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Autism Spectrum Disorder (ASD) is characterized by impairments in social and cognitive

skills, emotional disorders, anxiety, and depression. The prolonged conventional ASD

diagnosis raises the sheer need for early meaningful intervention. Recently different works

have proposed potential for ASD diagnosis and intervention through emotions prediction

using deep neural networks (DNN) and machine learning algorithms. However, these

systems lack an extensive large-scale feature extraction (LSFE) analysis through multiple

benchmark data sets. LSFE analysis is required to identify and utilize the most relevant

features and channels for emotion recognition and ASD prediction. Considering these

challenges, for the first time, we have analyzed and evaluated an extensive feature

set to select the optimal features using LSFE and feature selection algorithms (FSA).

A set of up to eight most suitable channels was identified using different best-case

FSA. The subject-wise importance of channels and features is also identified. The

proposed method provides the best-case accuracies, precision, and recall of 95, 92,

and 90%, respectively, for emotions prediction using a linear support vector machine

(LSVM) classifier. It also provides the best-case accuracy, precision, and recall of 100%

for ASD classification. This work utilized the largest number of benchmark data sets (5)

and subjects (99) for validation reported till now in the literature. The LSVM classification

algorithm proposed and utilized in this work has significantly lower complexity than the

DNN, convolutional neural network (CNN), Naïve Bayes, and dynamic graph CNN used

in recent ASD and emotion prediction systems.

Keywords: Autism, classification processor, deep neural network (DNN), electroencephalogram (EEG), emotion

detection, neurological disorder, large scale feature extraction

1. INTRODUCTION

Autism spectrum disorder (ASD) is a cognitive neurological disorder with a broad spectrum
of neurological disorders characterized by social and cognitive skill impairments and physical
disabilities. The physical disabilities include motor deficits, speaking and listening disabilities,
inability to sit, stand, and visual impairments (Matson et al., 2011). The cognitive impairments
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include deficits in attention skills related to social communication
and intelligence quotient (Matson et al., 2011). Another major
exertion being faced by ASD patients due to physical and
cognitive disabilities is emotional disorders, volatile emotions,
and emotional dysregulation (Samson et al., 2014).

Emotion deregulation is described as the failure to regulate
emotions appropriately and effectively (Samson et al., 2014).
Maladaptive emotional responses are linked to emotion
deregulation which could lead to anger control problems, temper
tantrums, and aggression (Kassinove and Sukhodolsky, 1995).
The emotional deregulation and maladaptive emotions cause
impatience and quick anger. Quick anger can cause physical
damage to self and others (Kassinove and Sukhodolsky, 1995).
The early recognition of the anger triggers is important to avoid
maladaptive and deregulated emotions. Therefore, it is vital to
predict the emotions of ASD patients for rehabilitation (Samson
et al., 2014). The recent reports on these emotional disorders
for ASD patients suggest a dire need to analyze and control the
emotions of ASD patients (Ghaziuddin et al., 2002).

Figure 1 depicts some of the statistics and difficulties related
to ASD patients. The Center for disease control and prevention
has revealed an alarming rate of increase in ASD cases in the
last 15 years and the number of cases is almost tripled among
US citizens (Aslam and Altaf, 2021b). Figure 1A depicts the ratio
of ASD cases per one million persons from 2004 to 2020. The
economic impact of ASD is also huge. The cost of treatment
for ASD children is estimated to reach 461 billion USD in 2025,
which is 1.7 times higher than 268 billion (ScienceDaily, 2015)
USD in 2015 as shown in Figure 1B.

ASD patients also suffer from somemajor issues and disorders
including attention deficit hyperactivity disorder, self-injuries,
bullying, anxiety, and depression (Gibbs et al., 2019). ASD
patients are either affected by anxiety or depression (DPR), or
by both (Figure 1C) (Aslam and Altaf, 2021b). These negative
emotions constitute a significant reason for the high ratio of
self-injury and suicide attempts among ASD children. Figure 1D
shows the suicide attempts in ASD, typically developing (TD),
and DPR children.

This high ratio of suicide attempts and ideations among
ASD and depressive children is frightening and requires dire
attention. Previous research has proven that an early ASD
diagnosis is significantly important for the rehabilitation of ASD
children (Gibbs et al., 2019). The ASD diagnosis is presently
performed by an extensive set of frequent behavioral observations
using the Autism diagnostic observation schedule, 2nd Edition
(ADOS-2) schedule (Samson et al., 2014). A neurologist analyzes
different cognitive scores of the patients with a cut-off table to
identify them as ASD or TD in the ADOS-2 schedule (Samson
et al., 2014). These evaluations require ample time and are a
major reason for the late diagnosis of ASD patients. Therefore,
the latest research focuses on the solutions to identify ASD
patients using their physiological signals, especially brain signals
(Electroencephalogram) (Kakkar, 2019; Alturki et al., 2021;
Wadhera, 2021; Wadhera and Kakkar, 2021).

Similarly, emotion recognition and intervention can
significantly aid the ASD children’s rehabilitation and avoid
self-injuries. Therefore, the researchers have focused on the

prediction of emotions using electroencephalogram (EEG)
signals (Aslam et al., 2020).

The previous works in ASD or emotions classification
using EEG have provided excellent classification results using
customized feature extraction and machine learning (ML)
classification (Haputhanthri et al., 2019; Gonzalez et al., 2021).
However, none of these works has provided 1) an in-depth
analysis using large-scale feature extraction (LSFE) and feature
selection algorithms (FSAs) 2) The ranking and the significance
of each EEG channel for emotions and ASD classification is
also missing. These investigations would be extremely beneficial
for the researchers working on the development of hardware
accelerators or on-chip solutions for the ASD or emotions
classification (Fang et al., 2019; Aslam et al., 2021). Therefore,
an in-depth analysis of the emotions and ASD classification
using LSFE and different FSAs is performed to identify the most
suitable channels and features.

The rest of the paper is organized as follows. The previous
contributions in emotions classification and ASD prediction
are discussed in Section 2. An overview of emotions and
ASD classification framework is provided in Section 3. LSFE
methodology is discussed in Section 4. The classification results
are presented in Section 5. Finally, the discussion and conclusion
of this work are presented in Section 6 and Section 7 respectively.

