
Research Article
Inverse Kinematics for Upper Limb Compound Movement
Estimation in Exoskeleton-Assisted Rehabilitation

Camilo Cortés,1,2 Ana de los Reyes-Guzmán,3 Davide Scorza,1 Álvaro Bertelsen,1

Eduardo Carrasco,1 Ángel Gil-Agudo,3 Oscar Ruiz-Salguero,2 and Julián Flórez1

1eHealth and Biomedical Applications, Vicomtech-IK4, Mikeletegi Pasealekua 57, 20009 San Sebastián, Spain
2Laboratorio de CAD CAM CAE, Universidad EAFIT, Carrera 49 No. 7 Sur-50, 050022 Medelĺın, Colombia
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Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal
cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement.
The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint
angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture
systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the
Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing
parallel kinematic chains. EIKPE has been tested with single DOFmovements of the wrist and elbow joints.This paper presents the
assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension). Ground-truth for estimation assessment
is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good
numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles.
This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

1. Introduction

Robot-Assisted Rehabilitation (RAR) supplements conven-
tional therapy in the treatment of nervous system injuries
(e.g., stroke and spinal cord injury), as robots enable repet-
itive, task-specific, intensive, and interactive treatment [1–
3]. In RAR, the accurate estimation of the patient limb pos-
ture (i.e., determination of joint angles) is a fundamental
prerequisite for the following.

(1) The verification of the compliance of the patient
movements with the prescribed exercises: patient
movements must follow the medically prescribed
ones, without using the healthy joints to compensate
for treated joints [4, 5].

(2) The long-term assessment of the patient evolution:
objective evaluationmethods based on the analysis of

the patient kinematic data have been recently devel-
oped [6–8] to overcome the limitations (subjectivity,
low sensitivity [9]) of traditional scales (e.g., Barthel
Index [10], Functional IndependenceMeasure [11]) to
assess the functionality of a patient.

Traditional motion capture systems (MOCAPs), such as
optical, electromagnetic, and inertial ones, have been used
in many rehabilitation scenarios to accurately estimate the
human posture [12–14]. However, the use of the currently
existing MOCAPs in Exoskeleton-based RAR is impractical
because the Exoskeleton body causes optical occlusions and
magnetic disturbances in the MOCAP components. Fur-
thermore, in RAR therapies involving functional electrical
stimulation (e.g., [15]) and/or electromyography the markers
or sensors of the MOCAP interfere with the setup. Even
if MOCAP devices can be arranged to coexist with the
Exoskeleton, the operation is complex and incompatible with
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the time and resources available for a typical patient appoint-
ment. Therefore, they can be used in specific assessment
sessions but not for daily patient attention.

In Exoskeleton-based therapy, the prevalent approach
to estimate the limb joint angles is to approximate them
directly with the Exoskeleton joint angles (e.g., [8, 16–18]).
However, the accuracy of this strategy is limited by the
differences between the kinematic structure of the patient
limb and Exoskeleton [6]. In the case of the upper limb
(focus of this research), a direct accurate measurement of
the shoulder angles is particularly difficult, since it demands
an Exoskeleton with a complex kinematic model that con-
siders the simultaneous motion of the sternoclavicular and
acromioclavicular joints.

Computationalmethods in [19–21] for Exoskeleton-based
therapy estimate the arm swivel angle, which parametrizes
the arm pose [22]. Let 𝑊 be a plane defined by the central
points of the Gleno-Humeral (GH), elbow, and wrist joints.
Then, the rotation angle of the plane𝑊 around the axis that
goes from the wrist to the GH joint is defined as the swivel
angle [19]. In these methods, the Inverse Kinematics (IK) of
the arm (which is redundant) is solved by estimating a swivel
angle that allows the subject to retract the palm to the head
efficiently. Results in [19, 20] are improved in [21] by consid-
ering the effect of the wrist orientation on the swivel angle
estimation. These references do not report how the error in
the swivel angle estimation is traced to individual errors in
the wrist, elbow, and Gleno-Humeral (GH) joint angles.

The method in [21] requires (a) the position of the GH
joint center, (b) the pose of the wrist, (c) the initial position
of the elbow, and (d) a point in the head neighborhood
that minimizes the swivel angle estimation error. In typical
clinical scenarios, the mentioned inputs are unavailable. This
circumstance makes the method in [21] difficult to apply. For
extended discussion, see [22, 23].

