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Abstract: In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly
regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive
state to allow implantation during the window of receptivity. It is well-established that progesterone
and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways
and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows
outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting
in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened
inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity
to embryo implantation. This review focuses on the molecular mechanisms governing progesterone
and estrogen signaling supporting endometrial function and how they become dysregulated in
endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility
associated with endometriosis will open new avenues of targeted medical therapies to give relief to
the millions of women suffering its effects.
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1. Introduction

The endometrium is a complex and dynamic tissue composed of epithelial cells, both luminal and
glandular, surrounded by supporting stromal cells, together comprising the innermost layer of the
uterus. The primary function of the uterus is supporting fertility, and the endometrium is the layer
critically involved in receiving an embryo, facilitating implantation and decidualization, and supporting
embryo growth and development until placentation. Successful pregnancy establishment requires an
endometrium that is receptive to blastocyst invasion and ready to undergo decidualization, which is
dependent upon hormonally regulated molecular processes that allow pregnancy establishment during
the period of the menstrual cycle known as the window of receptivity [1,2]. The progesterone (P4)
and estrogen (E2)-responsive signaling pathways integral for early pregnancy success are primarily
induced through their cognate nuclear receptors, the progesterone receptor (PGR) and estrogen
receptors (ESR1 and ESR2), respectively. These pathways are regulated in an epithelial and stromal
compartment-specific manner in the endometrium [3–5]. E2 induces epithelial proliferation to build
endometrial thickness during the proliferative phase of the menstrual cycle, then P4 inhibits E2-induced
proliferation and allows stromal cells to begin decidualization during the secretory phase. When
the tightly regulated balance of epithelial-stromal P4 and E2 signaling is lost, P4 resistance and E2
dominance are prone to ensue, potentially leading to uterine diseases such as endometriosis [6,7].
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Endometriosis is a common uterine disease characterized by the growth of endometrium-like
tissue outside the uterine cavity [8,9]. Approximately 10% of reproductive-aged women suffer from
this condition, which is often accompanied by chronic pain and infertility. Unfortunately, the etiology
of endometriosis is not sufficiently understood to enable consistently effective treatment options.
However, it is clear that functional dysregulation of the ovarian steroid hormones P4 and E2 and their
downstream signaling targets plays an important role in the development and maintenance of the
disease as well as its effects on the eutopic endometrium, primarily through E2-driven inflammation
and P4 resistance [6,7].

This review will cover the known roles of P4 and E2 signaling in maintaining endometrial
homeostasis and supporting pregnancy establishment before turning to focus on the mechanisms of
the P4 and E2 signaling dysregulation of endometriosis, how this dysregulation impacts the clinical
symptoms of endometriosis, and how hormone treatment strategies attempt to correct it.

2. Steroid Hormone Regulation of Endometrial Function

Studies in mice have been critical to understanding the functions of P4 and E2 in the mammalian
uterus during early pregnancy [1,2,10,11]. Compared with the lengthy human menstrual cycle
(28–30 days), mice undergo a short estrous cycle (4–5 days), but the receptive window of both species
is regulated in a parallel manner by P4 and E2. In mice, a mating event, defined as gestation day
(GD) 0, sets off a cascade of hormone signaling events, beginning with a preovulatory E2 surge from
GD 0.5–1.5 to induce epithelial proliferation [2]. By GD 2.5, increased P4 secretions from the corpus
luteum dominate, promoting stromal proliferation and inhibiting E2-induced epithelial proliferation.
Next, a nidatory E2 surge on GD 3.5 acts in concert with P4 regulation to prepare the receptive
endometrium on GD 4–5. The invading blastocyst then induces a decidualization reaction of the
P4-primed stromal cells, where they differentiate into morphologically and functionally unique cells to
surround the implanting embryo and support growth until placentation, all under critical continued
P4 regulation. The primary mediators of these P4 and E2-induced events are their cognate nuclear
receptors, transcriptional coregulators, and downstream signaling targets.