2. PREVIOUS CONTRIBUTIONS

The state-of-the-art works for the ASD patients to regulate their
emotions and an ASD diagnosis is broadly categorized into two
categories a) ASD, and b) emotions classification. An emotion
or ASD classification system may be providing entirely accurate
(100%) classification results on a few subjects or a single data
set due to over-fitting. Therefore, it is imperative to validate the
system on multiple data sets and a large number of subjects.
We have validated our algorithm on maximum (99) number of
subjects against the previous works. The 99 subjects include 70
and 29 subjects for emotions and ASD classification, respectively.
The emotions classification subjects include the subjects for three
different data sets. In contrast, the ASD classification subjects
include the subjects for two different data sets utilized in this
work. The number of data sets is evaluated for each work based
on the different data sets on which that work is evaluated. The
number of data sets is an important parameter to avoid the
over-fitting of ML algorithms on limited data sets.

2.1. ASD Classification
The ASD classification at an early age is challenging as it is
conventionally diagnosed by developmental monitoring using
the ADOS2 schedule. ADOS2 is the standard method for
ASD diagnosis and is not fully structured (Adamou et al.,
2021). It requires multiple observations and visits for a patient
which are extremely time-consuming. Therefore, the average
ASD diagnosis age is ≥3 years, reducing the chances for early
intervention and treatment (van’t Hof et al., 2021).

A significant amount of research is being carried out for early
ASD diagnosis through brain activity analysis using EEG. The
EEG-based ASD diagnosis would also help in mitigating the
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FIGURE 1 | (A) ASD statistics (B) ASD treatment cost (C) ASD, anxiety and depression (D) Suicide attempts in ASD.

sufferings of parents or caregivers of autistic children using fully
integrated wearable devices (Aslam et al., 2021).

The ASD diagnosis using EEG is quite challenging due to
the limited ASD data sets and the unavailability of unified
biomarkers including suitable channels, number of features, and
classification algorithms. These limitations have been challenged
by different researchers with excellent (> 90%) classification
results. Nevertheless, none has performed the LSFE and detailed
analysis to identify the best suitable channels and features for
the classification. These systems are also limited to a single data
set validation.

A hybrid lightweight deep feature extractor was utilized for
the ASD prediction (Baygin et al., 2021). The complex deep
neural networks including ShuffleNet and SqueezeNet models
were utilized for the feature extraction. They have utilized a
large number (32) of EEG channels. They have also focused only
on the ASD classification based on a single data set. The ASD
classification was performed with 96.4% accuracy using a cubic
SVM classifier. The cubic SVM classifier has a higher complexity
than the linear SVM classifier (Abdiansah and Wardoyo, 2015).

A three-layer neural network utilizing 63 s-order difference
plot area of 64 electrodes as features with sigmoid activation
function was used for ASD prediction (Abdulhay et al., 2020).
The system was tested using 120 children including 60 ASD
and 60 TD children and provided 94.4% classification results.
Although the system provided excellent classification results for
a wide range of ASD patients. But, the system is validated on a
single data set, utilizes a large number (64) of electrodes, and does
not provide any suitable channel and feature selection analysis.

The discrete wavelet transform was used to classify ASD
with 93% classification accuracy (Haputhanthri et al., 2019). The
system was tested and validated on 15 participants including

10 ASD and 5 TD persons on ODU data set. They used the
discrete wavelet transform coefficients of five EEG channels
and achieved maximum classification results using a random
forest classification algorithm. Although they performed channel
selection using a feature selection algorithm. But, the selection
was handcrafted and no LSFE was performed. The system was
also validated on a single data set.

A recurrent neural networks (RNN) based classifier was
utilized for ASD classification using infinite impulse response
filters (IIR’s) (Bouallegue et al., 2020). The IIR’s are generally
avoided for hardware implementation due to their challenges in
ensuring stability. The system was validated using KAU data set.
The system provided excellent (99%) classification results. But,
it also has the issue of single data set validity, utilization of a
large number (16) of channels, and lack of LSFE for feature and
channel selection (Bouallegue et al., 2020). This algorithm is also
validated on a single ASD data set.

Similarly, another work classified ASD along with epilepsy
using King Abdul Aziz University (KAU) ASD data set with 98%
classification accuracy (Alhaddad et al., 2012). However, their
algorithm is validated on single data set with limited subjects.
They have also utilized a large number of electrodes.

2.2. Emotions Classification
Emotion recognition using EEG is quite complex, as it requires a
careful selection of related electrode locations, suitable features,
and the classification algorithm (Alturki et al., 2021). The
intermixing of positive and negative emotions due to variable
valence and arousal thresholds, further adds to the challenges
related to the quantization of emotions (Hu et al., 2019). The data
set collection is also a substantial challenge for the data quality
and time involved in the induction and acquisition of participants
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and EEG data, respectively, for the emotion classification.
Therefore, not many data sets are considered a benchmark for
the EEG-based emotions classification (Koelstra et al., 2011;
Zheng and Lu, 2015). The previous works have performed a very
notable effort toward emotions classification and have achieved
very good results (Gannouni et al., 2020; Alturki et al., 2021).
They can be broadly categorized into software or hardware-
based solutions. The hardware-based solutions include hardware
accelerators and on-chip applications for emotion recognition,
which have gained a lot of attention in recent years (Aslam
et al., 2020; Aslam and Altaf, 2021a). These hardware applications
require some special considerations when selecting ML or deep
learning (DL) models:

1. The hardware realization on-chip has a significant cost
associated with them. Therefore, their ML algorithms should
be validated on multiple benchmark data sets and a large
number of subjects to avoid over-fitting.

2. The large channel count would compromise patients’ comfort
and require more hardware resources. A detailed subject-wise
channel importance analysis can identify the best suitable
channel subset.

3. The best feature identification after extensive LSFE and FS
is required.

Koelstra et al. (2011) proposed an emotions classificationmethod
using DEAP data set with 62% classification accuracy using Naive
Bayes classifier. Their system utilized signal energies in different
frequency bands as a feature set. Their method utilized a large
number (32) of electrodes, was validated on a single data set
and did not provide any LSFE analysis for suitable features and
channels ranking.

Aslam and Altaf (2020) proposed a system on chip device for
emotion recognition using two benchmark data sets including
DEAP and SEED. The system provided 73.4% classification
results using power spectral energy-based features and LSVM
classifier using only eight channels. However, the channel
selection was based on previous literature and detailed LSFE
analysis for suitable channels and features identification is also
missing in that work. In another system on chip device, Aslam
and Altaf (2021a) performed negative emotions prediction using
a deep neural network-based classifier with 85.5% classification
accuracy using only two EEG channels. However, LSFE for
suitable channel and feature identification is also missing in
that work.

Fang et al. (2019) proposed a hardware-based emotions
classification system using a convolutional neural network
classifier. The EEG images after short-term Fourier transform
were used as features for the classification algorithm. They
have utilized only six EEG channels and achieved excellent
classification results (85.5%). The main limitations of their
system were a single data set validation and a lack of LSFE
analysis for suitable channels and features identification.

