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Abstract 
Purpose: Relaxometry, specifically T1 and T2 mapping, has become an essential technique for assessing 

the properties of biological tissues related to various physiological and pathological conditions. Many 

techniques are being used to estimate T1 and T2 relaxation times, ranging from the traditional inversion or 

saturation recovery and spin-echo sequences to more advanced methods. Choosing the appropriate method 

for a specific application is critical since the precision and accuracy of T1 and T2 measurements are 

influenced by a variety of factors including the pulse sequence and its parameters, the inherent properties 

of the tissue being examined, the MRI hardware, and the image reconstruction. The aim of this study is to 

evaluate and compare the test-retest reproducibility of two advanced MRI relaxometry techniques (Driven 

Equilibrium Single Pulse Observation of T1 and T2, DESPOT, and 3D Quantification using an interleaved 

Look-Locker acquisition Sequence with a T2 preparation pulse, QALAS), for T1 and T2 mapping in a healthy 

volunteer cohort. 

Methods: 10 healthy volunteers underwent brain MRI at 1.3 mm3 isotropic resolution, acquiring DESPOT 

and QALAS data (~11.8 and ~5 minutes duration, including field maps, respectively), test-retest with 

subject repositioning, on a 3.0 Tesla Philips Ingenia Elition scanner. To reconstruct the T1 and T2 maps, we 

used an equation-based algorithm for DESPOT and a dictionary-based algorithm that incorporates inversion 

efficiency and B1-field inhomogeneity for QALAS. The test-retest reproducibility was assessed using the 

coefficient of variation (CoV), intraclass correlation coefficient (ICC) and Bland-Altman plots. 

Results: Our results indicate that both the DESPOT and QALAS techniques demonstrate good levels of 

test-retest reproducibility for T1 and T2 mapping across the brain. Higher whole-brain voxel-to-voxel ICCs 

are observed in QALAS for T1 (0.84 ± 0.039) and in DESPOT for T2 (0.897 ± 0.029). The Bland-Altman 

plots show smaller bias and variability of T1 estimates for QALAS (mean of -0.02 s, and upper and lower 

limits of -0.14 and 0.11 s, 95% CI) than for DESPOT (mean of -0.02 s, and limits of -0.31 and 0.27 s). 

QALAS also showed less variability (mean 1.08 ms, limits –1.88 to 4.04 ms) for T2 compared to DESPOT 

(mean of 2.56 ms, and limits -17.29 to 22.41 ms). The within-subject CoVs for QALAS range from 0.6% 

(T2 in CSF) to 5.8% (T2 in GM), while for DESPOT they range from 2.1% (T2 in CSF) to 6.7% (T2 in GM). 

The between-subject CoVs for QALAS range from 2.5% (T2 in GM) to 12% (T2 in CSF), and for DESPOT 

they range from 3.7% (T2 in WM) to 9.3% (T2 in CSF). 
Conclusion: Overall, QALAS demonstrated better reproducibility for T1 and T2 measurements than 

DESPOT, in addition to reduced acquisition time.  

Keywords: DESPOT, QALAS, Relaxometry, Reproducibility, T1, T2. 
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1. Introduction  
MRI relaxation times are crucial parameters for tissue characterization. The longitudinal relaxation time, 

or T1, characterizes the exponential restoration of equilibrium spin-state populations. The transverse, or T2, 

relaxation time characterizes the exponential loss of phase coherence. T1 and T2 index different tissue 

properties and can be mapped across the brain using quantitative experiments that sample different stages 

of the relaxation processes. Quantitative assessment of T1 and T2 can enhance the diagnostic accuracy 

beyond conventional relaxation-weighted MRI in applications ranging from the detection and assessment 

of myocarditis (1–4), liver fibrosis and cirrhosis (5–9), cartilage degeneration to monitoring disease 

progression and response to therapy (10–12), neurologic disease  (13–17), normal brain development 

(18,19), and aging (20–22). Quantitative MRI also allows for the objective comparison of pathological 

conditions across time and between individuals, making it an indispensable tool in both research and clinical 

settings. 