Acknowledging different kinematic structures in limb
and Exoskeleton, [23] introduces the EIKPE (Extended
Inverse Kinematics Posture Estimation) method. EIKPE
considers the parallel kinematic chains limb and Exoskele-
ton as related through the cuff constraints that fix them
together. EIKPE then solves the IK problem of the parallel
chain, therefore finding the limb joint angles. The real-time
EIKPE accuracy (circa 3-degree RMS) is reported for (1)
wrist flexion-extension, (2) elbow flexion-extension, and (3)
forearm pronation-supination. Limitations of [23] are (a)
restriction to 1-DOF movements due to constraints in the
ground-truth reading equipment and (b) elbow and wrist
angle estimations.

Contributions of This Paper. The present paper complements
[23] (see Table 1) by addressing the training of compound
movements (simultaneous movement of multiple joints). In
particular, it is shown how EIKPE enhances the accuracy
in the estimation of the GH joint angles with respect to
the Exoskeleton-based approach. Specifically, contributions
of this paper are as follows.

(1) Thepaper illustrates the capacity of EIKPE in address-
ing compound movements (i.e., object prehension),

extending the results of [23], which had individual
joint movements. This added complexity requires the
usage of (a)more evolvedmarker and camera sets, (b)
a more complex biomechanical and kinematic model,
and (c) an optimized posture estimation for full arms.

(2) It computes the error in the GH and elbow joint
angles of EIKPE with respect to the measurements of
a marker-based optical MOCAP.

(3) It computes the error in the GH and elbow joint
angles of the rehabilitation Exoskeleton encoderswith
respect to the measurements of the MOCAP.

(4) It applies various statistical measures (linear fit
method (LFM), RMSE, ROMerror, box plots, and sig-
nificance test) to assess the differences between items
(3) and (4), showing the feasibility of using EIKPE to
enhance posture estimates from Exoskeletons.

Table 1 shows further details on the differences and
contributions of the present paper when contrasted with
related publications.

2. Materials and Methods

This section briefly introduces EIKPE and describes how the
ground-truth values are used to assess the accuracy of the
angle estimations provided by EIKPE and Exoskeleton joints.

2.1. EIKPE Method. Since the purpose of the present paper
is the experimental assessment of the theoretical construct in
[23], only the key aspects of EIKPE are discussed here.

To estimate the angles of the limb joints of the patient
(denoted by vector V𝐻(𝑡)) during RAR, the human limb
and Exoskeleton are modeled as a parallel kinematic chain
connected by the fixations of the Exoskeleton (Figure 1(a)).

The elements that are considered inputs to the problem
are as follows(Figure 1(b)).

(1) Patient. The human limb kinematic model is denoted by
𝐻(𝐿
𝐻
, 𝐽
𝐻
) (e.g., the Denavit-Hartenberg parameters [24]),

where 𝐿𝐻 and 𝐽𝐻 are sets of links and joints, respectively.
The human kinematicmodel used in EIKPE includes joints of
the spine, scapuloclavicular system, and arm.The upper limb
is modeled with 9 DOFs: 2 DOFs of the scapuloclavicular
system, 3 DOFs of the GH joint (spherical joint), 2 DOFs of
the elbow, and 2 DOFs of the wrist.

(2) Exoskeleton.TheExoskeleton kinematic model is denoted
by 𝑅(𝐿𝑅, 𝐽𝑅). The Exoskeleton joint angles are denoted by
vector V𝑅. The values of V𝑅 at any instant 𝑡 of the therapy
(V𝑅(𝑡)) are known. In the rehabilitation platform where
EIKPE is implemented the Exoskeleton corresponds to the
Armeo Spring® (Hocoma, AG) [25], which has 7 DOFs.

(3) Set of Fixations 𝑀. The fixations 𝑀 are passive mecha-
nisms that connect the Exoskeleton and the patient. 𝐶(V𝐻(𝑡),
V𝑅(𝑡)) is the set of vector-valued functions that model the
kinematic constraints imposed by the fixations 𝑀 to the
patient limb.
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GH joint
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Scapuloclavicular
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· · ·
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Kinematic 

(2) Exoskeleton R
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Joint angles �R(t)
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C(�R(t), �H(t))

D(�H(t))

�̃H(t)

(b)

Figure 1: (a) Schematic diagram of the human and Exoskeleton kinematic models and their interaction. (b) Inputs and outputs of the limb
posture estimation algorithm.