Li et al. (2019) proposed an Graph regularized Extreme
Learning Machine (GELM) classifier for emotions prediction
with 88% classification accuracy. They utilized the power spectral
density, differential entropy, and differential caudality-based
features. Although their system was validated using three data

sets including DEAP, SEED, andMAHNOOB-HCI. But, they also
lack LSFE analysis to identify suitable channels and features. The
number of electrodes (32) utilized by them is also high.

Liu et al. (2021) proposed a three-dimension convolution
attention neural network (3DCANN) for emotions classification.
Although they have provided excellent (97.3%) classification
results. However, the number (64) of EEG channels utilized
by them is quite high. They also lack multiple data sets
validation, LSFE extraction, and analysis for suitable channel and
feature identification.

Similarly, the other emotions classification systems also lack
a complete LSFE and FS analysis to explore the best features and
channels to achieve maximum classification results (Pereira et al.,
2018; Chen et al., 2019).

Some questions related to the emotion classification are still
unanswered and remain an important concern and source of
confusion for an early researcher in emotions classification. We
addressed them in this paper in a way that can be a guideline for
early researchers:

1. Choice of Data set: An important question is related to the
choice of data sets for emotions and ASD classifications. We
have addressed the reasons for preference of certain data sets
for an algorithm’s validation, consideration as the benchmark
data sets, and preference of specific data sets over others.

2. Classification Threshold: The procedure of quantifying or
measuring emotions is another important confusion for early
researchers. The process of emotional quantization and the
impact of the classification threshold on the classification
results is discussed in this paper.

3. Channel Selection Analysis: The selection of smaller subsets
of the most suitable channels and the extraction of a
limited number of features are targeted by many researchers.
However, a subject-wise channel significance analysis in
different data sets is missing in the literature. The subject-
wise analysis using LSFE is performed in this work to select
a subset of four channels most feasible for the emotions and
ASD classification. The relationship between these channel
locations and the corresponding human brain locations is also
discussed in this work.

4. Classification Analysis: The methodology for emotions and
ASD classification using EEG signals is also explained in
this paper.

3. EMOTIONS AND ASD CLASSIFICATION
FRAMEWORK

The EEG signals are used to record and represent the real-time
electrical activities of the brain. A set of electrodes are placed
on the human scalp to record the electrical impulses from the
individual neurons. The electrodes detect the superposition of
these impulses in the form of electrical signals which can be
utilized for emotion prediction and abnormality detection related
to neurological disorders (Haputhanthri et al., 2019; Alturki et al.,
2021; Taufique et al., 2021).

The placement locations of EEG electrodes/channels are
standardized by an international protocol named the 10–20
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system. Several studies have examined the relationship between
different parts of the brain with ASD (Alhaddad et al., 2012;
Jayawardana et al., 2019). The brain regions strongly related to
the core ASD symptoms are the amygdala, basal ganglia, superior
temporal sulcus, hippocampus, frontal gyrus, and fusiform gyrus
(Philip et al., 2012; Ha et al., 2015). These regions relate to
temporal, frontal, and central brain regions (Zotev et al., 2016).
The frontal gyrus relates to the F7, F8, T3, and T4 electrodes and
the fusiform gyrus plays a crucial role in social interaction.

A human head with some electrodes placed on different
locations on the scalp is represented in Figure 2A. The placement
of different electrodes using the 10–20 placement is represented
in Figure 2B. Different EEG signals are acquired from different
scalp locations at a certain sampling frequency. The total amount
of EEG data depends on the number of recording channels
or electrodes, sampling frequency, and the recording duration.
The EEG data is later utilized for brain activity analysis or
neurological disorders detection as discussed earlier. The selected
15 s EEG data of a single channel for the brain activity analysis
(negative and positive emotions) or neurological disorders
detection (ASD and TD child) is shown in Figures 2C,D.

3.1. Why Machine Learning/Deep
Learning?
The desired class labels are mapped to the input EEG signals by
the classification process (1).

C = f (X11,X12, . . ..,XMN) (1)

The mathematical function (f) is used to map the input EEG
signals (X) of n electrodes to the label (C). N and M represent
the number of EEG channels and the number of recorded EEG
samples for a single channel, respectively.

A large number of input variables and the inability to
differentiate between the positive and negative classes with a
naked eye observation necessitates the complex ML algorithms
to perform this task. For example, an EEG signal of 1-min
duration for 32 electrodes recorded at 128Hz sampling frequency
would have 7,680 EEG samples per channel, which becomes
≈0.25 million input samples to predict the output label using
32 channels. An ML algorithm utilizes these input EEG signals
to predict the label using suitable signal preprocessing, channel
selection, feature extraction, FS, feature normalization, and
classification algorithms.

3.2. Feature Extraction and Channel
Selection
The recorded EEG signals are contaminated by noise and other
artifacts including eye movements, eye blinks, muscle activities,
and chewing (Jiang et al., 2019). The complete set of EEG signals
also contains a very large amount of data due to the large
number (≥16) of channels. The presence of noise and the size
of data makes it difficult for the ML classification algorithms
to accurately map the input (EEG signals) to the output (label).
Therefore, it is desired to remove the noise and other artifacts to
identify the most relevant subset of the information required for
the classification.

Channel selection is the process to identify the most suitable
subset of channels out of the total number of available channels.
The feature extraction process is to identify some variables or
formulas instead of raw EEG signals for the classification. The
EEG data of 14 to 64 channels were provided by the data set. The
channel selection process selects a subset of the 4 most suitable
channels. The feature extraction process calculates 32 features
from these channels and the FS process selects the best 8 out of
these 32 features.

The channel and FS are iterative processes and one of the most
challenging procedures in ML classification. There is no fixed
method to identify the best suitable features and channels for a
time series EEG classification problem. Different features have
to be experimented by the researchers to find the best suitable
features and corresponding channels. The channel and FS are
not only required for the accurate prediction or classification of
the label. But they also directly affect the hardware resources for
hardware accelerators or on-chip systems (Aslam et al., 2020).
Generally, there are two approaches used for the channel and
FS process a) self-experimentation using previous literature and
domain knowledge, and b) LSFE. The LSFE techniques calculate
a huge number of features from the input data, which are later on
analyzed to filter the best suitable features.

The self-experimentation approach is usually considerably
limited and analyzes a significantly smaller number of features
as compared to the LSFE method. To the best of our knowledge,
there is no previous work that has utilized the LSFE to identify
the most optimal channels and features for emotions and ASD
classification. Therefore, LSFE to identify the most suitable
channels and features for emotions and ASD classification using
DEAP, SEED, DREAMER,OldDominionUniversity (ODU), and
KAU data set was utilized.