The simplest, and gold standard, method for generating T1 maps involves acquiring images at multiple 

inversion times (TI), i.e. inversion recovery (IR) sequences, and modeling voxel-by-voxel with a T1 decay 

curve. However, IR sequences require very long repetition times (TR), resulting in scan times that are 

impractical for clinical use and may also lead to inaccuracies due to patient motion (23). The gold standard 

for generating T2 maps involves multi-echo spin-echo sequences. Several techniques for more rapid T1 

mapping and combined T1-T2 mapping have been developed, including the modified look-locker IR 

(MOLLI) (24), shortened MOLLI (shMOLLI) (25), saturation recovery single-shot acquisition (SASHA) 

(26), True T1 mapping with SMART1Map (27), TrueFISP (28), variable flip angle imaging (29,30), 

magnetization-prepared 2 rapid gradient echo (MP2RAGE) (31), and multi‐echo (ME) extension of 

MP2RAGE (MP2RAGEME) (32). Most of these techniques are either designed for T1 mapping only, 

require a long acquisition time or are 2D mapping methods, which limits their utility in. Clinical and 

research settings.  

Driven Equilibrium Single Pulse Observation of T1 and T2 (DESPOT) (33,34) and 3D quantification using 

an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (QALAS) (35) are two 

relatively new, fast 3D techniques that allow simultaneous mapping of T1 and T2 at high spatial resolution. 

DESPOT includes DESPOT1 and DESPOT2 for T1 and T2 mapping, respectively. DESPOT1 acquires a 

series of spoiled gradient recalled-echo (SPGR) images with the same TR and different flip angles, while 

DESPOT2 acquires fully balanced steady-state free precession (bSSFP) images at different flip angles with 

constant TR (33,34). QALAS, a newer technique, is based on 3D spoiled Turbo Field Echo sequences using 

inversion recovery interleaved T2 preparation. The QALAS acquisition consists of five turbo-FLASH 

readouts. A T2-preparation module precedes the first readout, followed by an inversion pulse, so that the 
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following four readouts capture T1 dynamics (35). It combines T1, T2, and proton density (PD) mapping and 

evaluation of inversion efficiency (IE) in a single acquisition.  

Measurements of T1 and T2 maps can be influenced by various factors, including the sequence type, 

acquisition sampling scheme, reconstruction technique, magnetization transfer, flow effects, T2 effects, and 

motion (23,36–38). Even for “gold standard” methods, measurements depend on the choice of inversion or 

echo times sampled. Establishing the reproducibility and accuracy of T1 and T2 mapping is crucial for their 

adoption in clinical practice and longitudinal studies, particularly for newer ‘hybrid’ methods, like DESPOT 

and QALAS, that map T1 and T2 from a complex set of mixed-contrast images. The purpose of this study 

is to evaluate and compare the test-retest reproducibility of T1 and T2 mapping using DESPOT and QALAS 

techniques.  

2. Methods  

2.1. MRI Acquisition 
Data were acquired from 10 healthy volunteers (5 male, 5 female, ages 23 to 49) after obtaining informed 

written consent. The study was approved by the Johns Hopkins University Institutional Review Board. All 

scans were conducted using a 3.0 Tesla Philips Ingenia Elition MRI scanner, equipped with a 32-channel 

receive head coil. For anatomical co-registration, we first collected a T1-weighted structural MPRAGE scan 

using the following parameters: TR / TE 2000 ms / 2 ms, flip angle 8°, 150 1-mm slices, voxel size 1 mm3 

isotropic, total time 2 min 46 sec. Then, we acquired DESPOT images at 1.3 mm3 isotropic resolution (FOV 

224x224x166 mm3) using an SPGR sequence with flip angles of 4°, 12°, and 18° and TR / TE of 6.3 ms / 

3.09 ms , and a bSSFP sequence with flip angles of 15°, 30°, and 60°   TR / TE of 6.3 ms / 3.09ms .  bSSFP 

images were acquired with phase cycling patters of 0° and 180° to allow correction for main magnetic field 