(4) Set of Ergonomic Criteria𝐸.𝐸 consists of a set of principles
that dominate the posture of the patient limb while interact-
ing with the Exoskeleton (e.g., the preference of the human
to put the limb in a rest posture V𝐻rest). 𝐷(V

𝐻
(𝑡)) is the set of

vector-valued functions that model the kinematic constraints
imposed on the patient limb by the set of ergonomic criteria
𝐸.

The goal of the implemented algorithm is to find the
approximate angles of the joints of the patient limb Ṽ𝐻(𝑡),
such that the sets of constraints 𝐶 and𝐷 are met.

In order to obtain the estimations Ṽ𝐻(𝑡), the IK of
𝐻(𝐿
𝐻
, 𝐽
𝐻
) is solved considering the sets of constraints 𝐶 and

𝐷. The IK solution is obtained in real-time using the V-REP®
simulator (Coppelia Robotics, GmbH) [26]. The joint angles
of the Exoskeleton and EIKPE are sampled with frequency
𝑓
𝑠
= 60Hz.

2.2. Ground-Truth Motion Capture and Analysis

2.2.1. Biomechanical Model. The biomechanical model (Fig-
ure 2) of the upper limb described in [27] was used as
the reference kinematic model for the assessment of the
accuracy of EIKPE.Thismodel was developed in the software
Visual3D™ (C-Motion, Inc.) [28] and presents 6 DOFs: 3
DOFs of the GH joint (spherical joint), 2 DOFs of the elbow
joint, and 1 DOF of the wrist joint. The biomechanical model
can be scaled to match the anthropomorphic measures of
each of the test subjects.

The biomechanical model includes virtual markers (gray
spheres) that allow reconstructing the motion of the limb by
using motion data from MOCAPs. In order to do so, the 3D
positions of the real markers (which were installed on the
patient and tracked by a MOCAP) are treated as the desired
positions of the virtual markers. Then, the limb joint angles

Reference 
biomechanical
model

Virtual
markers

Center of
mass of 
the model

Figure 2: Reference biomechanical model and virtual markers for
motion reconstruction [27].

are computed by solving the IK of the limb such that the
position of the virtual markers matches the position of the
real markers. The detailed geometry depicted in Figure 2 is
only used for visualization purposes and a simplified version
is used in the IK computation. The joint angles obtained by
using this methodology are the ground-truth V𝐻(𝑡) angles.

2.2.2. Marker Placement Protocol. A total of 21 markers are
installed on each test subject to precisely track the movement
of the upper limb.The markers are distributed on the subject
arm and trunk as described in Table 2 and Figure 3.

2.2.3. Motion Capture System. The Codamotion® (Charn-
wood Dynamics Ltd.) [29] is an optical marker-based
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Table 2: Marker setup for upper limb motion tracking.

Markers on bony landmarks Markers on body segments

Individual markers are located on the following:
(1) Left and right acromion
(2) Right iliac crest
(3) Lateral and medial epicondyles of the right elbow
(4) Radial and ulnar styloid processes of the right wrist
(5) Third metacarpal head of the right hand

Marker clusters (groups of 3 markers) are located on the
following:
(1) Trunk
(2) Upper arm
(3) Forearm
(4) Hand dorsal
Only the hand cluster is not rigid

Rehabilitation
Exoskeleton

Marker
clusters

Test subject

Individual
markers 

Marker
batteries

Figure 3: Setup of the markers (highlighted in yellow) of the
MOCAP system.

MOCAP.ThisMOCAPuses activemarkers that emit infrared
light, which is detected by 3 sensor units (Figure 4(a)). For the
accuracy assessment experiments, the MOCAP sensor units
are distributed as depicted in Figure 4(b). With the described
marker setup, themarker position sampling frequency is𝑓

𝑐
=

200Hz.

2.2.4. Experimental Protocol. The functional task that was
chosen to conduct the accuracy assessment is the activity of
daily living (ADL) of prehension, which has its stages shown
in Figure 5. Notice that the prehension task shares movement
stages with other ADLs, such as drinking and eating, which
are among the most relevant tasks to rehabilitate [30].