2.1. Progesterone Receptors and Progesterone Signaling

The basic endometrial function of PGR has been known for some time and recently comprehensively
reviewed elsewhere [2,11–14], so this discussion will briefly summarize relevant details while focusing
on recent findings of functionally relevant PGR signaling regulators and downstream mediators. PGR
expression is induced by E2 action through ESR1, and in turn PGR inhibits ESR1 expression, creating
a fine-tuned feedback system to balance downstream effects [12]. PGR is expressed as primarily two
functionally distinct isoforms, PR-A and PR-B, transcribed from two promoters in the same gene, resulting
in the PR-A protein being 164 amino acids shorter than PR-B [15]. Null-mutation of both isoforms
(PRKO) caused sterility in the female mouse due to numerous reproductive abnormalities, including
severely reduced or absent ovulation, uterine hyperplasia and a lack of decidualization response, severely
limited mammary gland development, and an inability to exhibit sexual behavior [16]. Specific deletion
of PR-A [17] or PR-B [18] showed that PR-A is the primary driver of uterine PGR function and is
sufficient for fertility, while PR-B is critical for mammary gland development and morphogenesis
during pregnancy. PR-B also promotes uterine epithelial proliferation when not repressed by PR-A [12].
Furthermore, overexpression of PR-A led to endometrial hyperproliferation and infertility [19,20],
revealing the importance of the relative PR-A/PR-B ratio to proper P4 responsiveness. Additionally,
PGR has epithelial and stromal compartment-specific functions in the endometrium as revealed by ex
vivo tissue-recombination experiments and in vivo epithelial-specific PGR knockout mice, while both
epithelial and stromal PGR appear to be important for suppressing epithelial proliferation [21,22].

In response to P4 binding, PGR is capable of rapid, non-genomic action though interaction with
c-Src kinase to induce the pro-proliferative extracellular signal-regulated kinase/mitogen-activated
protein kinase (ERK/MAPK) and Protein Kinase B (AKT) pathways, important for peri-implantation
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stromal proliferation [12,23,24]. However, the canonical pathway for PGR’s impact on gene expression
occurs through genomic activity after P4 binding and translocation to the nucleus [12]. Mechanistic
studies of PGR action have been greatly aided by the identification of ligand-dependent PGR target
genes in the mouse uterus through studies utilizing transcriptomic analysis of gene expression changes
after P4 exposure in PRKO mice [25] and chromatin immunoprecipitation targeting PGR-bound gene
regions [26]. One of the first PGR targets identified and known to be central to uterine function is the
growth factor Indian hedgehog (IHH), which is induced in the epithelium and exerts paracrine effects
on the stroma [27,28]. Uterine ablation of IHH in the mouse resulted in uterine phenotypes very similar
to PGR knockouts [29]. Importantly, epithelial IHH induces stromal chicken ovalbumin upstream
promoter-transcription factor II (COUPTFII) expression [27,29], which both inhibits E2-induced
epithelial proliferation to allow implantation and induces bone morphogenetic protein 2 (BMP2) in the
stroma to effect the decidualization response [30,31]. As shown in both mouse and human cells, BMP2 is
critical for decidualization through induction of Wnt family member 4 (WNT4) [32,33], another ligand
required for successful implantation and decidualization [34]. WNT4 and other Wnt family proteins
canonically act through β-catenin activity [35], and β-catenin has also been implicated in uterine
development, implantation, and decidualization [36]. In fact, a compartment-specific murine knockout
of mesenchymal β-catenin showed that not only is stromal β-catenin required for decidualization, but
it also indirectly opposes E2-induced epithelial proliferation [37].

