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Abstract: The pillars of contemporary theoretical physics are classical mechanics, Maxwell
electromagnetism, relativity, quantum mechanics, and Boltzmann–Gibbs (BG) statistical mechanics
–including its connection with thermodynamics. The BG theory describes amazingly well the thermal
equilibrium of a plethora of so-called simple systems. However, BG statistical mechanics and its
basic additive entropy SBG started, in recent decades, to exhibit failures or inadequacies in an
increasing number of complex systems. The emergence of such intriguing features became apparent
in quantum systems as well, such as black holes and other area-law-like scenarios for the von
Neumann entropy. In a different arena, the efficiency of the Shannon entropy—as the BG functional is
currently called in engineering and communication theory—started to be perceived as not necessarily
optimal in the processing of images (e.g., medical ones) and time series (e.g., economic ones). Such
is the case in the presence of generic long-range space correlations, long memory, sub-exponential
sensitivity to the initial conditions (hence vanishing largest Lyapunov exponents), and similar
features. Finally, we witnessed, during the last two decades, an explosion of asymptotically scale-free
complex networks. This wide range of important systems eventually gave support, since 1988,
to the generalization of the BG theory. Nonadditive entropies generalizing the BG one and their
consequences have been introduced and intensively studied worldwide. The present review focuses
on these concepts and their predictions, verifications, and applications in physics and elsewhere.
Some selected examples (in quantum information, high- and low-energy physics, low-dimensional
nonlinear dynamical systems, earthquakes, turbulence, long-range interacting systems, and scale-free
networks) illustrate successful applications. The grounding thermodynamical framework is briefly
described as well.

Keywords: complex systems; nonadditive entropies; nonextensive statistical mechanics; beyond
Boltzmann–Gibbs–Shannon

1. Introduction

Relativity generalizes Newtonian mechanics in order to also include velocities close to that of
light; along a different line, quantum mechanics also generalizes Newtonian mechanics in order to
also include small masses. Since the magnificent nineteenth-century contributions by Boltzmann and
by Gibbs (BG) and later on by Bose and Einstein, as well as by Fermi and Dirac for quantum systems,
the BG theory satisfactorily addresses an impressive number of problems. And still, it comes up
short for many others, frequently referred to as complex systems. To be more precise, their collective
stationary states do not always correspond to what is usually referred to as thermal equilibrium.

It can be argued that some sort of scenario has been emerging along the last three or four decades,
calling for a paradigm shift in what concerns the historical axioms leading to the BG entropy and
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to its associated statistical mechanics [1–3]. The crucial point turned out to be, as detailed hereafter,
the additivity of the BG form. The simplest form of the BG entropic functional is

SBG = −k
W

∑
i=1

pi ln pi

( W

∑
i=1

pi = 1
)

, (1)

where W is the total number of (microscopic) possibilities, and k is a conventional positive constant
(physicists identify k with the Boltzmann constant kB; information theoreticians use k = 1).
This form leads, in the continuum limit, to the historical expression SBG = −k

∫
dx p(x) ln p(x)

(with
∫

dx p(x) = 1, where x is a continuous multidimensional random variable) and to what is
known as the von Neumann entropy SBG − kTrρ ln ρ [4] for quantum systems, ρ being the density
operator. The expression (1) is referred to as Shannon entropy in communication theory [5]. If we have
a system composed of two probabilistically independent subsystems A and B (i.e., pA+B

ij = pA
i pB

j ),
we straightforwardly verify that SBG satisfies the Penrose requirement [6] for entropic additivity,
namely S(A + B) = S(A) + S(B).

Within an information theoretical framework not necessarily related to physics, in 1961 Rényi
introduced [7] the most general additive form, which contains SBG as a particular case, namely

SR
q = k

ln ∑W
i=1 pq

i
1− q

(q ∈ R; SR
1 = SBG) . (2)

Within that information theory scenario, various other possible generalizations of SBG emerged,
e.g., in 1967 by Havrda and Charvat [8], in 1975 by Sharma and Mittal [9]. Independently from such
predecessors as mathematical possibilities and inspired by multifractals, in 1988 [10] the generalization
of BG statistical mechanics itself through the optimization of the entropy Sq was proposed in physics,
defined as

Sq = k
1−∑W

i=1 pq
i

q− 1
(q ∈ R; S1 = SBG) . (3)

This entropy satisfies, for independent A and B, the following nonadditive property:

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
, (4)

hence
Sq(A + B) = Sq(A) + Sq(B) +

1− q
k

Sq(A) Sq(B) , (5)

which recovers the BG additivity in the (1− q)/k→ 0 limit. The unprecedented use of a nonadditive
entropy (a conceptual possibility which, in one way or another, had already been considered
historically [11–13]) in order to generalize the BG statistical mechanics, opened a door that has
been being widely explored since 1988 [14,15]. It is for a wide class of anomalous situations,
including analogous geometrical random systems such as asymptotically scale-free networks (see,
for instance, [16–18] and references therein involving distance-dependent couplings of the type
r−αa ; for the particular case of αA = 0, see [19–22]) that non-Boltzmannian entropies and related
formalisms become useful. A neat explanation of the difference between entropic additivity and
entropic extensivity will be provided below. This is a most important issue, since these two definitively
distinct properties are very frequently confused by physicists and others.

Other extensions of the BG entropy and its associated statistical mechanics followed in physics
and elsewhere, for example, in 1998 by Borges and Roditi [23] and its particular instance in
2001 by Kaniadakis [24–27], in 1997 by Abe [28], in 1998 by Landsberg and Vedral [29], in 1999
by Curado [30,31], in 1999 by Anteneodo and Plastino [32], in 2005 by Tsekouras and Tsallis [33],
in 2003 by Tsallis and Souza 2003 [34] (within the context of Beck–Cohen superstatistics [35]), in 2007
by Schwammle andTsallis [36], the δ-entropy in 2007 and 2009 by Shafee, Tsallis, and Ubriaco [37–39],
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generalized in 2013 by Tsallis and Cirto [40], in 2011 by Hanel and Thurner [41], in 2011 by
Tempesta [42] ( including its intriguing connection with the Riemann zeta function; see also [43]),
in 2016 by Curado, Tempesta, and Tsallis [44], in 2016 by Tempesta [45] (see also [43]), in 2018 by Jensen,
Pazuki, Pruessner, and Tempesta [46], among various other developments. These entropic functionals
have many connections and predecessors in areas such as cybernetics, information theory, engineering,
communication theory, ecology, and information geometry. All of them recover the celebrated entropy
SBG as a particular case, with the unique exceptions of the exponential-form ones, namely [30,33]. Only
two of all these entropic functionals are additive, namely the Boltzmann–Gibbs–von Neumann–Shannon
SBG and the Rényi [7] ones. All the others are generically nonadditive.