3.3. Emotions Classification Data Sets
A wide range of medically verified and annotated data sets
by qualified neurologists is required to ensure the robustness
of an emotions classification system (Gonzalez et al., 2021).
Unfortunately, unlike the data sets for chronic neurological
disorders like epilepsy, ASD, and Parkinson’s disease, no
medically verified and annotated data sets for emotions
classification are available (Gonzalez et al., 2021). Emotions are
internal feelings of a person in response to a certain event and
measuring or quantifying someone’s emotions is a big challenge.
The unavailability of a medically established framework for the
emotion’s quantization can be the primary reason for the absence
of medically verified and annotated emotions classification data
sets (Gonzalez et al., 2021).

Emotion measurement is generally performed by self-
assessment of emotions after stimulating certain emotions using
audio or video stimuli. The Self-Assessment Manikin (SAM)
technique scales the emotions using valence, arousal, and
dominance scales (Towle et al., 1993). Valence and arousal relate
to Russel’s valence-arousal scale, most widely used in the emotion
classification data sets (Russell, 1980). However, some data sets
have also included additional dimensions of dominance, liking,
and familiarity (Koelstra et al., 2011). Valence describes the
positivity or negativity of emotion while arousal defines the
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FIGURE 2 | (A) Human brain and EEG electrodes (B) 10–20 EEG recording system (C) EEG for ASD & TD child (D) EEG for negative and positive emotion.

strength of that positivity or negativity. Dominance is used to
measure the sense of authority during an emotion.

The data set selection is a very critical choice for the design and
verification of an emotions classification system. A researcher
may claim 100% accurate classification results on a self-collected
data set of a few subjects. However, the system would fail to
generalize on other data sets. Therefore, we have tried to identify
the data sets which are being used by the top international
scientific research publication forums related to biomedical
systems and healthcare. DEAP, SEED, and DREAMER are the
three most popular and widely used data sets for emotions
classification using physiological (EEG, ECG, EMG, EOG, etc.)
signals (Koelstra et al., 2011; Zheng and Lu, 2015; Katsigiannis
and Ramzan, 2017).

Careful literature analysis depicts that DEAP, SEED, and
DREAMER data sets are most frequently (≈70%) utilized in
the last 5 years. Therefore, we have utilized all three data sets
(DEAP, SEED, and DREAMER) to analyze the human emotions
classification using EEG signals (Koelstra et al., 2011; Zheng and
Lu, 2015).

3.3.1. DEAP Data Set

DEAP data set provides the SAM-based emotions classification
for 32 participants or subjects after eliciting 40 different emotions
through different video stimuli. The emotions are measured
using valence, arousal, and dominance. In addition, liking and
familiarity are secondary indicators used to represent the subject’s

previous information about the video stimulus for emotion
elicitation and the participant’s personal fondness of the stimulus.

Different emotions measured using the 3-D scale (valence,
arousal, and dominance) and 2-D scale (valence, arousal) are
depicted in Figure 3 (Gannouni et al., 2020). The happy and joy
emotions are differentiated by different dominance values. Both
emotions have similar valence (positive) and arousal (positive).
But they have different dominance values. The joy emotion
has a higher dominance than happiness. Similarly, the angry
and depressed emotions have similar valence (negative) and
arousal (positive), but different dominance. The angry emotion
has higher dominance than the depressed emotion. Figure 3A
shows the neutral, happy, joy, sad, depressed, angry, and relaxed
emotions mapped using the valence, arousal, and dominance
scale. It becomes hard to label a large set of emotions on the 3-D
scale (valence, arousal, and dominance) (Gannouni et al., 2020).
Therefore, Russel’s 2-D scale (valence, arousal) is most popularly
used to quantify emotions (Russell, 1980). Figure 3B shows the
different emotions mapped using the 2-dimensional valence-
arousal scale. It can be observed that the (angry, happy) and (sad,
relax) emotions are differentiated by opposite valences and have
similar arousal. Similarly, the (angry, sad) and (happy, relax) are
differentiated by similar valence and opposite arousal. Since our
primary focus is to differentiate between positive and negative
emotions. Therefore, the analysis for valence classification was
mainly focused. However, the classification results for the 2nd
dimension (arousal) are also summarized.
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FIGURE 3 | (A) Mapping of different emotions on valence, arousal, dominance (3-D) and, (B) valence arousal (2-D) scale, (C) DEAP valence binary classification

statistics, and (D) DEAP arousal binary classification statistics.

Figures 3C,D shows the percentage of positive and negative
valence and arousal classes for binary classification, respectively,
using a classification threshold of 5. The valence and arousal
values lesser than or equal to 5 are labeled as negative,
and those greater than 5 are labeled as positive. It can be
observed that the positive and negative classes are evenly
balanced in the DEAP data set with the classification threshold
of 5. The threshold of 3 causes the valence and arousal
classes to become unevenly balanced (Positive: valence: 83.12%,
arousal: 82.97% Negative: valence: 16.88%, arousal: 17.03%).
The precision and recall parameters are more important than
the classification accuracy for the unbalanced data sets. The
balanced or unbalanced distribution of the data set is decided
by the classification threshold. Therefore, for classification
thresholds causing unbalanced distribution, the precision and
recall should be reported. However, the classification thresholds,
precision, and recall are not mentioned by a majority of the
previous works, and only classification accuracies are reported.
The gender statistics of the data set include 53% males and
47% female participants. It can be observed that the data
set is evenly balanced between male and female genders.
The data set also includes participants from all age ranges.
However, most of the participants (75%) are in their twenties
(20–30).

3.3.2. SEED and DREAMER Data Sets

SEED and DREAMER are the other most popularly used
data sets for emotions classification (Zheng and Lu, 2015;
Katsigiannis and Ramzan, 2017). SEED data set provides the

data for the emotions classification of 15 participants using
62 EEG electrodes (Zheng and Lu, 2015). The data set uses
the valence scale only to classify an emotion as positive,
negative, or neutral. The emotional classification of each
subject is provided for 15 different emotional stimuli. The
participants of the data set include 7 males and 8 females.
The data set is evenly balanced between both genders. The
average age of a participant in the SEED data set is ≈23
years. However, the age of each participant is not reported by
them.

An evenly balanced distribution of the positive, neutral, and
negative labels is provided in the SEED data set (33% each). Since
we are performing binary classification of valence. Therefore, we
discarded the neutral labels and utilized the positive and negative
labels only. There is an equal percentage (50%) of positive and
negative classes in the data set for binary classification of valence.