Homeobox protein-A10 (HOXA10) is another PGR target in the endometrium, and HOXA10
knockout mice are infertile due to uterine defects that appear to be a result of lost stromal P4
responsiveness [38,39]. Interestingly, WNT4 expression is lost around the implantation site in HOXA10
mutant mice [40]. Adding to the complexity, heart and neural crest derivatives expressed 2 (HAND2),
a stromal-expressed PGR target transcription factor, was also found to be required to mediate P4′s
anti-proliferative action on the uterine epithelium but independently of IHH-COUPTFII signaling [41].
Rather, HAND2 inhibits stromal fibroblast growth factor (FGF) signaling [41], which otherwise induces
epithelial proliferation through the ERK/MAPK and AKT pathways [42]. In addition, HAND2 appears
to play a role in the decidualization process in both mouse and human stromal cells [43]. Outside of
these more well-described pathways, many other P4 signaling mediators involved in uterine function
and fertility have been described such as insulin-like growth factor binding protein 1 (IGFBP1) [44],
CCAAT enhancer binding protein beta (C/EBPβ) [45,46], promyelocytic leukaemia zinc finger protein
(PLZF) [47,48], mitogen-inducible gene 6 protein (MIG-6) [49,50], and cysteine rich secretory protein
LCCL domain containing 2 (CRISPLD2) [51].

Though many of the important mediators and targets of uterine P4 signaling discussed above
have been understood for many years, recent research, enabled by genome-wide transcriptome and
cistrome analyses, has revealed new insight on P4 signaling regulators and modifiers [14]. Forkhead
box O1 (FOXO1) was identified as a cell fate-regulating transcription factor involved in endometrial
stromal decidualization partly through interaction with P4 signaling [52]. Further study revealed
transcriptional cross-talk and greater than 75% overlap in genome binding occupancy between FOXO1
and PGR in in vitro human endometrial stromal cell decidualization, particularly in the regulation of
Wnt signaling and other factors such as IGFBP1 [53,54]. Unexpectedly, a more recent in vivo mouse
study found that rather than primarily functioning in decidualization, FOXO1 regulates epithelial
integrity through regulation of PGR in vivo [55]. Indeed, conditional ablation of Foxo1 in the uterus
resulted in infertility primarily due to retention of epithelial integrity during the implantation window
that prevented embryo invasion [55]. Transcriptomics and expression profiling further revealed
a temporally and spatially controlled mutual regulation between PGR and FOXO1 in the uterine
epithelium during the window of receptivity that was validated in human endometrial samples [55].

FK506 binding protein prolyl isomerase 4 (FKBP52) is a P4 signaling regulator from the FK506
binding family of immunophilins that was first found to interact with and promote PGR activity
in vitro [56]. Targeted knockout of the Fkbp52 gene in mice resulted in implantation failure resulting
from attenuated P4-responsiveness due to a decrease in the binding of PGR by P4 [57]. Moreover,
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later findings revealed a strain-specific functional importance for FKBP52 mediating P4 responsiveness,
highlighting the importance of genetics in its function [58]. In vitro decidualization experiments in
human endometrial stromal cells confirmed a role for FKBP52 in decidualization and revealed HOXA10
as a regulator of FKBP52 in this process [59].

Signal transducer and activator of transcription 3 (STAT3) is a mediator of leukemia inhibitory factor
(LIF) signaling [60] which will be discussed in more detail hereafter. The first clue to the importance of
STAT3 in uterine function resulted from mouse implantation failure after pharmacological inhibition
of STAT3 activation [61], and this result was later confirmed by the use of conditional gene knockouts
that showed a decidualization defect, increased E2 signaling, and decreased P4 signaling [62,63].
More detailed analysis revealed that STAT3 directly interacts with PR-A, indicating a direct role for
STAT3-PGR crosstalk in early pregnancy establishment [63].

GATA binding protein 2 (GATA2), a zinc finger family transcription factor, was originally identified
as a PGR target in the mouse uterus via microarray analysis [25] and later confirmed to be expressed
concomitantly with PGR in the uterine epithelium at temporally and spatially critical periods during
pregnancy [64]. A follow-up study in which Gata2 was conditionally ablated in the mouse uterus
followed by genome-wide expression profiling and chromatin immunoprecipitation analysis revealed a
large-scale regulatory role for GATA2 in PGR expression and downstream signaling [65]. Gata2 uterine
knockout mice were infertile due to implantation and decidualization defects, and further analysis
showed that PGR protein and mRNA expression was dramatically reduced by Gata2 attenuation [65].
Remarkably, 97% of P4-responsive genes failed to be induced without the presence of GATA2 as shown
by microarray analysis [65]. Finally, cistrome analysis revealed that GATA2 both directly binds near
the PGR promoter and shares occupancy with PGR at 50% of P4-responsive genes, and co-regulatory
activity was confirmed with a luciferase reporter assay at IHH and sex determining region Y box 17
(SOX17) [65]. These results in the mouse were confirmed in the human by the finding of a correlation
between GATA2 and PGR activity consistent with the mouse findings as well as a PGR-GATA2-SOX17
regulatory network governing female fertility [65].