(B0) inhomogeneities (39). A B1 map (40) was also acquired. The total acquisition time for DESPOT 

including the filed map was 11.87 minutes.  Similarly, QALAS was acquired with TR / TE of 5.7 ms / 2.3 

ms, 1.3 mm3 isotropic resolution, FOV 224x224x166 mm3, flip angle 4°. The five turbo-FLASH readouts 

were spaced 900 ms apart, and a 100-ms T2-preparation module was used. Our QALAS protocol (which, 

of note, is the same as that used in the HEALthy Brain and Child Development (HBCD) (41) study actively 

collecting longitudinal neuroimaging data from 7,500 children) also acquires B1 maps, using the 48.4 s long 

actual flip-angle imaging (AFI (40)) sequence. The total acquisition time for QALAS including the field 

map was 5.03 minutes.  
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2.2. T1 and T2 reconstruction and mapping 

2.2.1. DESPOT 
Following acquisition, SPGR, bSSFP and B1 map, were linearly co-registered to account for subtle head 

movement (42) and non-parenchyma signal was removed (39). The rapid combined T1 and T2 mapping 

approaches called DESPOT1 and DESPOT2-FM, respectively were used (33). T1 is estimated from the 

SPGR data acquired at different flip angles, modeled according to: 

𝑆𝐼!"#$ = %!('(	*") ,-. /
'(*" 01, /

,           [1]   

where      𝐸' =	𝑒
#$%
$"   [2]  

where 𝑆𝐼!"#$ is the SPGR signal intensity as a function of flip angle 𝑎, 𝑀2 is a factor proportional to the 

equilibrium longitudinal magnetization, and 𝐸' is expressed in Equation 2. Similarly, 𝑇3 is estimated by 

fitting the bSSFP images acquired at three different flip angles to the following:  

𝑆𝐼!!4" = %!('(*") ,-. /
'(*&*"((*"(*&) 01, /

, [3] 

where       𝐸3 =	𝑒
#$%
$&                 [4] 

SISSFP is the SSFP signal intensity associated with flip angle α. NIFTI-format T1 and T2 maps were 

generated in a python environment using the qmri-neuropipe tool (43). 

2.2.2. QALAS 

To estimate the QALAS T1 and T2 maps, a dictionary-based matching algorithm (44,45) that incorporates 

Inversion Efficiency (IE) and B1 field corrections (46) was used. The dictionary encompassed IE values 

ranging from 0.75 to 1, in 10 equal steps, B1 field corrections ranging from 0.65 to 1.35, in 25 equal steps, 

T1 ranges (5:2:1200 ms, 1200:5:2100 ms, 2100:10:3100 ms, 3100:20:5000 ms), and T2 ranges (1:2:150 ms, 

150:5:360 ms, 3760:10:1100 ms, 1100:50:2500 ms). The dictionary was generated from simulations of the five 

sub-experiments using MATLAB R2023a (The MathWorks, Natick, MA) on a high-capacity server cluster. 

The signals after the inversion recovery were adjusted based on their respective IE values. The B1
+ 

inhomogeneity maps generated were applied to the flip angles within the turbo-flash readouts to account 

for spatial variations. The dictionary-matching used to generate T1 and T2 maps in NIfTI format was also 

performed using MATLAB R2019b on the same server clusters.  
 

2.3. Postprocessing 

All DESPOT and QALAS test and retest T1 and T2 maps were first co-registered and resliced to the high-

resolution T1-weighted image (MP-RAGE). GM, WM and CSF masks were derived from SPM 12 

segmentation (47) of the T1-weighted MP-RAGE (with a probability threshold of 0.8) and subsequently 
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applied to the T1 and T2 maps. All post-processing, including image co-registration, re-slicing, segmentation, 

and brain region masking was performed using MATLAB R2023a. Figure 1 shows the post-processing 

procedures. 

 

Figure 1: Post-processing procedure. Both the DESPOT and QALAS test-retest T1 and T2 maps were co-registered and resliced to 
the same reference T1-weighted image (T1w). The T1-weighted image was segmented (which includes automatic skull stripping), 
each segmented regions (GM, WM and CSF) were binarized after 90% thresholding using SPM12 tool to generate the masks. The 
masks were then applied to the co-registered and resliced maps for data extraction. 