As is well known, the entropy SBG and its associated statistical mechanics enable the correct
calculation of a large variety of thermostatistical properties at or near the thermal equilibrium of
uncountable so-called simple systems. But when it comes to wide classes of so-called complex systems,
the BG theory fails. Due to this fact, many attempts have emerged using either the Rényi entropy or
some of the nonadditive ones, most frequently Sq, for a variety of applications in natural, artificial,
and social systems. In what follows, we focus on some selected illustrations, based on the volume of
applications and connections that are exhibited in the constantly growing literature.

2. Non-Boltzmannian Entropy Measures and Distributions

2.1. Rényi Entropy

As already mentioned, Rényi entropy was long ago introduced [7] in information theory
as the most general additive entropic functional that recovers the BG one as a particular case.
It satisfies the first three axioms of Shannon [5] (basically that entropy depends smoothly and only
on probabilities, that it is maximal for equal probabilities, and that it is additive, meaning that
the entropy of a system composed of independent subsystems is simply the sum of the entropies),
but violates the (celebrated) fourth one, namely the one that refers to the grouping property. It was
initially used in the context of strongly chaotic nonlinear dynamical systems, this is to say systems
whose dynamics are exponentially sensitive in time to the initial conditions, i.e., positive Lyapunov
exponents, mathematically speaking (see, for instance, [47]). But in recent years, the Rényi entropy has
become popular in quantum information, and more precisely, to characterize quantum entanglement.
This specific use is pedagogically illustrated in [48] for a system of N identical fermions. If we denote
by ρ the density matrix of a pure or mixed state of N fermions and by ρr the density matrix of
the single-particle reduced state, it can be proved for any q ≥ 1, that SR

q [ρr]/k > SR
q [ρ]/k + ln N

implies that ρ corresponds to a necessarily quantum entangled state, i.e., the state is not separable [48].
This inequality can therefore be used as a criterion for identifying quantum entanglement. The criterion
becomes stronger as q increases from one to infinity, in the sense that the larger the value of q, the larger
the number of entangled states that are detected. For some particular situations, the q → ∞ limit
corresponds, in fact, to the necessary and sufficient conditions for the system to be entangled or
separable (see, for instance, [49], by recalling that SR

q monotonically depends on Sq).

2.2. q-Entropy and q-Exponential Distribution

Let us focus now on the profusely used entropy Sq. As mentioned above, it was introduced in
1988 [10] with the purpose of generalizing BG statistical mechanics itself. This entropic functional
is simply related to the Rényi functional through a monotonic function. There are, however, three
crucial differences among them. First, SR

q is additive for all values of q, whereas Sq is nonadditive for
all q 6= 1. Second, the Rényi entropy has a definite concavity only for q ≤ 1 (concave for 0 < q ≤ 1
and convex for q < 0; q = 0 corresponds to an anomalous frontier), whereas the q-entropy has a
definite concavity for all values of q (concave for q > 0 and convex for q < 0); this important difference
comes from the fact that concavity is not preserved through the already mentioned monotonicity
between the Rényi entropy and Sq (concavity is an important mathematical property that is directly
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related to thermodynamical stability, or in other words, to the fact that the specific heat of the BG
canonical ensemble of any system must be non-negative). Third, the extremal value of the Rényi
entropy (at equiprobability) recovers Boltzmann’s celebrated expression, namely SR

q = k ln W, for all
values of q, whereas the (q-dependent) extremal value of the q-entropy is given by Sq = k lnq W,

where the q-logarithmic function is defined as lnq z ≡ z1−q−1
1−q , with ln1 z = ln z. Further details are

discussed in [50].
The entropy Sq can be conveniently rewritten as follows:

Sq = k
W

∑
i=1

pi lnq
1
pi

= −k
W

∑
i=1

pq
i lnq pi = −k

W

∑
i=1

pi ln2−q pi . (6)

Its optimization in the presence of appropriate norm and energy constraints yields the following
probability distribution:

pi =
e
−βqEi
q

∑W
j=1 e

−βqEj
q

, (7)

where {Ei} are the total energy eigenvalues, the q-exponential function ez
q ≡ [1 + (1 − q)z]

1
1−q is

defined as the inverse of lnq z, and βq ≡ 1/kTq > 0 is related to the constraints that have been
imposed (see details in [10,51,52]); the following properties are satisfied: ez

qe−z
2−q = (ez

q)
qe−qz

1/q = 1,

ex+y+(1−q)xy
q = ex

q ey
q , and ez

q ∼ 1 + z (z → 0), for all values of q. This is how the central operational
ingredient of the BG theory, namely the BG exponential weight [1–3], is herein generalized. At this
point, it is worth mentioning a general property, satisfied by entropic functionals. To illustrate this
property, we can focus on, say, Sq. Any monotonic function of Sq (e.g., Rényi entropy) is optimized by
one and the same distribution if the constraints are precisely the same. This by no means implies that
the entire associated statistical mechanics and thermodynamics are also one and the same. An obvious

illustration of this fact is that both −k ∑W
i=1 pi ln pi and −k

[
∑W

i=1 pi ln pi
]3 are optimized, under the

same constraints, by the celebrated BG factor. However, the corresponding statistical mechanics are
completely different. Indeed, the microscopical interpretation of the thermodynamical entropy as being
SBG satisfies, as is well known, a plethora of correct standard thermodynamical relations, whereas the
use of its cube instead would violate plenty of them.

Within many applications of q-statistics [15], let us present here four selected case studies, two in
high-energy physics (on Earth and in outer space),and the other two in low-energy physics (granular
matter and cold atoms).

Let us start with high-energy physics. Rolf Hagedorn and others suggested in the 1960s that the
distributions of hadronic transverse momenta emerging after high-energy collisions could be explained
in terms of BG statistics. This interesting idea was quite successful for collisions of not-too-large
transverse momenta, but started failing when larger and larger momenta gradually started becoming
prominent, and more precisely when modern accelerators enabled collisions at higher and higher
center-of-mass energies. However, in 2000, a successful description was advanced for electron–positron
collisions by replacing, within Hagedorn theory, the BG factor by the q-exponential one [53]. After this
pioneering attempt, many other successful calculations were performed, focusing on experiments
done at RHIC/Brookhaven (STAR, PHENIX Collaborations) and LHC/CERN (ALICE, CMS, ATLAS,
LHCb Collaborations) [54–62], as well as on observations in outer space [63]. For illustrations in these
areas of research, see Figure 1. The state-of-the-art is that q monotonically depends on the collision
center-of-mass energy, being q ' 1 for low-energy collisions and approaching q ' 1.2 for high-energy
collisions, of the order of the extreme-energy cosmic rays (close to 1020 eV). The original Hagedorn
theory is thus recovered naturally at the q→ 1 limit. As another trivial consequence of the definition of
the q-exponential function, the forms of the distributions asymptotically coincide in the low-momenta
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region for all center-of-mass energies, which constitutes another limit at which the Hagedorn theory
is recovered.

