementary Material).

In order to analyze the responses of the voltammetric sensors when exposed to water samples
from the Danube, the voltammetric responses of all the sensors exposed to the same water sample and
the responses of a sensor exposed to all water samples to be analyzed will be discussed.

Figure 1 shows the responses of all the sensors when immersed in the DL Danube water sample
recorded by cyclic voltammetry in the potential range −0.4 and +0.8 V. This potential range was
determined to be optimal for the achievement of stable signals of all sensors from the array.

As it may be seen in Figure 1, cyclic voltammograms show a series of peaks related to the redox
processes at the surface of the sensors. These peaks are mainly due to the electroactive substances
immobilized in the detector element of the sensors and to the electroactive substances present in the
Danube water (e.g., cations with redox properties, phenolic compounds, etc.). On the other hand,
redox processes are facilitated or hindered by the presence of other compounds in the analytical water
(inhibitory or synergistic effect) and are accompanied by the movement of the ions from the solution.
In addition, the presence of the nanostructured materials present in the sensing element of the sensors
fosters interactions at the sensor-sample interface to analyze and transfer electrons [34,36,37,41–44].
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analyzed sample and sensor, constituting a chemical footprint of each water sample. It may thus be 
concluded that the sensor network has good cross-selectivity by providing different signals and 
information from the same sample to be analyzed with each system sensor. However, in order to 
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Figure 1. Sensor response (a) CoPc-SPE; (b) MB-SPE; (c) PB-SPE; (d) MWCNT/GNP-SPE;
(e) MWCNF/GNP-SPE; (f) MWGPH/GNP-SPE exposed to the DL water sample.

It may be noted that each electrode produces a particular response to each of the water samples to
be analyzed, which contributes to the increase of the cross-selectivity of the voltammetric sensor array.

The cyclic voltammograms of the PB-SPE sensor exposed to all water samples are shown in
Figure 2.

It may be seen that the voltammetric signals vary significantly from one sample to another. The
shape of the voltamperometric curves is different, the potentials of the peaks observed are shifted to
higher or lower values (±50 mV), and the peak currents have different values (±15 µA). At the most
intense anodic peak in cyclic voltammograms (about 0 V), a second peak is observed in water samples
(DS, DL, GR), sometimes better defined, sometimes in the form of a shoulder.
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Figure 2. The voltammetric responses of the PB-SPE sensor exposed to all water samples (a) PD; (b) DS;
(c) CP; (d) DP; (e) GR; (f) LN.

The results obtained with the other sensors immersed in the water samples are specific for each
analyzed sample and sensor, constituting a chemical footprint of each water sample. It may thus
be concluded that the sensor network has good cross-selectivity by providing different signals and
information from the same sample to be analyzed with each system sensor. However, in order to
confirm these differences, methods of multivariate data analysis should be used for water sample
discrimination and classification.

3.2. Exploratory and Discriminant Data Analysis Models

The array of voltammetric sensors used for discriminatory studies includes the six screen-printed
electrodes modified with electroactive substances (CoPc, Meldola’s Blue, Prussian Blue) and
nanomaterials (MWCNT, MWCNF, MWGPH, GNP).

Since each sensor measures a specific response when immersed in each water sample, cyclic
voltammograms will be used for discriminatory studies using multivariate data analysis.
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In order to assess the sensitivity of the sensor network against the seven water samples coming
from different points near Galati, the main components of the recorded voltammograms recorded for
all the sensors towards all the water samples were analyzed.

Figure 3 presents the PCA results in the form of two-dimensional graphs of the scores and loadings.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 16 
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Figure 3. (a) Scores plot of the responses produced by the voltammetric sensor array when exposed to
different water samples (wherein: (1) PD; (2) DS; (3) DL; (4) CP; (5) DP; (6) GR; (7) LN). (b) PCA loadings
plot of the water samples from the voltammetric sensor array (wherein: 1–10 CoPc-SPE; 11–20 MB-SPE;
21–30 PB-SPE; 31–40 MWCNT/GNP-SPE; 41–50 MWCNF/GNP-SPE; 51–60 MWGPH/GNP-SPE).

The PCA results show a good capacity of the sensitized sensors to discriminate the Danube
water collected from different sampling points near Galati. The clusters observed in the score graph
(Figure 3a) correspond to the 7 replicates of the 7 water samples. It may also be seen that the total
information explained by PC1 and PC2 is equal to 88%. This value is very good considering the
PCA model, which explains the total variance of the model (60 components in total) in just two main
components. It may be concluded that the clusters are significantly separated from one another,
indicating that the seven samples of water may be discriminated with high accuracy. The spatial layout
of the clusters in the score graph of the PCA is consistent with the water sampling point.