The prehension movements are performed with the fore-
arm pronation-supination and the wrist flexion-extension
DOFs blocked in the Exoskeleton in order to avoid marker
occlusions during the ADL movement (such joint blockage
does not affect the angle estimation capabilities of the
MOCAP or EIKPE). The joint angles of the blocked DOFs
are not studied in this work.

In the setup stage of this protocol, the lengths of the
arm and forearm of each test subject are manually measured
and entered into the EIKPE software (as it would be done
in a clinical application). The Exoskeleton arm and forearm
link lengths are adjusted for every subject according to
the device manufacturer instructions. The Exoskeleton link
lengths are also entered into the EIKPE software. Next, the

optical markers are installed on the subject and the MOCAP
calibration procedure is conducted.

After the subjects wear the Exoskeleton, they perform
some practice trials with the virtual reality (VR) game. In
the VR game, the hand positions at the grasping and object
holding up stages are calibrated for each subject. For each
test subject, 4 repetitions of the prehension movement are
recorded. Each prehension movement execution is limited to
20 seconds. A total of 4 healthy subjects participate in the
movement recordings.

2.2.5. Signal Processing and Analysis. The accuracy assess-
ment presented in this paper involves the comparison of the
upper limb joint angle estimates that come from the following
sources:

(a) The joint angles obtained from the MOCAP.
(b) The joint angles obtained from EIKPE.
(c) The joint angles obtained from the Exoskeleton

encoders.

Table 3 summarizes the measured angles of the joints of
the upper limb, the methods and reference coordinate sys-
tems (CS) used to compute such joint angles.

In order to compare the various joint angle measure-
ments along the execution of the prehension movement, the
obtained joint angle signals are filtered and synchronized as
follows.

(1) Resampling and Filtering.The joint angle profiles obtained
from the MOCAP are resampled to match the sampling fre-
quency of the Exoskeleton and EIKPE. Then, a low-pass
Butterworth filter with a 5Hz cutoff frequency is applied to
all the obtained signals. Figures 7(a)–7(c) show the angle
estimations of the elbowflexion of one of the trials of a subject
after resampling and filtering.

(2) Signal Trimming. The joint angle profiles obtained from
EIKPE and Exoskeleton are manually trimmed such that
they approximately contain the same movement segment
recorded with the MOCAP. Figure 7(d) shows the trimmed
Exoskeleton and EIKPE estimations of the movement trial
mentioned in the previous step.

(3) Signal Reference Adjustment. The coordinate systems
of reference of the MOCAP, EIKPE, and Exoskeleton are
not registered to each other, which impedes transforming
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Codamotion
sensor units

Rehabilitation 
Exoskeleton

Test subject

VR game

(a)

MOCAP 
sensor 
units

Sensor 
unit 
detection 
volume

VR game

MOCAP 
sensor 
unit

(b)

Figure 4: Setup for motion capturing in RAR: (a) MOCAP sensor units and (b) their distribution around the test subject.

(2) Object reaching(1) Initialization (3) Object grasping

(4) Proximal transport (6) Distal transport(5) Object holding up (7) Object releasing

Figure 5: Stages of the prehension ADL. Black arrows indicate the approximate direction of movement of the hand of the test subject.

the angle estimations to a common coordinate system to
compare them. In order to compare the angle estimations,
they are related to each other by using the steady limb joint
angles at the initialization posture (subjects were asked to
remain static in this posture for a few seconds). To do so,
the joint angles measured by the MOCAP at the initial stage
of the movement are set as the initial values for the angle
estimations of the Exoskeleton and EIKPE. In this way, the
estimations of the jointmovements performedwith respect to

the initialization posture can be compared. Figure 7(e) shows
an example of the result of this step.

(4) Temporal Axis Offset Adjustment. A fine tuning in the
aliment of the signals in the temporal axis is performed
by applying a time offset to the EIKPE and Exoskeleton
estimations such that their correlation with the MOCAP
measurements is maximized. Figure 7(f) shows an example
of the result of this step.
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Table 3: Method to compute the limb joint angles of interest with the various measuring systems.