The other high-energy application concerns the observation of matter (electrons) and antimatter
(positrons) in outer space with the Alpha Magnetic Spectrometer (AMS-02), led by Samuel Ting and
shown in Figure 1. The measured energy-dependent fluxes have been recently shown, by Yalcin and
Beck [63], to be well fitted by linear combinations of standard and escort q-exponentials whose two q
values, namely q1 and q2, are related through a simple combination of the so-called additive duality
(q → 2− q) and multiplicative duality (q → 1/q), discussed in [64]; the present specific values of q1

and q2 are established on the basis of the involved number of degrees of freedom.
Turning to low-energy applications, let us focus now on recent granular matter experiments.

In 1995, it was shown by Plastino and Plastino [65] that the so-called porous medium equation in
the presence of a confined potential is connected to the Sq entropy and its q-Gaussian extremizing

distribution (proportional to e
−βqx2

q ). The connection is, in fact, a fundamental one, namely that the
stationary state of the nonlinear Fokker–Planck equation precisely coincides with the distribution that
extremizes the entropy Sq under the corresponding constraints, and also satisfies an H-theorem,
for all values of q [66]. On this basis, a novel scaling relation was thereafter established [67],
namely α = 2/(3 − q), where the anomalous diffusion exponent α is defined through the fact
that the square displacement x2 scales like tα (notice that q = 1 yields the classical Brownian motion
exponent α = 1). Preliminary confirmations emerged in an experimental study of the motion of Hydra
cells [68] and in a computational approach of the XY model with long-range interactions [69]. But the
experimental validation of the scaling relation on a wide physical range, on granular matter in fact [70],
only arrived 20 years later (see Figure 2).
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Figure 1. Applications in high-energy physics. Top: Comparison of Ae−ET /T
q , where ET =

√
m2 + p2

T ,
with the experimental transverse momentum distribution of hadrons in pp collisions at central rapidity
y. The corresponding Boltzmann–Gibbs (purely exponential) distribution is illustrated as a dashed
curve. For a better visualization, both the data and the analytical curves have been divided by a constant
factor, as indicated. As shown, the fittings are amazingly good over as many as 14 ordinate decades!
Such a situation appears to be unprecedented. Indeed, so many experimental decades within a single
experiment is a rather unique circumstance, which exhibits the talent of the experimental effort involved.
To realistically appreciate this, such curves can be compared to, say, those exhibiting the crossover
from Newtonian to Einstein mechanics at increasingly large values of the momentum. Indeed, if we
consider the case of, say, protons within cosmic rays up to the Extreme Energy Cosmic Ray detection on
Earth, we have 11 ordinate decades between the departure of the Einstein relation E =

√
m2c4 + p2c2

from the classical relation E = mc2 + p2/2m up to the relativistic upper experimental limit. The ratios
data/fit are shown at the bottom, where a roughly log-periodic behavior is observed on top of the
q-exponential one. Such log-periodic curves have been remarkably well fitted by introducing in the
q-index a small imaginary part (e.g., q = 1.14 + i 0.03) [61,62]. From [56]. Bottom: The measured
AMS-02 data are very well fitted by linear combinations of escort and standard distributions with
q1 = 13/11 = 1.1818 . . . and q2 = 1/(2− q1) = 11/9 = 1.2222 . . . From [63].
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Figure 2. Applications in low-energy physics. Experimental verification in granular matter of the
scaling relation predicted in 1996 [67]. (Top left:) Type of apparatus that is used (from [71]); (top right:)
dependence of the index q of the q-Gaussian distribution of fluctuations on a wide range of the
experimental parameter 1/

√
∆γ; (middle left:) dependence of the anomalous diffusion exponent α (x2

scales with tα) on the same experimental parameter and verification, within a 2 % error bar, of the 1996
prediction α = αP ≡ 2/(3− q) [67]. Notice that in the 1/

√
∆γ→ 0 limit, the BG values (q, α) = (1, 1)
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emerge as the expected extrapolations. From [70]. Experimental verification for cold atoms of the
2003 prediction by Lutz [72]. (Middle right:) (a, in Middle right) results of quantum Monte Carlo
simulations for the momentum distribution of atoms cooled in a 1D optical lattice. The data points
correspond to the average of 104 atomic trajectories. For each trajectory, the atom is initially in the
ground state of a given well. The depth of the optical lattice is U0 = 60Er. The line is the best fit
to the data with a q-Gaussian with q = 1.791± 0.004 (adjusted R2 = 0.995). (b, in Middle right)
Values of q as a function of the depth of the optical potential. The data points correspond to the full
quantum Monte Carlo simulations, the line representing the analytical prediction q = 1 + 44Er/U0 [72].
(Bottom left:) (a, in Bottom left) experimental results for the momentum distribution of cold atoms in
a 3D dissipative optical lattice (data points) and their best fit q-Gaussian (solid line). The obtained q
value (= 1.310± 0.015) is derived by fitting only the right part of the momentum distribution (adjusted
R2 = 0.9985). The parameter of the optical lattice is ωv/(2π) = 20.8 kHz. The distribution is normalized
so that its maximum equals unity. (b, in Bottom left) Values for q as a function of the vibrational
frequency at the bottom of the well, as obtained by fitting the experimental data with a q-Gaussian.
(Bottom right:) (a, in Bottom right) experimental results for the atomic momentum distribution (black
data points) and their best fit with a q-Gaussian (black solid line). The value of q is indicated in the figure
(adjusted R2 = 0.9985). The parameter of the optical lattice is ωv/(2π) = 27.5 kHz. For comparison,
a Gaussian is indicated as well (red line). (b, in Bottom right) The data points for the distribution in
the high-momenta region. The solid line represents the best power-law fit. From [73,74].

The other low-energy application concerns the motion of cold atoms in optical dissipative lattices.
It was suggested by Lutz in 2003 [72] that under appropriate conditions (involving a damping
mechanism, e.g., the so-called Sisyphus cooling), the distribution of velocities of atoms should be not
Maxwellian but rather q-Gaussian with q = 1 + 44 Er

U0
, where Er is the atomic recoil energy and U0

is the amplitude of the periodic potential produced by the laser field. Three years later, in 2006, his
prediction was computationally and experimentally verified [73]. This impressive confirmation was
computationally performed both through quantum Monte Carlo and experimentally with Cs atoms;
see Figure 2. The entire idea was further discussed in [74].