SOX17 is a transcription factor identified as a PGR target by chromatin immunoprecipitation
followed by massively parallel DNA sequencing (ChIP-seq) [26]. It was later found to be important
in implantation, gland development, and gland function in the mouse uterus through experiments
utilizing a knockout of one Sox17 allele [66] and conditional knockouts of Sox17 in PGR-positive
cells and uterine epithelial cells [67]. More detailed study revealed that SOX17 controls epithelial
proliferation and differentiation by regulating PGR signaling via the IHH pathway [68]. Furthermore,
ChIP-seq analysis showed a remarkable overlap between SOX17, PGR, and GATA2-bound regions,
and SOX17 was shown to induce IHH through direct binding of an enhancer 19 kb upstream to the
Ihh gene [68]. Additionally, both the SOX17 expression pattern and a significant correlation with IHH
expression were validated in human endometrial samples [68]. A further interesting note from this
study was the high degree of correlation between the SOX17-regulated transcriptome and the (AT-rich
interaction domain 1A (ARID1A)-regulated transcriptome in the mouse uterus at GD 3.5 along with the
reduction of ARID1A expression in the SOX17-deleted uterus [68]. ARID1A is chromatin remodeling
factor important for endometrial function that we will discuss in more detail hereafter [69].

2.2. Estrogen Receptors and Estrogen Signaling

P4 signaling in the endometrium cannot be considered on its own without also discussing the
counteracting and sometimes cooperating action of E2 signaling. E2′s action in the endometrium is
primarily enacted through the binding of its cognate nuclear receptors, estrogen receptor 1 (ESR1/ERα)
and estrogen receptor 2 (ESR2/ERβ), which unlike PR-A and PR-B are transcribed from separate
genes [2,4,5,70,71]. In addition to its classical genomic activity, ESR1 can also induce rapid non-genomic
signaling through the ERK/MAPK pathway [72]. Specifically, ESR1 has been shown to promote
proliferation through this pathway in a human epithelial cell line [73], and further evidence from
mice indicates that ESR1 can successfully carry out its effects on endometrial epithelial proliferation
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independent of classical genomic signaling [74], suggesting a role for non-classical ESR1 activity in
epithelial proliferation. Additional research has also shown a need for the ERK/MAPK pathway in
endometrial stromal decidualization [75]. Much of the current understanding of uterine ESR1 and
ESR2 was learned through a variety of genetically engineered mice as well as in vitro cell culture
experiments. ESR2 knockout females show no apparent uterine defect and are subfertile only due
to ovulation inefficiency with no difference in uterine E2-responsiveness [76,77]. However, there is
some controversy because one study found competing evidence showing that the ESR2-null uterine
epithelium is hyper-responsive to E2 treatment [78]. The first ESR1 knockout mouse was created using
gene disruption in embryonic stem cells, and the resulting females were unresponsive to E2 and infertile
with an ovarian defect and hypoplastic uteri [79] as well as depressed PGR expression [80]. Embryo
transfer experiments showed that even with a healthy embryo and proper hormonal stimulation,
uteri lacking ESR1 are not competent for implantation [81]. In spite of early reports to the contrary,
likely resulting from incomplete deletion of ESR1 [70,80–82], ESR1 is also required in the mouse for a
normal decidualization response to artificial stimulation [83]. Epithelial-specific ESR1 ablation resulted
in the surprising finding that E2-induced epithelial proliferation occurs independently of epithelial ESR1,
supporting previous findings from tissue recombination experiments [84,85]. Surprisingly, it is stromal
ESR1 that controls E2-induced epithelial proliferation through stromal-epithelial crosstalk [85,86].
On the other hand, both epithelial and stromal ESR1 are necessary for a complete decidualization
response to artificial stimulus [83,86].