DREAMER data set provides the EEG and ECG data of 23
participants. The EEG signals are recorded using 14 electrodes
through an emotive EPOC headset (Katsigiannis and Ramzan,
2017). It provides the labels of valence, arousal, and dominance
for the emotion’s classification. We have utilized the labels of
valence and arousal only from this data set. The DREAMER data
set is unevenly balanced between both genders. The valence and
arousal labels in the DREAMER data set are scaled between 1 and
5. The valence and arousal values lesser or equal to 3 are labeled
as low, and those greater than 3 are labeled as high. It can be
observed that the binary classes of arousal are evenly balanced
using a threshold of 3. However, the valence classes are unevenly
balanced in the data set.
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3.4. ASD Classification Data Sets
There are very few ASD classification data sets compared to
other problems like emotions classification, epilepsy, Alzheimer.
The primary reason for that can be the uncooperative behavior
of ASD children, as they are generally very uncooperative. The
uncooperative nature of ASD children is due to multiple reasons,
a) difficulties to understand instructions, b) social interaction,
and c) communication and sensory issues. The EEG classification
data sets for ASD classification records the EEG data for a certain
number of Autism Diagnosis Observation Schedule, second
edition (ADOS-2) confirmed ASD patients and TD children.

The ASDOS-2 is a standard ASD diagnosis method. It requires
a communication score (CSC), social interaction score (SCI),
imagination and creativity score (IMC), stereotyped behaviors
score (STB), and their cut-off values with a certain threshold table
evaluated by the neurologists. A behavioral diagnosis cycle of
the patient evaluates the SCI, CSC, STB, and IMC scores of the
patient. The scores are compared with the cut-off table and then
the patient is labeled as ASD or TD.

The EEG-based ASD classification system is trained to predict
the patient as ASD or TD using EEG signals. The predicted labels
are then compared with the original labels assigned through
the ADOS-2 method. There is no publicly available EEG-based
ASD data set to the best of our knowledge. We have utilized
the ASD data sets by Old Dominion University (ODU), USA
(Jayawardana et al., 2019) and KAU, KSA (Alhaddad et al., 2012)
shared with us for our research.

ODU data set (Jayawardana et al., 2019) provides the EEG
data of 17 subjects including 8 ASD and 9 TD subjects. The
subjects include 10 males and 7 females. The males include 6
ASD and 2 TD subjects. The females include 2 ASD and 5 TD
subjects. The ODU data set has also provided the ADOS-2 scores
of each patient on which they were labeled as ASD or TD. The
ASD patients have a higher ADOS-2 score than the TD subjects.
The ODU data set has recorded the EEG signals of all subjects
using 32 electrodes. However, in our analysis, we observed that
the EEG signals for only 14 electrodes (F7, F3, Fz, F8, FC1, FC2,
FC6, T9, T7, C3, T10, CP5, CP2, P7, and P3) were available
across all subjects. The EEG data of the remaining electrodes were
either missing in some subjects or too noisy to be included in the
analysis. Therefore, we have focused only on these 14 channels in
this work.

KAU data set provides the EEG data of 12 children including
8 ASD children and 4 TD children (Alhaddad et al., 2012). The
data set does not provide the ADOS-2 scores of the patients. The
ASD children include 5 boys and 3 girls whereas the TD children
include 4 boys. All the participants were aged between 10 and 11
years. They have recorded the EEG data using 16 channels (FP1,
FP2, F7, F3, Fz, F4, F8, T3, C4, Cz, C3, T5, Pz, O1, Oz, and O2).

4. LARGE SCALE FEATURE EXTRACTION
AND CLASSIFICATION METHODOLOGY

The feature extraction process for the time series classification
problems, including emotions recognition and ASD prediction,
is hectic (Fulcher, 2017). It requires the analysis of a large

FIGURE 4 | LSFE and classification methodology.

combination of features using previous domain knowledge and
experimentation with different features. Some LSFE packages
including TSFRESH, TSFEL, HCTSA, etc using MATLAB or
python implementations are proposed by different researchers
(Christ et al., 2018; Barandas et al., 2020). A large set of
features using the time series EEG data is calculated by these
packages. These features can be passed through different FS
methods, including selecting k best (SKB), sequential forward
search (SFS), etc. to select the best optimal feature subset. The
FS methods utilize different learning algorithms to find the best
subset of features from the large feature set acquired through the
LSFE method.

The block diagram for the emotions and ASD prediction
methodology using LSFE is depicted in Figure 4. The complete
set of prepossessed EEG data is passed through the threshold
process for label creation if required. If the data set has already
provided the binary labels for positive and negative emotions or
ASD/TD classification, then the threshold process is not required.
The EEG data and labels are forwarded to the LSFE method
(TSFRESH etc.) for LSFE analysis. A large set of features is
calculated by the LSFE process. The LSFE features are forwarded
to the channel and feature selection methods. The small subset of
features after suitable channel and feature selection is used for the
preparation of the feature set. The final feature set after feature
preparation is provided to the classification method (CLS) for
positive/negative emotions or ASD/TD classification.

The TSFRESH package for the LSFE of emotions classification
and ASD prediction was utilized in this work. The TSFRESH
package provides 63-time series characterization methods and
calculates a total of 794 features for each EEG channel. It can
be used for both univariate and multivariate time series and
can handle variable-length time series. Some of the features
used in TSFRESH include mean absolute energy, absolute
maximum, number of peaks, quantile value, and zero crossings.
An exhausting list of features extracted in TSFRESH is listed in
Christ (2016).

The large-scale feature matrix is then forwarded to the FS
method to find the best subset of features. The SKB and SFS
methods are used in this work (Pedregosa et al., 2011). SKB is
an implementation of a filter FS method where it eliminates all
excluding the highest-scoring features. The number of selected
features is controlled by the k value. The SKB uses a linear
method to select features that contain information about the
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target variable using statistical tests such as ANOVA, Fisher
score, and Chi-Squared (Gómez-Ramírez et al., 2020). The
selection of important features was based on the ANOVA test
with k = 8. SFS is an iterative wrapper-based method (Gómez-
Ramírez et al., 2020). It starts with an empty set and adds
features to form a feature subset. Those selected features give the
highest value for the objective function. The objective function is
defined by a perceptron in our case. The FS is a back-and-forth
learning process through the relevant learning algorithm. The
FS methods work to reduce the size of the feature matrix. They
reduce over-fitting by excluding redundant features, improving
the classification results, and decreasing the classifier’s training
time. LSFE and FS are performed for the selected data sets.
The results of valences in emotions classification data sets are
presented in detail, whereas the results of arousal classification
are briefly summarized in this paper.