Let us now reproduce here some strongly suggestive numerical results concerning
low-dimensional maps, namely the d = 1 logistic map (dissipative) and the d = 2 standard map
(conservative).

The logistic map can be defined as follows:

xt+1 = 1− ax2
t (t = 0, 1, 2, 3 . . . ; xt ∈ [−1, 1]; a ∈ [0, 2]). (8)

For a < ac = 1.401155189092 . . . , the (unique) Lyapunov exponent λ is non positive; for a = ac,
frequently referred to in the literature as the Feigenbaum point, the Lyapunov exponent vanishes;
and for a > ac, λ can be negative, zero, or positive, being λ = ln 2 for a = 2, the most chaotic case
for this paradigmatic map. An interesting quantity to focus on is the attractor of the sum of many
successive iterations of xt. For a = 2, the attractor is a Gaussian, as expected from the central limit
theorem. For a = ac instead, the attractor approaches q-Gaussians, as shown in Figure 3 ([75]).

Various other q 6= 1 relevant quantities, including the q-generalization of the Pesin identity,
are also available at the Feigenbaum point [76–79].

The standard map is defined as follows:

pt+1 = pt − K sinxt (9)

xt+1 = xt + pt+1 (t = 0, 1, 2, 3 . . . ; K ≥ 0) , (10)

xt and yt being defined as real numbers modulo 2π. Being conservative, this well known map has two
Lyapunov exponents opposed by their sign, i.e., λ and −λ with λ ≥ 0. When K vanishes, λ vanishes
in the full phase-space; when K is very large, λ is positive in the full phase-space. In an interesting
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paper, Tirnakli and Borges [80] have recently focused on the sum of a large number of successive
iterations of xt. Their main numerical results concerning the attractors that emerge are shown in
Figure 4. For K = 10, the Lyapunov exponent is neatly positive, and the attractor is a Gaussian,
in agreement with the central limit theorem. For K = 0.2 (and even for K = 0, not shown here) the
Lyapunov exponent is very close to zero (or just zero) and the attractor appears to be a q-Gaussian
with (q, β) ' (1.935, 21) along a considerable number of decades.

Figure 3. Data collapse of probability density functions for the cases N = 22n, where 2n is odd (top),

or even (bottom). As n increases, a good fit using a q-Gaussian P(y)/P(0) = e−β[yP(0)]2
q with

(q, β) ' (1.68, 6.2) (top) and (q, β) ' (1.70, 6.2) (bottom) is obtained for increasingly large regions.
Inset: Linear-linear plots of the data for a better visualization of the central part. From [75].
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Figure 4. Data. Normalized probability distribution function of the attractors, where T is the number of
terms in the sum and M is the number of initial conditions. (Top:) For K = 10 with T = 218. (Bottom:)
For K = 0.2 with T = 222. (In the Inset, the central part is zoomed for a better visualization). From [80].

2.3. Kaniadakis Entropy and κ-Exponential Distribution

In 2001 [24–27], Kaniadakis introduced the following nonadditive entropy:

Sκ = k
1

1−κ ∑W
i=1 p1−κ

i − 1
1+κ ∑W

i=1 p1+κ
i

2κ
(κ ∈ R; S0 = SBG) . (11)

It is directly related to a linear combination of two q-entropies involving q = 1 + κ and constitutes
a particular instance of the Borges–Roditi entropy [23]. The Kaniadakis entropy was defined in order
to satisfy the simple symmetry Sκ = S−κ and is, under appropriate constraints, extremized in terms of
the κ-exponential function defined as

ez
κ =

[√
1 + κ2z2 + κz

] 1
κ

(ez
0 = ez) . (12)

This function satisfies ez
κ = ez

−κ , ez
κe−z

κ = 1 for all values of κ and has been used in the discussion
of special relativity problems [25–27], among others. A successful application to earthquakes is
illustrated in Figure 5, comparing the observed quantiles in Cretan seismic activity and those
corresponding to an optimally fitted κ-Weibull distribution obtained by replacing, in the Weibull
distribution, the exponential function by the κ-exponential function. We do not know how well other
non-Boltzmannian entropies (Rényi, Sq, entropies yielding superstatistics) perform in this application.
Such a focused comparison would naturally be enlightening and helpful.
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Figure 5. Quantiles associated with the distribution for the Cretan earthquake sequence return intervals
(earthquake return times). The solid curve corresponds to the κ-Weibull distribution based on the
κ-exponential function (Equation (12)), which, under appropriate constraints, extremizes the Kaniadakis
κ-entropy. From [81].

Finally, to avoid some frequent confusion, let us mention that z ∝ x2 into e−z
κ is sometimes

referred to as κ-Gaussian. This form should not be confused with the kappa distribution sometimes
referred to as such in plasma physics, which was phenomenologically introduced half a century ago
by Vasyliunas [82] and is in fact a q-Gaussian, q being simply related to the Vasyliunas κ index.

2.4. Beck–Cohen Superstatistics

The BG basic weight is, of course, e−βE, β being the inverse temperature of the system at thermal
equilibrium. It happens, however, that for various reasons, the relevant stationary or quasi-stationary
state of the system is one for which β fluctuates in space and/or time. The basic weight is then, in many
cases, given by the deformed exponential

e
−β f E
f =

∫ ∞

0
dβ f (β)e−βE

(∫ ∞

0
dβ f (β) = 1

)
, (13)

where f (β) represents the distribution of βs, to be determined analytically or experimentally from
microscopic or mesoscopic dynamics. This approach was introduced by Beck and Cohen in 2003 [35],
and since it represents a statistics within statistics, it has been named “superstatistics”. This simple and
powerful formalism was inspired by the fact that when f (β) is the standard χ2 distribution, we verify

straightforwardly [83,84] that e
−β f E
f = e

−βqE
q , thus recovering the stationary distribution of q-statistics.