2.4. Statistical Analysis 

After segmentation and masking, histograms were plotted for T1 and T2 measurements across the GM, WM 

and CSF masks. The average T1 and T2 within each tissue mask was plotted for the test and retest 

acquisitions of each subject. These values are then used to generate within-subject and between-subject 

coefficients of variation (CoVs) for test-retest acquisitions, according to:  

𝐶𝑜𝑉 = 	&'!(#$%)
!

(#'%)!
(

))))))))))))
,          [5] 

where the bar represents a mean across subjects, and x and y are the test and retest values, respectively. The 

between-subject CoV is determined from the ratio of standard deviations of test-retest subject mean values 

and average of these test-retest subject mean values. The test-retest reproducibility of DESPOT and QALAS 
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was separately visualized with Bland-Altman plots of the tissue-mask values (x and y) values. Voxel-by-

voxel reproducibility of the maps was examined using ICCs to assess the reliability and reproducibility of 

T1 and T2 measurements across the test-retest sessions. 

 

In addition to test and retest evaluation of each method, the agreement between DESPOT and QALAS 

measurements was visualized using Bland-Altman plots, plotting the difference between DESPOT and 

QALAS ‘test’ measurements against the average of the two ‘test’ measurements (i.e. ignoring retest for 

both methods). Voxel-to voxel ICCs were also evaluated between the two methods for ‘test’ measurements. 

This analysis provided insights into the bias and limits of agreement between the techniques. 
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3. Results  

3.1. Regional T1 and T2 values 
Histograms of T1 and T2 derived from DESPOT and QALAS for a representative subject, for each 

segmented tissue type, are shown in Figure 2. Test and retest generally show excellent agreement for each 

of the two methods. While there is slight disagreement between DESPOT and QALAS for T1 and T2 of GM 

and WM tissues, this is much more pronounced for CSF. The mean T1 and T2 values across GM, WM, and 

CSF masks for test-retest measurements using DESPOT and QALAS is shown for all 10 subjects in Figure 

3.  

 
Figure 2: Single subject DESPOT and QALAS test-retest T1 and T2 maps overlaid histogram plots for GM, WM, and CSF 
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Figure 3: DESPOT and QALAS test-retest GM, WM and CSF mean of (a) T1 and (b) T2 values.  

(a) 

(b) 
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3.2. Coefficient of Variations (CoVs) 
Table 1 shows the within- and between-subject CoVs for mean T1 and T2 values across tissue masks, for 

DESPOT and QALAS.  For DESPOT, the within-subject CoVs vary from a minimum of 2.1% for T2 in 

CSF to a maximum of 6.7% for T2 in GM. For QALAS, CoVs vary from a minimum of 0.6% for T2 in CSF 

to a maximum of 5.8% for T2 in WM. The between-subject CoVs for DESPOT range from 3.7% for T2 in 

WM, to 9.3% for T2 in CSF, and for QALAS range from a minimum of 2.5% for T2 in GM to a maximum 

of 12% for T2 in CSF. In almost all cases, CoVs were smaller for QALAS than DESPOT.  

Table 1: CoVs for mean T1 and T2 Values in GM, WM, and CSF using DESPOT (D) and QALAS (Q) in Test-Retest 
Measurements 

 
CoV 
(%) 

T1 T2 
GM WM CSF GM WM CSF 

 
D Q D Q D Q D Q D Q D Q 

Within-
subject  

6.5 2.1 6.3 2.2 4.6 1.9 6.7 2.2 5.1 5.8 2.1 0.6 

Between
-subject 

4.7 3.3 4.8 2.8 4.6 7.3 5.2 2.5 3.7 2.6 9.3 12.0 

 