4.1. Emotions Classification LSFE
The DEAP, SEED, and DREAMER data sets include the data of
32, 62, and 14 EEG channels, respectively. Several previous works
have identified different smaller pools of most suitable channels
for emotion classification with customized feature sets (Koelstra
et al., 2011; Pereira et al., 2018). However, a detailed analysis of
all EEG channels was not performed to show the significance of
their channel subsets. The utilization of different channels using
LSFE to identify the best suitable channel subset was analyzed in
this work.

The LSFE matrix calculated a considerable number (≈25
K) of features for the DEAP data set using 32 EEG channels.
The classification performance using the LSFE matrix was not
satisfactory (≤65%). The primary reason for the low classification
results using LSFE matrix with all EEG channels was over-
fitting and redundant features. The SKB and SFS methods
significantly improved the classification results (∼85%) for
emotions classification. Figure 5 represents the classification
performance of LSVM, SNN, KNN, DT, and XGB classifiers using
the LSFE matrix before and after FS. Figure 5A represents the
classification results using the LSFE matrix. Figure 5B represents
a box chart of the subject-wise classification results after FS
for all subjects in the DEAP data set. The red and blue colors
in Figure 5B indicate the classification results of SKB and SFS
methods, respectively. It can be observed that the classification
results were significantly improved.

The identification of a smaller subset of suitable channels
was performed using the SKB and SFS methods. These FS
methods were tuned to utilize a set of 8 best suitable features
for the classification. As a result, the FS methods improve the
classification performance and significantly impact (>3k times)
the hardware resources for hardware accelerators and on-chip
applications. Figure 6 represents the utilization of each EEG
channel using the SKB and SFS methods. The heat maps in
Figures 6A,B represent the channel importance using SKB and
SFS, respectively. It can be observed in Figure 6A that channel
number 1 (FP1) is utilized for all features (8/8) using the SKB
method for subject number 11.

The maximum (8/8) and minimum (0/8) utilizations of the
channel are reflected by white and black colors in the heat

map, respectively. However, it was difficult to completely analyze
the utilization of each channel for each subject using the heat
maps. Therefore, we have presented the accumulated utilization
percentage of each channel using SKB and SFS in Figures 6C,D,
respectively. These bar graphs show the accumulated utilization
of each channel for all subjects in the DEAP data set. It can be
observed that channel numbers 1 (FP1),17 (FP2), 23 (FC2), and
26 (T8) were most suitable for the emotion classification. The T8
channel was also observed to be among the eight-channel pool in
our previous work. This channel subset relates to the amygdala
region of the brain (Tong et al., 2019). The amygdala region of the
brain is closely linked to human emotions (Suhaimi et al., 2020).
After LSFE, the most significant features identified using these FS
methods include autocorrelation, Fourier transform coefficients,
signal energy, continuous wavelet transform coefficients, change
quantiles, and aggregated least square regression.

The LSFE feature extraction and FS methods improved
the classification results for SEED and DREAMER data set
significantly compared to the DEAP data set. Figure 7 presents
the classification results of SEED and DREAMER after FS and
LSFE using TSFRESH. Figure 7A shows the classification results
for the SEED data set, and Figure 7B shows the classification
results for the DREAMER data set. The red and blue colors
represent the SKB and SFS methods, respectively. Both FS
techniques provided excellent classification results (∼98%) for
SEED and DREAMER data sets.

The identification of a smaller subset of suitable channels (4
channels) for the SEED and DREAMER data sets would reduce
the hardware resources to ≈12.5 and ≈3.5 k times, respectively.
Figure 8 shows accumulated channel utilization for SEED and
DREAMER using SKB and SFS methods. Figures 8A,B represent
the channel importance for the SEED data set using SKB and
SFS, respectively, whereas Figures 8C,D represent the same for
the DREAMER data set.

The channel utilization analysis suggested that the channel
numbers 24 (T7), 32 (T8), 1 (FP1) were significantly important
in the SEED data set. It can be observed from Figures 8A,B that
only three EEG channels have significantly important utilization.
The channel combination (T7, T8) confirmed our previous
observations of the significance of temporal channels and
asymmetric electrodes combination for emotions classification
(Aslam et al., 2020). The channel number 3 (FP2) was included
as the fourth channel as a 4-channel subset was targeted.
This channel selection was used to exploit the benefit of
asymmetric electrodes combination (Aslam et al., 2020). The
channel combination (T7, T8, FP1, FP2) further improved the
classification results as discussed later in this section. Similarly,
channels 3 (F3), 5 (FC5), 6 (T7), and 12 (F4) were observed to
be significantly important for the emotion classification in the
DREAMER data set.

4.2. ASD Classification LSFE
The ODU ASD classification data set provides the EEG signals
of 14 channels for all subjects as explained earlier in the
data set section (Jayawardana et al., 2019). The LSFE matrix
provided ≈11 k features for the ODU data set. The LSFE matrix
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FIGURE 5 | (A) LSFE classification of EEG signals, and (B) FS using SKB and SFS for DEAP data set.

FIGURE 6 | (A) Heat map for channel selection using SKB, (B) Heat map for channel selection using SFS, (C) Bar graph for channel selection using SKB, and (D) Bar

graph for channel selection using SFS for DEAP data set.
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FIGURE 7 | Classification results after feature selection for (A) SEED, and (B) DREAMER data set.

FIGURE 8 | Channel importance for SEED data set using (A) SKB, and (B) SFS, and DREAMER data set using (C) SKB and (D) SFS.

provided a maximum accuracy of 83% for the ASD classification
(KNN classifier).

Figures 9A,B show the classification results for ASD
classification for the ODU data set using LSVM, SNN, KNN,
DT, and XGB classifiers before and after FS, respectively.

The SKB and SFS methods were used to extract the best 8
features from the LSFE matrix. The SKB methods provided
excellent classification results (100%) whereas the SFS
method provided the maximum classification accuracy
of 93%. The FS methods would reduce the hardware
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FIGURE 9 | Classification results for ASD classification (A) before FS (B) after FS using ODU data set.

FIGURE 10 | ODU data set channel importance for ASD classification (A)

LSFE matrix (B) SKB and SFS.

complexity ≥ by 1.4 k times for the hardware accelerators
and on-chip applications.