Limb joint Angle Method to compute the limb joint angles
MOCAP EIKPE Exoskeleton

GH

SFE Euler angle decomposition of the
rotations of the upper arm
marker CS with respect to the
thorax marker CS (Figure 3)

Euler angle decomposition of the
rotations of the upper arm CS
with respect to the Exoskeleton
reference CS (Figure 6)

Angle of joint 2 (Figure 6)

SAA Sum of the angles of joints 0 and
1 (Figure 6)

SIER Angle of joint 6 (Figure 6)

Elbow EFE
Euler angle decomposition of the
rotations of the forearm marker
CS with respect to the upper arm
marker CS (Figure 3)

Euler angle decomposition of the
rotations of the forearm CS with
respect to the upper arm CS
(Figure 6)

Angle of joint 4 (Figure 6)

After synchronization of the joint angle signals, the
following error metrics are computed.

(1) Error in the Estimation of the ROM. The amplitude of the
Exoskeleton and EIKPE joint angles are compared with the
ones of the MOCAP.

(2) RMS Error (RMSE) of the Joint Angle Profiles. The RMS
of the pairwise differences between the joint angle profiles of
the Exoskeleton and EIKPE with respect to the ones of the
MOCAP are computed.

(3) LFM Parameters. The LFM [31] is applied to compare
the waveforms of the reference 𝐷ref ∈ 𝑅

1×𝑁(MOCAP) and
estimated angles𝐷est ∈ 𝑅

1×𝑁 in terms of the linear regression
coefficients: 𝐴: offset, 𝐵: amplitude, and 𝑅2: shape similarity
[32].These coefficients are computed such that𝐷fit = 𝐴+𝐵∗
𝐷ref minimizes∑𝑁

𝑗=1
(𝐷est𝑗 −𝐷fit𝑗)

2. Notice that if𝐷est = 𝐷ref
(ideal fit), the LFM coefficients take the following values:
𝐴 = 0, 𝐵 = 1, and 𝑅2 = 1.

The obtained ROM error and RMSE metrics of the
Exoskeleton and EIKPE are compared with a paired differ-
ence test to check if there is a statistically significant difference
between their means (confidence interval 95%).

3. Results and Discussion

Table 4 presents the average RMSE and ROM errors (±
their standard deviation) of the joint angles measured by the
Exoskeleton and EIKPE for all the trials of the test subjects
when compared to the joint angles provided by the MOCAP
(ground-truth). Around 12200 samples were compared to
compute each of the RMSE values presented in Table 4. A
Wilcoxon signed-rank test [33] was performed to check if
there is a statistically significant difference between the mean
accuracy of themethods in estimating the various joint angles
and ROMs (by using the SPSS statistical analysis software
(IBM Corp.) [34]). Values in bold in Table 4 indicate statis-
tically significant differences between the accuracy provided
by the Exoskeleton and EIKPE.

Table 5 presents the assessment of the estimationmethods
according to the LFM. In this table the average and standard
deviation of the parameters are presented for each studied

Table 4: ROM and RMSE metrics (mean ± std. dev.) of the angle
estimations provided by the Exoskeleton and EIKPE. Values in bold
indicate statistically significant differences in the accuracy of the
approaches (𝑝 value ≤ 0.05).

Metric Exoskeleton EIKPE Improvementa

RMSE of SFE angle 8.4 ± 4.7 3.9 ± 0.9 53%
ROM error of SFE angle 18.0 ± 11.6 5.7 ± 2.8 68%
RMSE of SAA angle 8.2 ± 4.6 3.3 ± 1.9 60%
ROM error of SAA angle 16.9 ± 10.3 5.6 ± 4.7 67%
RMSE of SIER angle 16.2 ± 6.6 6.5 ± 3.1 60%
ROM error of SIER angle 17.4 ± 12.6 6.9 ± 5.6 60%
RMSE of EFE angle 6.6 ± 1.4 5.8 ± 2.7 13%
ROM error of EFE angle 8.8 ± 5.5 5.7 ± 3.7 35%
aError reduction with respect to the Exoskeleton by using EIKPE.

angle. Figure 8 shows the application of the LFM to one
of the SAA datasets. When the waveforms of the estimated
and reference (MOCAP) angles (Figure 8(a)) are similar, a
linear fit of the angle estimations (black dashed line in Figures
8(b) and 8(c)) that resembles the ideal linear fit (blue line,
𝐴 = 0, 𝐵 = 1, and 𝑅2 = 1) is obtained. The ideal linear fit
represents the case of a perfect match between the reference
and estimated angles.