3.3. Test-Retest Bland-Altman plots 

DESPOT and QALAS Bland-Altman plots for GM, WM and CSF T1 and T2 values of 10 subjects are shown 

in Figure 4. The DESPOT 𝑇1  plot shows a mean bias of –0.02 s and relatively wide 95% confidence 

intervals (–0.31 to 0.27 s). The QALAS T1 plot shows a similar bias of –0.02 s with narrower 95% 

confidence intervals (–0.14 to 0.11 s), indicating good consistency. For 𝑇2 measurements, the DESPOT plot 

shows a mean difference of 2.56 ms with a limit of agreement from –17.29 to 22.41 ms, while the QALAS 

plot exhibits a smaller mean difference of 1.08 ms and narrower limits of agreement (–1.88 to 4.04 ms). 
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Figure 4: Test-Retest Bland-Altman plots for 10 subjects’ GM, WM and CSF T1 and T2 values measured by DESPOT and QALAS 
(a) T1 and (b) T2. The central solid lines indicate the mean differences (MD), while the upper and lower dotted lines denote the 
limits of agreement (Mean Difference ± 1.96 * standard deviation (SD) of the differences between test and retest). 

3.4. Test-Retest voxel-to-voxel comparisons 
Single representative subject test-retest T1 and T2 scatter plots for DESPOT and QALAS are shown in 

Figure 5. The ICCs for all subjects are given in Tables 2 and 3. Higher average voxel-to-voxel ICCs were 

observed in DESPOT for T2 (0.901 ± 0.028) and in QALAS for T1 (0.841 ± 0.039).  

 

 

 

 

(b) 

(a) 
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Figure 5: Single-subject test vs. retest scatter plots of T1 maps and T2 maps. (a) DESPOT T1, (b) QALAS T1, (c) DESPOT T2, and 
(d) QALAS T2, colored by tissue type. The red diagonal line represents the least-squares regression line. 
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Table 2: DESPOT and QALAS test-retest T1 map Voxel to Voxel ICCs. 

Subject GM WM CSF Whole Brain 

D Q D Q D Q D Q 

1 0.635 0.559 0.623 0.426 0.633 0.677 0.754 0.846 

2 0.649 0.39 0.714 0.265 0.655 0.689 0.646 0.747 

3 0.781 0.539 0.855 0.617 0.747 0.663 0.815 0.828 

4 0.538 0.476 0.498 0.457 0.577 0.642 0.707 0.882 

5 0.745 0.631 0.827 0.604 0.698 0.706 0.706 0.859 

6 0.689 0.58 0.824 0.601 0.684 0.632 0.767 0.842 

7 0.635 0.588 0.77 0.572 0.696 0.766 0.756 0.862 

8 0.412 0.542 0.283 0.484 0.58 0.721 0.642 0.825 

9 0.665 0.576 0.72 0.513 0.673 0.667 0.718 0.837 

10 0.711 0.693 0.74 0.627 0.756 0.804 0.764 0.884 

Avg ± Std 0.646 ± 
0.106 

0.557± 
0.082 

0.685 ± 
0.177 

0.517± 
0.114 

0.670 ±  
0.061 

0.697 ± 
0.054 

0.728 ± 
0.055 

0.841 ± 
0.039 

 
Table 3: DESPOT and QALAS test-retest T2 map Voxel to Voxel ICCs. 

Subject GM WM CSF Whole Brain 

D Q D Q D Q D Q 

1 0.786 0.485 0.707 0.427 0.877 0.798 0.92 0.844 

2 0.678 0.485 0.4323 0.216 0.841 0.8 0.85 0.72 

3 0.807 0.458 0.582 0.362 0.815 0.797 0.929 0.839 

4 0.605 0.445 0.414 0.352 0.774 0.7462 0.852 0.7808 

5 0.808 0.496 0.408 0.562 0.832 0.808 0.903 0.846 

6 0.806 0.458 0.599 0.491 0.829 0.802 0.916 0.842 

7 0.783 0.511 0.68 0.578 0.817 0.824 0.911 0.845 

8 0.75 0.448 0.625 0.474 0.823 0.806 0.899 0.819 

9 0.876 0.486 0.626 0.485 0.844 0.806 0.911 0.84 

10 0.854 0.536 0.648 0.55 0.812 0.837 0.918 0.843 

Avg ± Std 0.775 ± 
0.081 

0.481±  
0.029 

0.572  ± 
0.112 

0.450±  
0.113 

0.826  ± 
0.026 

0.802 ± 
0.023 

0.901 ± 
0.028 

0.822  ± 
0.041 

 
3.5. Evaluation of agreement between DESPOT and QALAS  
Single-subject single-session T1 and T2 maps from DESPOT and QALAS and the difference between them 