The identification of a smaller subset of suitable channels (4
channels) for ASD classificationwould also reduce the discomfort
for ASD children for wearable on-chip applications. Figure 10
shows the channel importance of different channels for ASD
classification with SKB and SFS methods using the ODU data
set. The subset of 8 channels using SKB and SFS are shown in
Figures 10A,B, respectively. It can be observed that the channel
locations CP2, FC2, F7, and FC6 have the maximum utilization
among the 8 feature subsets. Therefore, these channels were
identified to be most suitable for ASD classification using the
ODU data set.

The KAU data set provides the EEG signals of 16 channels
for 12 subjects as explained earlier in the data set section. The
LSFE matrix provided ≈12.5 k features for the KAU data set.
The LSFE matrix provided a maximum classification accuracy
of 77% for the ASD classification using the SNN classifier. Both
the FS methods provided excellent classification results (100%)
after FS. The FS methods would also significantly impact the

hardware complexity ≥1.6 k times for the hardware accelerators
and on-chip applications.

Similarly, the channel locations F3, T5, O1, and O2 have the
maximum utilization among the 8 feature subsets in the KAU
data set. Therefore, these channels were identified to be most
suitable for ASD classification using the KAU data set. The most
suitable features for ASD classification include Fourier transform
coefficients, auto-correlation, and mean absolute energy.

4.3. Channel and Feature Subset
Settlement
The settlement or consensus of the identified channel and feature
subset is required to conclude the suitable channel and feature
subset for emotions classification. The primary reason for this is
the subject-wise classification and dependence of the channel and
feature subsets. The channel and feature combination proposed
in this work provided the best classification results. However,
due to the subject-wise dependence on emotions classification,
the selected subject of channels may not correspond to the FS of
many subjects.

Figure 11A shows the channel utilization percentage of the
best EEG channel (FP1) in the DEAP data set using SKB.
The best feature subset using SKB does not contain any
feature corresponding to the FP1 channel for multiple subjects.
Therefore, it is impractical to have a subject-specific channel
selection. But the classification results were degraded (≈10%)
using the selected subset of 4 channels.

The primary challenge of the research for emotions
classification using EEG and peripheral signals is to discover
a subject independent channel and feature subset feasible for
the classification. Therefore, the LSFE and FS process to select
the best 32 features using the subsets of 4 EEG channels using
DEAP, SEED, and DREAMER data sets was repeated. The
selected features include auto-correlation, change quantiles,
entropy, signal energy, aggregated linear trend, welch density,
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FIGURE 11 | (A) Channel importance of FP1channel in DEAP (B) classification results using brute force approach in DEAP (C) SEED (D) DREAMER data set.

TABLE 1 | Classification results of emotions and ASD data sets using EEG signals.

Data set Parameter Channels Accuracy(%)

DEAP
Valence

FP1, FP2, FC2, T8
90.1

Arousal 93.5

SEED Valence T7, T8, FP1, FP2 95.2

DREAMER Valence F3,F4,FC5,T7 98.6

ODU ASD CP2, FC2, F7, FC6 100

KAU ASD F3, T5, O1, O2 95.5

Fourier entropy, and auto-correlation. A brute force approach
was applied to select the best possible subset of features from
all possible (≈10 million) 8 feature subsets. The classification
results from the brute force approach using DEAP, SEED, and
DREAMER data sets are shown in Figures 11B–D. The average
classification results of 90.1, 95.22, and 98.56% were achieved
using DEAP, SEED, and DREAMER data sets for valence
classification using the LSVM classifier.

The LSVM classifier was selected based on the classification
results and the classifier’s complexity. A subset of eight features is
forwarded to the classifier for positive or negative emotion/ASD
classification. The dot product of the feature vector is calculated
with the classifier weights (2). A positive or negative class is
assigned based on the comparison of the dot product with a
constant K. The LSVM process assigns the positive or negative
class assignment to a feature based on the dot product.

C = F.W ≥ K (2)

The complexity of the LSVM classifier is O(n) where n is the
number of input dimensions (Abdiansah and Wardoyo, 2015).
The number of input dimensions is dependent on the number of
features. The LSVM classifier is chosen due to the classification
results and lower complexity than deep neural networks (DNN)
or convolutional neural networks (CNN). The DNN or CNN
with the same or more input dimensions than an LSVM would
always have a higher complexity than the LSVM due to activation
functions. For e.g., a shallow neural network with eight input
nodes and one output node with a sigmoid activation function
would have more computational complexity than an LSVM
with eight input features. We have therefore preferred the
LSVM classifier.

5. RESULTS

Emotions and ASD classification and its analysis using DEAP,
SEED, DREMAER, ODU, and KAU data sets were performed
in this study. A total of 99 subjects were classified and analyzed.
The emotions classification included positive or negative valence
and arousal classification for the DEAP data set. The SEED and
DREAMER data sets were utilized for the positive or negative
valence classification only. The DEAP data set provided the
valence and arousal values from 1 (minimum) to 9(maximum). A
classification threshold of 5 was used in the data set to mark the
labels as positive or negative. The SEED data set does not require
a classification threshold as the positive or negative valence labels
were provided by the data set. The valence values from 1 to 5 were
provided in the DREAMER data set. A classification threshold
of 3 was used to mark the labels as positive or negative valence.
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FIGURE 12 | Features wheel diagram for emotions and ASD classification.

TABLE 2 | Comparison with the related works.

TAC TBIOCAS TBME JETCAS JBHI AICAS ACCESS ACCESS CMP.BIO.MED This

2012 2020 2019 2019 2021 2021 2020 2021 2021 Work

CLF Prob EMT EMT EMT EMT EMT ASD ASD ASD ASD EMT+ASD

Ch. Count 32 8 32 6 62 4 16 16 64 4

Classifier NB LSVM GELM CNN 3DCANN LSVM RNN KNN CSVM LSVM

ACC % 62 73.4 88 83.4 97.3 85.5 99.5 98.5 96.4 98.6/100

# of Sub 32 47 74 32 15 12 12 17 54 99

Data Set (#) 1 2 3 1 1 1 1 1 1 5

Ch. Rank X X X X X X X X X O

Contributions of this work are highlighted in red.

The ASD classification data sets (ODU and KAU) provided the
subjects labeled as ASD (positive) or TD (negative).

The emotions and ASD classification was performed using
LSVM, DNN, KNN, DT, and XGB classifiers. The LSVM classifier
provided the overall best-case classification results. A subset
of only 4 EEG channels was utilized for the classification.
The classification result and the four EEG channels subset are
summarized in Table 1.

The classification accuracies of 90.1 and 93.5% were achieved
for the valence and arousal classification, respectively, in the
DEAP data set. The SEED data set was classified for valence

classification with 95.2% accuracy. The DREAMER data set
was classified with 98.6% classification, respectively for valence
classification. The ASD classification was performed with 100
and 95.5% classification accuracy using ODU and KAU data
sets, respectively.