In the q→ 1 limit, f (β) corresponds to the standard Dirac delta distribution. The discrepancy with
regard to the BG equilibrium state is measured by the Beck–Cohen index qBC = 〈[ f (β)]2〉/〈 f (β)〉2,
which reproduces q for the χ2 superstatistics. Two other important cases correspond to 1/β following
a χ2 distribution or β following a lognormal distribution; they are respectively referred to as inverse
χ2 superstatistics and lognormal superstatistics. It has been shown [35] that for arbitrarily peaked
f (β), the first-order correction with regard to the BG weight is always that of q-statistics, hence
0 ≤ qBC − 1 ∼ q − 1 << 1. The entropic functional whose appropriate extremization yields
superstatistics is now available as well [34,85]. Superstatistics has been useful for a wide variety of
systems. A successful application of lognormal superstatistics for quantum turbulence is depicted
in Figure 6.
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Figure 6. Experimental measurements of histograms of accelerations obtained by La Mantia et al. [86]
and the Beck–Cohen lognormal superstatistics distribution (solid curve). From [87].

2.5. More Entropies and Applications

The BG entropy and its associated statistical mechanics have uncountable successful applications,
which include very many in condensed matter classical and quantum systems, nuclear physics,
and astrophysics, high-energy physics, theory of critical phenomena, among a plethora of other areas.
However, when it comes to wide classes of complex systems—which may be nonergodic, weakly
chaotic, long-range-interacting, long-memory-based—their theoretical approach usually becomes
severely tricky, and more powerful concepts, such as nonadditive entropies, become extremely useful.
In addition to those described above, various others have been advanced for a variety of reasons.
To illustrate their mathematical diversity, let us display the precise analytical forms of some of them.

The nonadditive Borges–Roditi entropy is defined as [23]

SBR
q,q′ ≡ k

∑W
i=1 pq

i −∑W
i=1 pq′

i
q′ − q

(
SBR

q,1 = SBR
1,q = Sq

)
. (14)

The Curado entropy is defined as follows [30]:

SC
b ≡ k

[ W

∑
i=1

(1− e−bpi ) + e−b − 1
]

(b ∈ R; b > 0) . (15)

Another exponential-form entropy was introduced in 2005 by Tsekouras and Tsallis [33]. It is
defined as follows:

SE = k
W

∑
i=1

pi

(
1− e

pi−1
pi

)
, (16)

where E stands for exponential. This entropic functional can be extended as follows:

SE
c = k

W

∑
i=1

pi

(
1− ec pi−1

pi

)
(c ∈ R; c > 0) . (17)

The nonadditive Hanel–Thurner entropy, which has been determined by imposing specific
asymptotic behaviors, is defined as [41] (see also [88])

SHT
c,d ≡ k

[ e ∑W
i=1 Γ(1 + d, 1− c ln pi)

1− c + cd
− c

1− c + cd

]
(SHT

q,0 = Sq) , (18)
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where Γ denotes the incomplete gamma function. This two-parameter entropy has been been obtained
by discussing the various asymptotic behaviors of W(N).

Let us also mention the nonadditive δ-entropy defined as follows [37], to be able to yield entropic
extensivity for the stretched exponential dependence of W with N (see also [38,39]):

Sδ ≡ k
W

∑
i=1

p
[
ln

1
pi

]δ
(S1 = SBG), (19)

and its generalization, the entropy Sq,δ [40]:

Sq,δ ≡ k
W

∑
i=1

p
[
lnq

1
pi

]δ
(S1,1 = SBG; Sq,1 = Sq; S1,δ = Sδ). (20)

The simple δ-entropy yields, for δ 6= 1, stretched exponential distributions, which are by no means
rare in nature. Such distributions can also be obtained through the Anteneodo–Plastino entropy [32]
and the Hanel–Thurner entropy [41]. The first physical applications of the δ entropy concern black
holes [40] and cosmological evolution [89].

Let us end this section by mentioning other selected entropic applications beyond BG in
physics: long-range interacting many-body classical Hamiltonian systems (XY model [90–97],
Heisenberg model [98–100], Fermi–Pasta–Ulam (FPU) model [101–104]) (see [105,106] for earlier
related approaches of the original FPU model and also [107], where the existence of non-Maxwellian
compact-support momenta distributions are detected for special initial conditions); quantum-entangled
low-dimensional Hamiltonian systems [108–110]; plasma physics [111–115]; turbulence [87,116];
astrophysics, cosmology, and black holes [89,117–122]; nonlinear dynamical systems [123–128];
nonlinear quantum mechanics [129–132]; anomalous diffusion, type II superconductors, and repulsive
short-range interacting systems with overdamping [133–137]; hydrogen-like atoms [138,139]; viscous
fingering [140]; glasses and spin-glasses [141]; astronomy and planetary physics (asteroids [142],
meteor showers, and lunar flashes [143]); solar physics (solar wind [112,144]); generalized
thermostatistics [145–147], among others [148].

Also worth mentioning are selected entropic applications beyond BG in other areas
of knowledge: complex networks [16–18]; economics [149–156]; geophysics (earthquakes,
atmosphere) [157–166]; general and quantum chemistry [139,167–171]; hydrology and engineering
(water engineering [172] and materials engineering [173,174]); power grids [175]; the environment [176];
medicine [177–179]; biology [180,181]; computational processing of medical images (microcalcifications
in mammograms [182] and magnetic resonance for multiple sclerosis [183]) and time series
(e.g., ECG in coronary disease [184] and EEG in epilepsy [185,186]); train delays [187]; citations
of scientific publications and scientometrics [188,189]; global optimization techniques [190–192];
ecology [193–195]; cognitive science [196–198]; mathematics (functions [199], uniqueness theorems
and related axiomatic approaches [200–205], central limit theorems, and generalized Fourier
transform [206–214]); probabilistic models [215–217]; information geometry [218,219].

Some of these applications beyond BG rely on the various available entropic forms; others directly
rely on their optimizing distributions such as q-exponentials, κ-exponentials, and superstatistics.
Some of these distributions have compact support (like q-exponentials with q < 1); others have infinite
support (like q-exponentials with q ≥ 1).

Most of these applications concern Sq; some of them concern Rényi, Kaniadakis,
and superstatistical approaches differing from q-statistics. To gain some deeper insight about this
fact, it is convenient to focus on a few generic properties that play a relevant role outside the
non-Boltzmannian world, namely additivity, trace-form, composability, and discriminative power.

An entropic functional is said of the trace-form if it can be written as ∑W
i=1 f (pi), where f (x) is

some specific function. Therefore, the additive BG entropy is of the trace-form with f (x) = −k x ln x.
The nonadditive q-entropy also satisfies this property with f (x) = k x−xq

q−1 , as does the nonadditive
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Kaniadakis entropy, as can be seen from its definition in Equation (11). In contrast, the additive Rényi
entropy is, for q 6= 1, not of the trace form. Trace form certainly has value as a hypothesis of analytical
simplicity, but it could, in principle, be violated without particularly heavy consequences, as far as we
can tell.