For the case in Figure 8, EIKPE estimations closely
approximate those of the MOCAP, and the LFM parameters
are close to those of the ideal linear fit (blue and black lines
are close to each other in Figure 8(c)). The waveform of the
Exoskeleton estimations presents similar shape (𝑅2 ≈ 1) but
different amplitude (𝐴 ≪ 0 and 𝐵 ≫ 1) compared to those
of the MOCAP. The effects of the values of parameters 𝐴
and 𝐵 are reflected in the offset and slope of the linear fit
of the Exoskeleton estimations (Figure 8(b)), which poorly
approximates the ideal linear fit.

3.1. Angle Estimations of the GH Joint. The RMSE, ROM, and
LFMmetrics (Tables 4 and 5) show that EIKPE presents small
errors in estimating the SFE and SAA angles. In comparison
with the results obtained for SFE and SAA, EIKPE presents
larger errors in the SIER angle estimation. EIKPE estimates
the SFE and SAA angles using the movement constraints
imposed by the Exoskeleton on the upper arm. However,
the estimation of the SIER angle involves information of
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Table 5: Assessment of estimation methods in terms of the LFM parameters.

Angle Exoskeleton EIKPE
𝐴 (deg.)a 𝐵 𝑅

2
𝐴 (deg.) 𝐵 𝑅

2

SFE 25.6 ± 6.7 0.35 ± 0.16 0.75 ± 0.13 −0.53 ± 14.3 0.99 ± 0.36 0.83 ± 0.26
SAA −22.3 ± 19.2 1.69 ± 0.59 0.91 ± 0.16 −0.87 ± 12.3 1.01 ± 0.32 0.91 ± 0.17
SIER −17.8 ± 42.9 0.85 ± 0.75 0.54 ± 0.26 11.65 ± 11.9 1.23 ± 0.32 0.85 ± 0.18
EFE 10.6 ± 10.7 0.86 ± 0.15 0.94 ± 0.04 7.18 ± 6.6 0.97 ± 0.18 0.96 ± 0.05
aExpected (ideal) values of the LFM parameters are 𝐴 = 0, 𝐵 = 1, and 𝑅2 = 1.

Joint 0

Joint 1

Joint 2

Exoskeleton
coordinate 
system of 
reference

Joint 4

Joint 6

Exoskeleton
fixations

Upper arm
Forearm

GH joint

Elbow joint

x

y

z

Figure 6: Human and Exoskeleton kinematic models and their
joints of interest for the experiments.

the pose of the forearm (which also depends on the elbow
movement) and therefore is subject to additional estimation
and modeling errors. In Figure 9, it can be observed that
EIKPE angle waveforms follow closely those of the MOCAP.
For the GH joint angles, there is a strong correlation (0.82 ≤
𝑅
2
≤ 0.91) between EIKPE and MOCAP estimations.
The movement trial in Figure 9 is a good example of the

large angle estimation errors produced by the misalignment
of the axes of the Exoskeleton joints with respect to the
ones of human joints. This misalignment causes under- or
overestimation of an angle and also failures in estimating the
direction of motion. The SIER is the worst estimated angle
by the Exoskeleton (Tables 4 and 5). The low shape similarity
coefficient (𝑅2 = 0.54) of SIER angle estimations (Table 5)
confirms the significant misalignment between the rotation
axis of joint 6 of the Exoskeleton (Figure 6) and the upper
arm longitudinal axis in most of the ADL stages (Figure 5).
According to Table 5, the Exoskeleton tends to overestimate
the SAA and to underestimate the SFE.

3.2. Angle Estimations of the Elbow Joint. EIKPE presents a
fair accuracy in estimating the EFE angle according to the
RMSE, ROM, and LFMmetrics (Tables 4 and 5). A source of
error in the estimation of the EFE angle is in the modeling of

the elbow joint. Traditionally, the EFEDOFhas beenmodeled
with a revolute joint with its rotation axis normal to both
the upper arm and forearm links [35], which is the one used
in the EIKPE model. However, the angle between the EFE
axis of rotation and the upper arm and forearm longitudinal
axes differs between subjects [36] and even varies with the
angle of flexion of the elbow [37]. In the case of the MOCAP,
the mentioned axis of rotation is estimated by using markers
installed on bony landmarks of the elbow at the system
calibration stage.