In order to determine which of the variables (i.e., of the sensors) influenced the separation of the
water samples, the PCA loadings graph was analyzed. This diagram shown in Figure 3b represents the
projection of the variables in the same plan as the score graph. The absolute loading value describes the
contribution of the variables to the two components. The loadings graph shows that all sensors receive
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useful information on both main components. The sensors which caused PC1-based separation are
CoPc-SPE, MB-SPE and PB-SPE, while MWCNT/GNP-SPE, MWCNF/ GNP-SPE and MWGPH/GNP
contributed most to sample separation of water in PC2.

In addition, the score graph highlighted the co-relationships existing between voltammetric
sensors which lead to the separation of the water samples. Considering this graph, it may be stated
that there is a positive correlation between the CoPc-SPE, MB-SPE and PB-SPE sensors. On the
other hand, there is a negative correlation between the MWCNT/GNP-SPE, MWCNF/GNP-SPE and
MWGPH/GNP sensors.

The results of the DFA model in Figure 4 showed similar trends as in the case of PCA, the clusters
corresponding to the water in different sampling points being well separated.
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Within this separation, one can assume that there is a tendency to group the clusters in two
macro-clusters, one corresponding to the DS, DL and DP samples (collected after the confluence with
River Siret, at Libertatea Restaurant and after the confluence with River Prut), located on the left of the
chart, and another group corresponding to the PD, CP, GR and LN water samples. These differences
may be correlated with the impact of River Siret water, of the urban waste water and of River Prut
water on the Danube water.

3.3. Partial Least Square-Discriminant Analysis (PLS-DA) Results

In order to confirm the existence of the seven categories observed in the PCA and DFA models and
the classification error in both calibration and validation, PLS-DA was performed using the total cross
validation method and an optimal number of latent variants (y in this case). As it may be seen in the
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PLS-DA scores plot (Figure 5), the seven groups are totally separated and only two latent components
explain approximately the 94% of the information.Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 16 
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The data on the quantification of the water samples by PLS-DA are presented in Table 3.

Table 3. Calibration and Validation PLS-DA results.

Group
Correlation Coefficient

RMSEC RMSEP
Calibration Validation

1 0.984 0.975 0.078 0.084
2 0.989 0.974 0.081 0.088
3 0.993 0.989 0.089 0.095
4 0.983 0.975 0.084 0.091
5 0.987 0.977 0.098 0.114
6 0.991 0.987 0.072 0.081
7 0.985 0.976 0.082 0.092

RMSEC (root mean square error of calibration); RMSEP (root mean square error of prediction).

As shown in Table 3, both the calibration and validation values (prediction) show very good
model quality (slope close to 1, offset close to 0 and a very good correlation between the sensing
classification and the category variable-water quality, sampling point). In addition, very low RMSEC
(root mean square error of calibration) and RMSEP (root mean square error of prediction) values are
obtained indicating the predicted class membership with a value close to certainty.

The results indicate that this new methodology is able to make a very good classification of
Danube waters according to their quality and to the sampling point.

3.4. PLS1 Regresion Results

The results of the physicochemical analyses are shown in Table 4.
Relative Standard Deviation (RSD) of the measurements were ±0.008 for the pH, ±3.2 for the TDS,

±0.01 for the ρ, ±1.5 for the turbidity, 0.004 for the Fe, and 0.003 for the NO3
−, expressed in the same

units of the physico-chemical parameters.
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Table 4. Results of the physico-chemical analyses.

Sample pH TDS/mg L−1 ρ/kΩ cm Turbidity/NFU Fe/mg L−1 NO3−/mg L−1

1 8.32 379 2.64 112 0.452 0.345
2 8.39 353 2.83 126 0.468 0.372
3 8.23 338 2.96 154 0.565 0.405
4 8.01 363 2.75 146 0.523 0.338
5 8.12 391 2.56 151 0.484 0.365
6 8.36 454 2.20 132 0.456 0.388
7 8.29 464 2.16 125 0.498 0.353

The quality of lower area of river Danube water, in all sampling points, is of second category
of quality (“good”), in agreement with the Romanian standard of quality regarding surface waters
(http://legislatie.just.ro/Public/DetaliiDocumentAfis/116349).