An entropic functional is said composable if it verifies, for independent subsystems A and B,
that S(A + B)/k = Φ[S(A)/k, S(B)/k], where Φ(x, y) is some function satisfying Φ(x, y) = Φ(y, x).
This property has great thermodynamical relevance since it means that the macroscopic entropic value
of a system composed of independent subsystems only depends on the macroscopic entropic values
of the parts, and not on their microscopic details. Consequently, the BG and Rényi entropies are
composable with Φ(x, y) = x + y, and the q-entropy is composable with Φ(x, y) = x + y + (1− q)xy.
In contrast, the Kaniadakis entropy and many others are not composable; indeed, a linear combination
of composable entropies is not necessarily composable.

By discriminative power, we mean the possibility of adaptation of the entropic functional to
universal features of the system. Therefore, the BG entropy has no discriminative power at all since
its definition involves no computable or fitting parameter (this might be considered as the “secret”
reason for its wonderful success in very many systems over the last 140 years, but also for its weakness
for attacking ubiquitous complex systems that have been intensively focused on in recent decades).
The q-entropy and the Kaniadakis entropy both have discriminative power, respectively realized
through their indices q and κ. The (q, δ)-entropy and the Hanel–Thurner one have even stronger
discriminating power since they involve two indices, (q, δ) and (c, d), respectively. The entropic
functionals yielding superstatistics have very strong discriminating power, represented by a full
distribution [ f (β)], as can be seen in Equation (13). The Rényi entropy has discriminating power
(since it involves its index q), however weaker than those of the q-, Kaniadakis and superstatistical
entropies. This weakness ultimately comes from the fact that in order to preserve the BG additivity
for all values of q, its maximal value is necessarily universal, namely k ln W, independently of the
value of its index q. This restriction ends up decreasing its domain of useful applications. Its generic
additivity also ends up decreasing its capability of producing thermodynamically extensive entropies
for many complex systems, whose total number of admissible microscopic configurations increases
non-exponentially with the number of particles or of degrees of freedom. As a final remark, let us
mention that very many complex systems exhibit generic power laws in their properties, and the index
q satisfactorily reflects the exponents of those power laws; by “generic”, we mean that the power
laws emerge at large domains of variation of the external parameters acting on the system, in contrast
with, say, traditional critical phenomena, where the power laws only appear at very specific values
of the external parameters, whether they are tuned from the outside (like most second-order phase
transitions) or self-tuned (like in self-organized criticality).

After deeper thinking involving all the elements described above, it is not particularly surprising
that most of the applications beyond BG concern the q-entropy and q-statistics. Indeed, most of those
applications, in physics and elsewhere, appear to accommodate satisfactorily with nonadditivity,
trace-form, composability, and discriminating power, and Sq happens to be the unique (see [204])
entropic functional simultaneously having all of those properties. As a mathematical curiosity, let us
mention that all but two of the entropies mentioned in this review generalize that of BG. Both exceptions
are of the exponential form, namely the Curado entropy [30,31] and the entropy (17), which do not
recover the BG form for any of their particular instances. They therefore constitute not proper
generalizations but rather alternative forms. As such, finding systems whose entropic description
would require these specific entropic functionals remains an interesting challenge, especially due
to their property that, for equal probabilities, they do not diverge for W → ∞ but saturate instead,
similarly to Sq for q > 1.
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3. Further Connections

3.1. Thermodynamical Background

Some generic considerations are relevant at this point. Even when we face situations where many
of the usual thermodynamical quantities scale with size in a non-traditional manner (for example, it is
well known that microscopic long-range interacting two-body couplings in a conservative macroscopic
system yield a superextensive internal energy), the extensivity of entropy must prevail. This is
a nontrivial consequence of at least two interrelated reasons, namely to preserve in all cases the
Legendre-transformation structure of classical thermodynamics [37,40] and to conform to some
available illustrations for an extended form of the large deviation theory in the presence of long-range
correlated random variables within a certain class [220–222].

To be concrete, let us assume that we have a classical many-body d-dimensional Hamiltonian with
two-body interactions whose potential diverges at short distances and is attractive like −1/rα at long
distances. Its general thermodynamical energy G in its finite densitary form is given by [37,40,223]

G(V, T, p, µ, H, . . . )
Ld+θ

=
U(V, T, p, µ, H, . . . )

Ld+θ
− T

Lθ

S(V, T, p, µ, H, . . . )
Ld +

+
p

Lθ

V
Ld −

µ

Lθ

N(V, T, p, µ, H, . . . )
Ld − H

Lθ

M(V, T, p, µ, H, . . . )
Ld − · · · ,

(21)

where V (≡ Ld), T, p, µ, H are the volume, temperature, pressure, chemical potential and external
magnetic field, and U, S, V, N, M are the internal energy, entropy, volume, number of particles and
magnetization, respectively; L → ∞ is the linear size of the system, and θ = d(1 − α/d) (see
Figure 7). As we can verify, the total entropy S belongs to the same thermodynamical class as
(V, N, M) and is therefore extensive for arbitrary values of θ. A Hamiltonian system that belongs to
the above scenario is the α-XY inertial ferromagnetic d-dimensional model [90]. Its non-Boltzmannian
one-particle distributions of momenta and of energies are exhibited in Figure 8. In the same figure,
we display the numerical results corresponding to an asymptotically scale-free d-dimensional network
model [16]. We see here that both the thermal and the geometrical model exhibit the interesting α/d
scaling. The same happens for the α-Heisenberg inertial ferromagnet [100], the α-Fermi–Pasta–Ulam
model [101–104], and other asymptotically scale-free networks [17,18], thus exhibiting the ubiquity of
this grounding scaling law.

Before proceeding, let us clarify why the statistical mechanical description of scale-free networks
appears as a particular instance of q-statistics. If we associate each link with an effective “energy” ε,
we may consider that ε/2 contributes to each of the two nodes connected by that link. Consequently,
the total effective energy associated with each node is just half the sum of the effective energies
corresponding to all the bonds arriving to that node. That node total energy is therefore proportional
to the degree k of that node, and the energy of the entire system is the sum of all the node energies.
We can then handle this system energy as a many-body Hamiltonian, and its generalized canonical
distribution is therefore given by the q-exponential distribution of the form e−k/κ