According to Tables 4 and 5, the EFE is the angle that is
best estimated by the Exoskeleton (underestimation trend).
Notice that the rotation axis of joint 4 of the Exoskeleton is
always aligned with the gravitational vertical axis (Figure 6).
Then, for the studied ADL, in which the forearm lies on
the horizontal plane and reaches the height of the chest, the
angle of joint 4 fairly resembles the EFE angle of the subjects.
However, it should be remarked that such accuracywill not be
maintainedwhen the EFEmovement is performed in another
plane, as it occurred in the movement trial in Figure 9 (object
holding up stage).

3.3. Comparison of the Accuracy of the Exoskeleton and
EIKPE. For the GH joint angles, Tables 4 and 5 show that
EIKPE provides significantly better estimations than the
Exoskeleton.

(i) RMSE. EIKPE errors are 50 to 60% lower than those of the
Exoskeleton (statistically significant difference). Figure 10(a)
shows that EIKPE variances are significantly lower than those
of the Exoskeleton.

(ii) ROM Error. EIKPE errors are 60 to 68% lower than
those of the Exoskeleton (statistically significant difference).
Figure 10(b) shows that EIKPE variances are significantly
lower than those of the Exoskeleton.

(iii) LFM. EIKPE parameters are clearly closer to the ideal
LFMvalues than the Exoskeleton ones. EIKPE parameters are
consistent across the various angle estimations, in opposition
with the Exoskeleton results.

For the EFE angle, Tables 4 and 5 show that EIKPE pro-
vides slightly better estimations than the Exoskeleton.

(i) RMSE. EIKPE error is 13% lower than that of the Exoskele-
ton (no statistically significant difference). Figure 10(a) shows
that EIKPE variance is larger than that of the Exoskeleton.
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Figure 7: Signal synchronization process of elbow flexion angle estimations from a movement trial.

0 2 4 6 8 10
5

10
15
20
25
30
35
40

D
eg

re
es

Time (s)

MOCAP
EIKPE
Exoskeleton

(a) Estimated SAA angles

5
10
15
20
25
30
35
40

D
eg

re
es

Degrees
5 10 15 20 25 30 35 40

LFM parameters:

Linear fit of Exoskeleton estimations
Exoskeleton estimations

R2 = 0.98

B = 1.96
A = −31.11

= 1, R2 = 1)Ideal linear fit (A = 0, and B

(b) LFM of Exoskeleton estimation

5
10
15
20
25
30
35
40

D
eg

re
es

Degrees
5 10 15 20 25 30 35 40

LFM parameters:

Linear fit of EIKPE estimations
EIKPE estimations

R2 = 0.99

B = 1.08

A = −3.13

Ideal linear fit (A = 0, B = 1, R2 = 1)

(c) LFM of EIKPE estimation

Figure 8: LFM result for the SAA angle estimations of one of the trials of a test subject.

(ii) ROM Error. EIKPE error is 35% lower than that of
the Exoskeleton (no statistically significant difference). Fig-
ure 10(b) shows that EIKPE variance is lower than that of the
Exoskeleton.

(iii) LFM. EIKPE parameters are slightly closer to the ideal
LFM values than the Exoskeleton ones.The biggest difference

between EIKPE and the Exoskeleton is in parameter𝐵, mean-
ing that EIKPE estimates better the movement amplitude.

Table 6 shows the global performance metrics for the
Exoskeleton and EIKPE angle estimations. Regarding the
LFM, this table reports the deviations (mean absolute error
(MAE)) of the parameters of the linear fits of the estimations
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Figure 9:Measurement and estimations of the angles of the shoulder and elbow joints of one of the trials of a test subject. Dashed lines bound
the various stages of the prehension movement (Figure 5).

Table 6: Global estimation performance metrics.

Error metric Exoskeleton EIKPE Improvementa

Global angle RMSE (deg.) 10.5 5.1 52%
Global ROM error (deg.) 15.3 6.0 60%
MAE in 𝐴 parameter (deg.) 24.5 10.1 59%
MAE in 𝐵 parameter 0.52 0.22 57%
MAE in 𝑅2 parameter 0.21 0.11 49%
aError reduction with respect to the Exoskeleton by using EIKPE.

with respect to their ideal values (𝐴 = 0, 𝐵 = 1, and 𝑅2 = 1).
This table shows that the EIKPE estimation improvements in
terms of the LFM parameters are in the order of magnitude
of those of the global RMSE and ROM errors (49–60%).