PLS1 regression models were designed in order to model the relationship between sensor signals
(X matrix) and the physico-chemical parameters determined for the water samples (Y matrix). The
X matrix is formed from 60 columns (6 sensors × 10 kernel coefficients) and 49 lines (7 samples × 7
replicates) and Y matrix for each parameter was formed by 1 column (one parameter) and 49 lines (7
samples × 7 replicates).In order to determine the relationships between the two types of experimental
determinations, the sensor signals (the 10 kernel coefficients for a voltammetric curve) obtained when
the sensors are immersed in the water samples are correlated with the values determined for each of
the physicochemical parameters presented in Table 5.

Table 5. Results of PLS1 regression models.

Parameter
Calibration Validation

Correlation Coefficient RMSEC Correlation Coefficient RMSEP

pH 0.973 1.867 0.954 2.435
TDS 0.987 1.758 0.966 2.125
ρ 0.984 1.662 0.968 1.995

Turbidity 0.974 1.889 0.955 2.235
Fe 0.992 1.744 0.970 1.744

NO3
− 0.986 1.921 0.969 2.368

Figure 6 shows the graph of the correlation between the pH values predicted by the voltammetric
sensors versus the parameter pH values determined by the potentiometric method.

Figure 6 shows a very good prediction based on the sensor signal values validated by the full
cross validation method and the model is based on 3 latent variables. As it may be seen in Figure 6,
a correlation coefficient of 0.973 with a root mean square error of correlation (RMSEC) of 1.867 at
calibration and a correlation coefficient of 0.954 with an RMSEP (root mean square error of prediction)
error of 2.435 are obtained.

The results obtained for the other parameters are presented in Table 5.
The correlation coefficients values higher than 0.9 obtained for all the physico-chemical parameters

analyzed prove the importance of the data provided by the multisensor based voltammetric sensors in
natural water analysis.

The estimated parameters from the PLS1 regression models are included in the Table 6.

http://legislatie.just.ro/Public/DetaliiDocumentAfis/116349
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Table 6. Estimated parameters from the PLS1 regression models.

Estimated Parameters

Sample pH TDS/mg L−1 ρ/kΩ cm Turbidity/NFU Fe/mg L−1 NO3−/mg L−1

1 8.329 374.5 2.656 110.5 0.4572 0.3498
2 8.381 348.8 2.813 124.4 0.4626 0.3668
3 8.239 342.1 2.942 152.0 0.5715 0.3993
4 8.001 367.4 2.767 147.9 0.5290 0.3427
5 8.111 386.3 2.545 149.0 0.4896 0.3599
6 8.369 459.4 2.213 130.3 0.4508 0.3826
7 8.281 458.4 2.173 126.6 0.4923 0.3579

The results of the physico-chemical analyses estimated from PLS1 regression models built on the
data determined with voltammetric sensors (presented in Table 6) are very close to those determined
experimentally, the differences being less than 3% for all the quantified parameters. Therefore,
the multisensory system can be successfully used to estimate certain quantitative parameters of
water samples.

4. Conclusions

In this study, a multisensory system was developed for monitoring the Danube water quality
along sampling points and for estimating some physico-chemical parameters by using the PLS1
regression models. The parameters determined experimentally and estimated from this study (pH,
TDS, resistivity, turbidity, amount of Fe and amount of NO3

−) are relevant to water quality. The
multisensory system used in this study is made up of carbon-based sensitized sensors modified with
electroactive compounds or nanomaterials. The sensor array was built by selecting sensors with a
wide variety of electrochemical responses, thus with high cross-selectivity. The detection method
used was cyclic voltammetry, and PCA, DFA, and PLS-DA models based on electrochemical data
showed that the multisensory system is able to discriminate and classify water samples according to the
sampling point and to water quality. PLS1 regression models have shown that a series of parameters
relevant to water quality may be accurately estimated from the sensor data. The method which uses
the multisensory system is simple, robust, versatile, relatively inexpensive, and may be used in situ
and on-line to instantly detect changes in the chemical composition of natural waters.
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Figure S1: Sensor response (a) CoPc-SPE; (b) MB-SPE; (c) PB-SPE; (d) MWCNT/GNP-SPE; (e) MWCNF/GNP-SPE;
(f) MWGPH/GNP-SPE exposed to the 0.1 M KCl aqueous solution.
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