q (∝ 1/kγ for k >> 1,
where γ ≡ 1/(q− 1)). Indeed, in the optimization of the q-entropy, the traditional internal energy
constraint is replaced by the constraint on the mean value of the degree ε (i.e., k). Consequently,
the quantity noted κ in Figure 8 plays precisely the role of an effective “temperature”. The size N of
the network plays, in what concerns the stationary state, the same role as the number of particles of a
many-body Hamiltonian (e.g., the number of rotators in the α-XY model, also illustrated in Figure 8).
This shows that sentences such as “growth and preferential attachment are needed simultaneously to
reproduce the stationary power-law distribution observed in real networks” [20] represent some sort
of inadvertence. In contrast with preferential attachment, growth is not necessary. This is explicitly
verified in the model discussed in [21], where neat numerical q-exponentials emerge for the degree
distribution in spite of the fact that the model has a fixed (typically large) size.
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Let us focus now on the intriguing facts illustrated at the middle (left and right) plots of Figure 8.
The issue is why qp and qE seem to attain the BG regime (q = 1) only for very large values of α/d and
not from α/d = 1 on. Indeed, the thermodynamical variables indicated in Equation (21), as well as
the dynamical sensitivity to the initial conditions (more precisely, below what value of α/d the largest
Lyapunov exponent vanishes [90,91]), strongly indicate α/d = 1 as the frontier between the regions of
validity of BG statistics and q-statistics for Hamiltonian systems. This important point still remains
numerically elusive. The simulations are performed for finite size (N) systems and for finite time (t)
evolution (in addition to other numerical-precision features related to the algorithm implemented to
integrate the Newtonian differential equations). The mathematical validity of q-statistics is expected to
require, due to subtle nonuniform convergences, the simultaneous limits (N, t)→ (∞, ∞), possibly not
one after the other but simultaneous divergence along a scaling such as t ∼ Nδ(α/d) with δ(α/d) > 0
(even perhaps δ(α/d) > 1). Such a scaling would imply that, for the increasingly large values of N
(e.g., N ' 106) that we computationally use, unaffordably large times t would be necessary before
achieving the virtually stationary thermostatistical state of the system. In any case, for the entire range
α/d ≥ 0, q-Gaussians for the momenta distribution and q-exponentials for the energy distributions
appear to be excellent approximations, as we can verify in the left and right insets of Figure 8 (middle),
respectively, κqp(qp) and ρqE(qE).

In addition to the thermodynamical scalings discussed above in terms of the Legendre transform
structure, another strong indication that the extensivity of the entropy must be preserved in all
circumstances (even at the price of sacrificing, if necessary, the BG entropic additivity; analogously,
the passage from Newtonian to Einstein mechanics in order to achieve a higher goal, namely the
unification, through the Lorentz transform, of mechanics and Maxwell electromagnetism requires
a small price, namely to sacrifice the simple Galilean additivity of velocities v13 = v12 + v23 for
one-dimensional motion, replacing it by the relativistic composition of velocities v13 = (v12 + v23)/(1+
v12
c

v23
c )) is consistent with the numerical discussion of a nontrivial example within large deviation

theory in the presence of long-range correlated random variables [220–222].

 0  1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, µ, H ∝ L
0

Extensive, e.g., G, U, S, N, V, M ∝ L
d

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, µ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ L
d

Pseudo−extensive, e.g., G, U ∝ L d+θ

Figure 7. Representation of the different size-scaling regimes for classical d-dimensional systems.
For attractive long-range interactions (i.e., 0 ≤ α/d ≤ 1, α characterizing the interaction range in a
potential with the form 1/rα; for example, Newtonian gravitation corresponds to (d, α) = (3, 1)),
we may distinguish three classes of thermodynamic variables, namely, those scaling with Lθ ,
named pseudo-intensive (L is a characteristic linear length, θ is a system-dependent parameter),
those scaling with Ld+θ with θ = d− α, the pseudo-extensive ones (the energies), and those scaling
with Ld (which are always extensive). For short-range interactions (i.e., α > d) we have θ = 0, and the
energies recover their standard Ld extensive scaling, falling in the same class of S, N, V, etc., whereas the
previous pseudo-intensive variables become truly intensive ones (independent of L); this is the region,
with only two classes of variables, that is covered by the traditional textbooks of thermodynamics.
From [37,40,50,223].
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Figure 8. α-XY d-dimensional ferromagnet (for d = 1, 2, 3). The time averages are done within the
intervals ∆t indicated in the insets. Top left: illustration of q-Gaussian fitting for the distribution of
one-particle momentum (for comparison, the BG Gaussian is shown by a dashed line). Top right:
illustration of q-exponential fitting for one-particle energy (for comparison, the BG weight is shown by
a dashed line). Middle left: the α/d-dependence of the index qp. Middle right: the α/d-dependence
of the index qE. We verify that above the critical value α/d = 1, a region exists for which we
numerically observe q > 1. It cannot be excluded, at this stage, that this is not a consequence of the
finiteness of the system size N and/or of the interval within which the time average is performed,
and/or of the time t elapsed before starting the time average. Only (up to now intractable) analytical
results or extremely heavy numerical calculations could definitively enlighten this complex region.
It could, for example, happen that the relevant nontrivial results require simultaneously N → ∞
and t → ∞ along appropriately scaled paths. From [97]. Asymptotically scale-free d-dimensional
network (for d = 1, 2, 3, 4). The distribution of degree k is well fitted by P(k) = P(0)e−k/κ

q . Bottom left:
the αA/d-dependence of the index q. The red dot indicates the Barabási–Albert (BA) universality
class q = 4/3 [19,22], which is here recovered as the αA = 0 particular instance. Bottom right:
the αA/d-dependence of the characteristic degree “temperature” κ. From [16]. In all cases, the BG
(q = 1) description naturally emerges numerically at α/d→ ∞ and even before.
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In the Table 1, we have summarised typical choices of entropic functionals corresponding to
classes of non-vanishing-probability occupation of phase space for an increasing number of elements
(or number of degrees of freedom) N.

Table 1. Illustration of popular entropic functionals and the classes of systems to which they
apply in order to exhibit thermodynamic extensivity. Additivity/nonadditivity only depends on
the entropic functional, whereas extensivity/nonextensivity also depends on the system. An example
of the power-law class can be seen in [64]. Notice that Sδ is not the only entropy to be consistent
with extensivity for the stretched-exponential family; another possibility is SHT

c,d [41] with specific
γ-dependent values for (c, d). It is important to also note that the behavior of W with N (N → ∞)
is not enough for uniquely determining the class of entropies yielding thermodynamic extensivity:
the values here indicated for q and δ are valid under the strong hypothesis of equiprobability. To make
this point transparent, we can check for the quantum critical point for a d = 1 system characterized
by the central charge c̄ [108] that the entropy Sq is extensive for q = (

√
9 + c̄2 − 3)/c̄. However, if we

wrongly assume that the state corresponds to equiprobability, we obtain the wrong result q = 1− 3/c̄.
Both results recover the BG value q = 1 for 1/c̄→ 0 but definitively differ for 1/c̄ > 0.