are shown in Figure 6. For the same subject and session, the voxel-by-voxel T1 and T2 correlation plots 

between DESPOT and QALAS are shown in Figure 7, suggesting better agreement (ICC) in estimating T1 

values than T2 values. The Bland-Altman plot for DESPOT against QALAS is depicted in Figure 8. The T1 

plot shows a mean difference of -0.06 s with -0.64 to 0.52 s (95% CI) limits of agreement, while the T2 plot 

shows a mean difference of 105.29 ms with limits of -157.64 to 368.22 ms, indicating larger variability 

between the two methods in T2 measurements compared to T1, relative to quantity being measured.  
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Figure 6: DESPOT and QALAS sample single subject and single session (a) T1 and (b) T2-maps and difference images.  
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 Figure 7: Single subject and single session voxel-to-voxel Test vs Retest scatter plots of DESPOT and QALAS regional T1 (left) 

and T2 maps (right). The red line represents the least-squares regression line. 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: DESPOT vs QALAS Bland-Altman plots for regional mean (a) T1 and (b) T2 values. 
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4. Discussion 

Mapping of T1 and T2 is an invaluable technique in the field of quantitative MR imaging. With a wealth of 

mapping techniques proposed in the literature, accurately characterizing and comparing the performance of 

these different methods is paramount to the success of the field. This study specifically investigates the 

reproducibility of the DESPOT and QALAS techniques for T1 and T2 mapping. Both methods showed good 

test-retest reproducibility across different brain regions, with some variations in their performance. For T1 

mapping, QALAS exhibited better consistency, both within-subject and between-subject, than DESPOT. 

The voxel-to-voxel ICCs for T1 were higher in QALAS, indicating more reliable performance in capturing 

T1 values. The Bland-Altman plots for QALAS T1 and T2 measurements also showed lower bias and 

variability than DESPOT. These findings suggest that QALAS may be more suitable for applications where 

accurate and consistent T1 mapping is critical, such as in longitudinal studies and clinical assessments of 

tissue characterization.  

It is notable that QALAS achieved slightly better reproducibility than DESPOT, in addition to significantly 

shorter acquisition time. To generate T1 and T2 maps at 1.3 mm3 resolution, the current DESPOT protocol 

acquired 9 separate images. SPGR images at three flip angles are used to determine T1, while 6 bSSFP 

images at varying flip angles and phase cycling patterns were used to estimate T2;  acquisition of 0° and 

180° phase cycling patterns was performed to address banding artifacts caused by main magnetic field 

inhomogeneities.  While T1 and T2 mapping via DESPOT is possible with two varying flip angle SPGR 

images and two varying flip angle bSSFP images (with phase cycling patterns for B0-inhomogeneity 

correction (39)), offering opportunities to make the acquisition more efficient, the accuracy in the T1 and 

T2 model estimates is improved with the additional image information. In contrast, QALAS acquires only 

5 images and determines T1 and T2 in a single dictionary-matching step. Therefore, QALAS may provide a 

more efficient acquisition process, using all 5 images to generate both T1 and T2 maps, optimizing the utility 

of acquired data. Furthermore, this single-step process is likely more efficient from the perspective of noise 

propagation.  

The clearest difference between DESPOT and QALAS lies in the T2 imaging of CSF and partial-volumed 

CSF areas. Histograms of areas with CSF probability over 0.8 show a large bias – with modal values of ~1 

s for DESPOT and ~150 ms for QALAS, the longer values being closer to literature precedent (48). Note 

that the QALAS dictionary does include long T2s, but for some reason, matching returns much shorter 

values. DESPOT-QALAS images show large differences in regions for CSF partial voluming, with “partial 

CSF” returning values resembling CSF in DESPOT, whereas they appear more like GM in QALAS images. 
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The limited resolution of this dataset (1.3 mm3) impacts the complete separation of GM from both CSF and 

WM.  