A visual guide of how the joint angle errors are mapped
to the reconstructed pose of the upper limb is shown in
Figure 11. This figure presents a comparison of the recon-
structed upper limb poses at the object holding up stage of the
movement trial depicted in Figure 9 with the joint angle esti-
mations provided by the MOCAP, EIKPE, and Exoskeleton.

3.4. Comparison with Related Works. The conducted litera-
ture review did not produce any other citations than [19–
21, 23] in the area of posture estimation of the upper limb

in Exoskeleton-based rehabilitation by using computational
methods. We consider that the method in [21] would be
the strongest competitor to EIKPE (Table 1). Notice that the
arm swivel angle representation may suffice for the targeted
application in [21]. However, for the application addressed in
this work (patient follow-up and evaluation), the joint angles
of the limb are required. A direct comparison of EIKPE with
the method in [21] is not possible because in this reference
only the arm swivel angle is reported.

EIKPE accuracy is close to the ones of MOCAPs that
deal with the upper limb posture estimation in ambulatory
settings (no robotic devices interacting with the subjects
are involved). For instance, the method in [14] presents an
average RMSE of 5.5 deg. in the estimation of the angles of the
shoulder and elbow joints by using inertial sensors during the
ADL movement of reaching for a doorknob.

4. Conclusion

This paper studied the feasibility of using the EIKPE method
for the estimation of the patient limb posture in the Robot-
Assisted Rehabilitation (RAR) of the compound movement
of object prehension. In order to do so, the comparison of the
estimations of the GH and elbow joint angles provided by (a)
EIKPE, (b) the joint encoders of a state-of-the-art commercial
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Figure 10: Box plots of (a) RMSE of angle estimations and (b) ROM errors provided by the Exoskeleton and EIKPE for the assessed joint
angles.
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(a) (b) (c)

Figure 11: Reconstructed poses of the upper limb at the object holding up stage of the trial depicted in Figure 9 with the joint angle
measurements of the (a) MOCAP, (b) EIKPE, and (c) Exoskeleton.

Exoskeleton (typical practice in RAR), and (c) an optical
motion capture system (ground-truth) was conducted.

The performed test intended to replicate the conditions
of use of EIKPE by an end-user. In this way, the estimation of
parameters that affect the method accuracy, such as the ones
related to the kinematic model of the human subject (arm,
forearm, and hand lengths) and to the Exoskeleton kinematic
model (adjustable link lengths), was not optimized in any
way.

The obtained results suggest that EIKPE is accurate for
the application. The studied joint angles were estimated with
a RMSE of 5 degrees with respect to the measurements of the
optical motion capture system. EIKPE accuracy approaches
the one of inertial MOCAPs, avoiding the difficulty of using
MOCAPs in RAR.

EIKPE improved markedly the accuracy of the estima-
tions of the GH joint angles provided by the Exoskeleton.
Statistically significant differences were found in the accuracy
of the Exoskeleton and EIKPE for all GH joint angles. EIKPE
provided errors in terms of the LFM parameters, RMS and
ROM that are 49–60% smaller than the ones of the Exoskele-
ton for all the studied angles.This suggests that EIKPEmay be
used to enhance the accuracy in the estimation of the patient
posture in Exoskeleton-based rehabilitation platforms.

Future Research Opportunities.The methodology introduced
in this paper implies the following future activities for inter-
ested researchers: (a) a full clinical study with a patient set
(e.g., stroke and spinal cord injury), (b) tests on other Exo-
skeleton-based platforms, and (c) tests with other compound
movements. All of these activities are a natural follow-
up given the enhanced posture estimation via the fixture
constraints applied here.

Glossary

ADL: Activity of daily living
CS: Coordinate system

DOF: Degree of freedom
EFE: Elbow flexion-extension
EIKPE: Extended Inverse Kinematics Posture

Estimation
GH: Gleno-Humeral
IK: Inverse Kinematics
LFM: Linear fit method
MAE: Mean absolute error
MOCAP: Motion capture system
RAR: Robot-Assisted Rehabilitation
ROM: Range of motion
RMS: Root mean square
RMSE: Root mean square error
SAA: Shoulder abduction-adduction
SFE: Shoulder flexion-extension
SIER: Shoulder internal-external rotation
VR: Virtual reality.
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