Systems Entropy SBG Entropy Sq Entropy Sδ

W(N) (q 6= 1) (δ 6= 1)
(Equiprobable) (Additive) (Nonadditive) (Nonadditive)

e.g., µN EXTENSIVE NONEXTENSIVE NONEXTENSIVE
(µ > 1)

e.g., Nρ NONEXTENSIVE EXTENSIVE NONEXTENSIVE
(ρ > 0) (q = 1− 1/ρ)

e.g., vNγ
NONEXTENSIVE NONEXTENSIVE EXTENSIVE

(v > 1; 0 < γ < 1) (δ = 1/γ)

3.2. q-Triplets

If we have a complex system characterized by some nonadditive entropy (Sq, SHT
c,d , or any other),

the entropic indices are expected to be different for essentially different properties (they are typically
equal only for BG systems, i.e., for q = 1). This fact has indeed been verified for q-systems, like solar
wind [144], ozone layer [164], El Niño [165], and many others [156,166]. These various values for q
appear to be isomorphic to the set of integer numbers; the central elements of this set constitute what
is frequently referred to as the q-triplet. For a given system, only a small number of those values are
apparently independent, all the others being related to those few through still only partially known
analytic connections. Although some meaningful progress has been achieved [64,224], the full scenario
constitutes an open problem, even if it is by now clear that it is quite similar to the critical phenomena
classes of universality.

The set of values {q} is to be obtained from first-principle mechanics. However, such analytical
calculations are frequently mathematically intractable. This is the only reason why in many examples
of the literature, indices q are handled as fitting parameters. Still, some analytical calculations are
nevertheless available, such as the case indicated in Figure 9.
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Figure 9. The index q has been determined [108] from first principles, namely from the universality
class of the Hamiltonian. The values c = 1/2 and c = 1 respectively correspond to the Ising and
XY ferromagnetic chains in the presence of a transverse field at T = 0 criticality. For other models,
see [225,226]. In the c → ∞ limit, we recover the BG value, i.e., q = 1. For arbitrary values of c,

the subsystem nonadditive entropy Sq is thermodynamically extensive for, and only for, q =
√

9+c2−3
c

(hence c =
6q

1−q2 ; some special values: for c = 4 we have q = 1/2, and for c = 6 we have

q = 2√
5+1

= 1
Φ , where Φ is the golden mean). Let us emphasize that this anomalous value of

q occurs only at precisely the zero-temperature second-order quantum critical point; anywhere else,
the usual short-range-interaction BG behavior (i.e. q = 1) is valid. From [227].

4. Conclusions and Perspectives

We have argued that the additivity of the BG entropy accommodates extremely well, as is
extensively known, to those many systems whose elements are generically not very strongly correlated
and/or whose nonlinear dynamics are governed by strong chaos, meaning that their dynamics are
associated to a sensitivity to initial conditions that exponentially diverge with time. But it fails for those
complex systems that do not satisfy such requirements, violating, in particular, the thermodynamic
extensivity expected (to satisfy the Legendre structure of classical thermodynamics and to yield
an appropriately generalized theory of large deviations) for their entropy and whose dynamical
sensitivity to initial conditions diverges sub-exponentially with time. In contrast, nonadditive entropies
going beyond the BG entropy do solve these difficulties. This is consistent with Einstein’s 1910
remark [227,228] stating that the equal-probability BG entropy is the only reasonable one if we
assume additivity, but he said nothing about additivity itself being necessary! (In fact, the Einstein
requirement for likelihood factorization, an epistemologically sound principle, is valid for all values of
q, a remarkable property related to the fact that the q-entropy is the unique trace-form composable
entropy [204].) Notice also that if we do not require the trace form, the Rényi entropy also satisfies,
for all values of q, the Einstein likelihood factorization principle. At this point, let us emphasize that
the loss of entropic additivity is a rather small price to pay in order to not loose entropic extensivity,
thus preserving thermodynamics and its Legendre-transform structure, in agreement with Einstein’s
celebrated declaration [229].

Although many entropy-based theories are available in the literature that generalize or extend the
BG form, those that have up to now provided neat and interesting applications in a plethora of natural,
artificial, and social systems are restricted to a few of them. Those few include the q-entropy, Rényi
entropy, Kaniadakis entropy, and Beck–Cohen superstatistics. Forms that repeatedly emerge in such
applications, thus extending the BG exponential form, are q-exponentials, κ-exponentials, stretched
exponentials, and Lambert functions. The utility of these forms in describing specific properties has
been verified in wide classes of complex systems, including asymptotically scale-free networks.
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Let us close by mentioning an ensemble of intriguing interrelated open problems that definitively
enlarge, along different paths, the perspectives in both pure and applied sciences and technologies.
We may cite the analytic dependencies on α/d of the q indices associated to the stationary (or
quasi-stationary) time-averaged distributions of velocities and of energies, as well as their connection
with the dynamical sensitivity to the initial conditions, in long-range interacting many-body
classical Hamiltonian systems. Similarly, what characterizes the universality classes associated with
low-dimensional conservative maps? Another central question that needs further progress is: What
are the values of the various interrelated q-indices (to be obtained from first-principle mechanics,
as exhibited in the few cases where the involved mathematics is tractable) corresponding to a given
class of complex systems, and how many of those indices are expected to be independent [224]?
In addition, it would be very valuable to extend the present q-central limit theorem [206] to q < 1
values and to find the necessary and sufficient conditions for q-Gaussians and other deformed
Gaussians (e.g., Kaniadakis κ-Gaussians, stretched exponentials, (q, α)-stable distributions [207]) to
be attractors in the distribution space and analogously, in what concerns the large deviation theory
directly related to q-exponential and possibly other deformed-exponential distributions. Another deep
problem that needs further clarification is what controls the various known classes of superstatistics,
including the necessary and sufficient a priori operational criteria that indicate the applicability,
for a given system, of BG statistics, q-statistics, Kaniadakis κ-statistics, or something else. Such
highly nontrivial questions have not yet been transparently elucidated, not even for BG statistical
mechanics [230]!

Funding: Partially supported by the Brazilian agencies Faperj and CNPq.

Acknowledgments: I have benefited from fruitful discussions with N. Ay, C. Beck, E.P. Borges, E.M.F. Curado,
H.J. Jensen, F.D. Nobre, A. Plastino, A.R. Plastino, S. Thurner, and U. Tirnakli. I also thank the courtesy of the
authors of the figures reproduced in the present review.

Conflicts of Interest: The author declares no conflict of interest.

References and Notes
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