Relaxometry has a number of promising applications in the diagnosis and characterization of several 

diseases e.g., multiple sclerosis (49), stroke (50), and epilepsy (51,52). Historically, acquisition time was 

the main barrier to the clinical application of relaxometry mapping techniques, but the advent of rapid 

acquisition approaches, like those studied here, has circumvented this. The remaining barriers are the 

accessibility of new techniques, somewhat assuaged by the development of open-source sequence 

frameworks (53–55), and the establishment of measurement uncertainties, which is the focus of our own 

study. 

The clinical utility of DESPOT for rapid T1 and T2 mapping, emphasizing its speed and feasibility for 

clinical applications, has been previously studied (33,34). DESPOT's acquisition scheme makes it attractive 

for clinical use, especially in scenarios requiring rapid and high-resolution mapping of relaxation times. On 

the other hand, the capability of QALAS for simultaneous T1 and T2 mapping in the heart  (35) and brain 

(56) has highlighted its efficiency in capturing multiple parameters in a single acquisition. This versatility 

is extended to GM, WM and CSF brain regions in our study, demonstrating QALAS's reliability for T1 

mapping with good ICC values and minimal bias observed in Bland-Altman plots. This method's ability to 

integrate T1, T2, and proton density mapping in one short scan makes it a powerful, clinically viable tool for 

comprehensive tissue characterization.  

Our findings add to the body of T1 and T2 mapping literature by directly comparing DESPOT and QALAS, 

demonstrating their respective strengths in reproducibility and mapping accuracy. The DESPOT T1 values 

of this study were within acceptable agreement with prior 3T DESPOT T1 measurements (57) in GM (~1.6 

s) and WM (~1 s). The DESPOT T2 values were on average higher than those found in (39) for GM (~75 

ms) and WM (~50 ms).  QALAS T1 values are significantly longer than in prior 3T QALAS work (58) (~1.5 

vs. ~1.0 s in GM and ~1.0 vs ~0.6 s in WM).  QALAS T2 values are closer to (58)  (~75 vs. 90 ms in GM 

and ~65 vs 80 ms in WM). Both our T1 and T2 values agree with broader consensus (59), and prior work 

(44) using a similar analysis pipeline. To the best of our knowledge, there are no reported test-retest studies 

directly assessing the within-subject reproducibility of DESPOT. However, reproducibility has discussed 

in terms of percentage standard deviation (SD) of T1 and T2 measurements from WM regions (i.e. 6.5 % 

and 5.5 %) (33) similar to these current findings. One prior QALAS repeatability study (58) showed a mean 

intrasubject CoV of 1.9 %, similar or slightly better than these findings, although calculated across specific 

anatomical regions. When compared with other multiparametric mapping techniques, such as ME-

MP2RAGE (31,60) and Magnetic Resonance Fingerprinting (MRF) (61,62), the presented methods 
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demonstrated similar within-subject reproducibility. Another multiparameter mapping protocol based on 

vendor product sequences (i.e. FLASH with MT, T1, and PD contrast weightings) reported an average 

intra-site CoV of 7 % for T1 and 16 % for T2 (63). Taken together, these findings imply both QALAS and 

DESPOT can be considered robust multiparameter mapping methods. 

This is a study of modest scope, with several limitations. Firstly, the study was conducted in a small sample 

size of 10 healthy volunteers, which may not fully capture the variability in a larger, more diverse 

population. Secondly, the resolution of mapping was limited to 1.3 mm3 isotropic resolution, leading to 

meaningful partial voluming of cortical GM. Thirdly, only two relaxometry methods are compared. Future 

studies should include a larger cohort and investigate the reproducibility of these techniques in pathological 

conditions. Additionally, improvements in the reconstruction algorithms could further enhance the 

reproducibility and accuracy of both DESPOT and QALAS. 

5. Conclusion  
In summary, this study quantifies the test-retest reproducibility of DESPOT and QALAS for T1 and T2 

mapping. Given the shorter acquisition time and the slightly better results, QALAS appears to be more 

reliable, particularly for T1 measurements, than DESPOT.  
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