The classic role for E2 in upregulating epithelial proliferation is mediated in part by insulin-like
growth factor 1 (IGF1) downstream of ESR1 in the stroma [87,88]. Mechanistically, ESR1 induces IGF1
expression by interacting with a superenhancer distal from the IGF1 transcription start site [89,90].
It has been proposed that when IGF1 is expressed and secreted by the stroma, it binds its receptor
IGF1R in the epithelium and induces the phosphoinositide 3-kinase (PI3K)/AKT pathway leading to
proliferation [87,91,92]. However, it was recently shown that disrupting E2′s induction of IGF1 is
not sufficient to the impair the E2-induced uterine growth response [89], so other mediators must be
important as well. One family of such potential paracrine mediators is the FGF family, the members
of which, as we mentioned earlier in our discussion of HAND2, induce the proliferation-associated
ERK/MAPK and AKT pathways [41,42]. At least one FGF family member, FGF-9, is induced by E2 in the
endometrial stroma [93]. In addition to its regulation by PGR in uterine stromal cells for decidualization,
murine gene knockout experiments have shown that C/EBPβ is also an E2 target in both the endometrial
epithelium and stroma that is critical for proliferation based on its activity regulating cyclin-dependent
kinases in the Gap 2 (G2) to mitotic (M) phase cell cycle transition [45,46]. Finally, Mucin 1 (MUC1) is an
E2 target in the uterine epithelium that is secreted to create a barrier to embryo attachment [94] until it is
downregulated by P4 signaling through the IHH-COUPTFII pathway [29–31].

In addition to its activity inducing epithelial proliferation, the other critical role for E2 in the
endometrium is the induction of LIF, an interleukin-6 family cytokine, in the glandular epithelium by
the nidatory E2 spike [1,95]. Maternal LIF expression is absolutely required for successful implantation
and decidualization in mice [96,97], and administration of LIF can replace the requirement of nidatory
E2 for preparing a receptive uterus [97]. LIF induces downstream signaling in the luminal epithelium
by binding its receptor (LIFR), which associates with glycoprotein 130 (gp130) and activates STAT3
through phosphorylation by Janus kinases (JAKs) [60,98]. As discussed previously in this review,
activated phospho-STAT3 (pSTAT3) interacts with PGR signaling to promote implantation success and
decidualization [63]. In addition, LIF action on the luminal epithelium regulates several important
signaling pathways, some of which have been discussed here such as IGF1 signaling, Wnt/β-catenin
signaling, FGF signaling, and ERK-MAPK signaling [95]. One mechanism of LIF action downstream
of ESR1 was recently elucidated in which LIF acts through ERK1/2 to activate the IHH-COUPTFII
pathway necessary for decidualization [83], revealing an additional layer of complexity in E2-P4
signaling crosstalk. Furthermore, the transcription factor early growth response 1 (EGR1) has been
revealed as a regulator of implantation and decidualization induced by E2 through both the LIF-STAT3
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and ERK1/2 pathways [99,100]. Egr1 knockout mouse studies and human endometrial stromal cell
in vitro decidualization experiments have established EGR1 as critical for endometrial receptivity
through the regulation of epithelial PGR signaling [101], c-Kit expression [102], WNT4 expression [99],
and many other cell-proliferation-related targets [103].