The selected four EEG channels included FP1, FP2, FC2, and
T8 channels for the DEAP data set. The SEED data set provided
the best classification results using T7, T8, FP1, and FP2 channels.
The selected four channels for the DREAMER data set included
F3, F4, FC5, and T7 channels. The four EEG channel subsets for
the ODU data set included the CP2, FC2, F7, and FC6 channels.
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FIGURE 13 | Location of 4 channel EEG subset using 10–20 system on (A) DEAP, (B) SEED, (C) DREAMER, (D) ODU, (E) KAU data sets.

The selected channels for the KAU data set include F3, T5, O1,
and O2 channels.

A set of eight features for the four EEG channels was used
for the classification. The eight features are calculated using
the brute-force approach from the set of 32 suitable features
identified for emotions /ASD classification. The selected features
include the fast Fourier transform coefficients, skewness, mean,
signal energy, continuous wavelet transform coefficients, auto-
correlation, absolute energy, mean absolute change, mean second
derivative, change quantiles, energy ratio, and linear trend for
emotions and ASD classification. The frequency of the selected
features for emotions and ASD classification for each data set is
plotted through a wheel diagram in Figure 12.

The auto-correlation, energy ratio, linear trend, fast Fourier
transform coefficients, skewness and mean features were
observed to be highly significant for the ASD classification.
Among the selected features for ASD classification, fast Fourier
transform coefficients and auto-correlation were observed to
be more significant irrespective of the data set. The emotions
classification using the DEAP, SEED, and DREAMER data sets

provided the maximum classification results using the change
quantile, mean absolute change, mean 2nd derivative, absolute
energy, fast Fourier transform coefficients, auto-correlation,
signal energy, and continuous wavelet transform coefficients.
The fast Fourier transform coefficients, mean absolute change,
continuous wavelet transform coefficients, and absolute energy
was observed to be more significant across multiple data sets for
emotions classification as depicted in Figure 12.

6. DISCUSSION

This paper provides a framework for the researchers performing
emotions and ASD classification using ML. The most frequently
utilized and "benchmark-considered" data sets for the emotions
and ASD classification including DEAP, SEED, DREAMER,
ODU, and KAU data sets were utilized. A detailed analysis
of the data sets including the number of subjects, number
of classes per subject, range of label values including valence
and arousal, gender and age statistics of each subject, the
importance of classification threshold for emotions classification,
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and the percentage of the positive-negative split in each data set
was described.

A brief comparison of the proposed LSVM classifier with
selected features and channels with the previous state-of-the-
art works using NB, GELM, 3DCANN, RNN, KNN, and CSVM
classifiers for emotions and ASD classification is presented in
Table 2. The classification problem (CLF Prob), Channel count
(Ch. Count), best-case percentage accuracy (Acc%), number of
validation data sets, and the channel ranking are mentioned in
the table.

All the previous works have focused on the emotions or ASD
classification and none of them have provided a single framework
for both classification problems (Koelstra et al., 2011; Fang et al.,
2019; Li et al., 2019; Aslam and Altaf, 2020; Bouallegue et al.,
2020; Alturki et al., 2021; Aslam et al., 2021; Baygin et al.,
2021; Liu et al., 2021). This is the first study (to the best of
our knowledge) that provides a framework and guideline for
both emotions (EMT) and ASD classification. The significance
of EEG-based emotions and ASD classification systems is highly
dependent on the channel count, especially for wearable systems
(Aslam and Altaf, 2019; Fang et al., 2019). The identification
of a minimum (4) number of channels was a primary focus of
this study. This study also provided the maximum classification
results of 98.6 and 100% classification accuracies for the emotions
and ASD classification. The highest number (99) of subjects were
analyzed in this study, with the largest number (5) of data sets.
This is the only study that provided a detailed analysis for the
channel ranking to identify the best four suitable EEG channels.

The location of the EEG channels becomes highly significant
for the hardware-based emotions and ASD prediction systems
in addition to the channel count. The location of the shortlisted
four channels using the 10–20 system is shown in Figure 13. It
can be observed that temporal and frontal locations are highly
significant for the emotions prediction, irrespective of the data
set. The significance of the prefrontal (FP) region is higher than
in other regions and can be observed from DEAP and SEED data
set analysis through Figures 13A,D. Similarly, the fontal-central
and occipital brain regions were observed to be highly significant
for the ASD classification.

7. CONCLUSION

This paper has provided a detailed guideline to the early
researchers for the EEG-based emotions and ASD classification.
We have described the procedure to quantify and measure
human emotions, along with the characterization of multiple
data sets for the emotions and ASD classification. The most
frequently used and "benchmark-considered" data sets among
the leading researchers are used. The data sets included DEAP,
SEED, DREAMER, ODU, and KAU data sets for emotions and
ASD classification. The importance of the classification threshold
in the emotions classification is highlighted. The balanced class
distribution for positive and negative classes is changed to
an unbalanced distribution for a classification threshold lower
or higher than 5 in the DEAP data set. The significance of

classification accuracy is decreased for the unbalanced class
distribution and other classification results including precision,
recall, and F1 score, become more important. Therefore,
it is quite important that the classification threshold in
addition to the classification results should be reported for
emotions classification.

This work has also performed the ASD classification using
ODU and KAU data sets. The conventional ADOS-2 method
for ASD diagnosis and the ADOS-2 scores confirmation with
the aid of neurologists is also detailed. The proposed method
provided the highest classification results of 100% accuracy
for the ODU data set and 95.5% accuracy for the KAU data
set. This work has primarily focused on an extensive analysis
through LSFE to identify the most suitable channels and brain
areas for emotions and ASD classification. We achieved higher
classification results than the state-of-the-art using a lower
number of channels for emotions and ASD classification. The
algorithm was validated on a maximum number of subjects and
benchmark data sets. The LSVM classifier used in this work
has significantly lower complexity than the other classifiers. The
identified brain areas for the emotions classification included
the temporal, frontal, and prefrontal regions. The identified
regions for the ASD classification included the occipital and
frontal-central regions. A subset of the most suitable four
EEG channels was identified for each data set which is highly
beneficial for the researchers targeting a minimum number of
channels. The feature significance highlighted by the extensive
LSFE analysis is highly important, especially for the researchers
targeting hardware-based systems. The approximated hardware
implementations of the highlighted features can be used to
develop low-cost (area, power, and energy) hardware systems for
emotions and ASD prediction.
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