2.3. Nuclear Receptor Coregulators in the Regulation of Progesterone and Estrogen Signaling

Before turning to a focused discussion of P4 and E2 signaling dysregulation in endometriosis,
the roles of nuclear receptor coregulators in steroid hormone signaling regulation must be briefly
considered. In general, nuclear receptor coregulators form large complexes to modify chromatin
structure and regulate large-scale gene transcription programs [104]. A family of regulatory proteins
aptly named steroid receptor coactivators (SRCs), composed of SRC-1, SRC-2, and SRC-3, is critical to
the regulation of PGR and ESR1 action in the female reproductive tract [105]. In the endometrium,
SRC-1 and SRC-2 appear to be the most functionally relevant for normal functionality based on studies
utilizing knockout mice [106–111]. This is supported by the fact that SRC-1 and SRC-2 are expressed
more highly than SRC-3 in the human endometrium [112] although SRC-3 upregulation has been linked
to endometrial cancer [113,114]. SRC-1 knockout mice are fertile; however, SRC-1 is necessary for
full decidualization and P4-responsiveness in the uterus [106,109,111]. Intriguingly, SRC-1 appears to
downregulate PGR target genes in the endometrial epithelium but upregulate them in the stroma [111].
SRC-2 is even more critical for murine uterine function. Uterine ablation of SRC-2 resulted in complete
female infertility due to implantation failure and a partial loss of decidualization which was completely
lost with the concomitant ablation of SRC-1 [107,110]. Microarray analysis further revealed that
SRC-2 is necessary for P4 regulation of Wnt signaling, BMP2 signaling, and ESR1 signaling [110].
The requirement of SRC-2 for decidualization was also confirmed in in vitro decidualization of human
endometrial stromal cells [115], and transcriptomic analysis revealed that 50% of SRC-2-regulated genes
are also regulated by PGR [116], supporting the close relationship of these factors in transcriptional
regulation of the decidualization process.

ARID1A, a SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex protein,
was recently found to be critical for endometrial function during early pregnancy after conditional
deletion in the mouse uterus resulted in infertility due to implantation and decidualization defects [69].
Arid1a ablation also resulted in increased epithelial proliferation concurrent with increased epithelial
E2 signaling and decreased epithelial PGR and P4 signaling [69]. Transcriptomic analysis indicated
a role for ARID1A in repressing cell cycle related genes, and further experiments revealed that
ARID1A complexes with PGR, specifically PR-A, to inhibit proliferation through the upregulation of
Kruppel-like factor 15 (KLF15) [69] and to maintain an endometrium receptive to implantation.

Recent research has highlighted the importance of other epigenetic regulators in addition to
ARID1A in endometrial P4 signaling. Enhancer of zeste homolog 2 (EZH2), a polycomb-repressive
complex subunit that catalyzes histone 3 lysine 27 trimethylation and leads to gene silencing, was found
to be involved in the epigenetic reprogramming required for decidualization [117]. Results from
in vitro decidualization experiments indicated a role for EZH2 downregulation in decidualizing cells
in response to progestin treatment. EZH2 is also upregulated in the endometrial epithelium by E2
in conjunction with increased epithelial proliferation, whereas P4 inhibits this effect [118]. Moreover,
uterine deletion of Ezh2 in the mouse compromised fertility [118]. Another epigenetic regulator, histone
deacetylase 3 (HDAC3), functions by modifying histone acetylation, and this chromatin regulator was
recently shown to be critical for implantation and decidualization in the mouse uterus and in vitro
decidualization of human stromal cells [119]. Furthermore, uterine Hdac3 knockout mice exhibited
decreased PGR and PGR target gene expression in the stroma, indicating a role for HDAC3 in the
P4-responsiveness required for stromal decidualization [119].
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3. Dysregulation of Progesterone and Estrogen Signaling in Endometriosis

As the work reviewed in the previous sections has demonstrated, tightly regulated signaling
pathways governed by P4 and E2 in a stromal and epithelial compartment-specific manner are key to
maintaining endometrial homeostasis and supporting female fertility. Dysregulation of steroid hormone
signaling is common in many uterine pathologies such as endometriosis, infertility, endometrial cancer,
uterine leiomyoma, and recurrent pregnancy loss [12]. For the remainder of this review, we will focus
on the molecular pathophysiology and treatment of endometriosis with particular focus on recent
findings that shed light on the contribution of P4 and E2 signaling dysregulation to the infertility and
pelvic pain women with this disease often experience.

Endometriosis is classically defined as the presence of endometrium-like tissue located outside the
uterine cavity [8]. However, it is also important to understand this disease as a benign, heterogeneous,
E2-dependent, and P4-resistant inflammatory condition that mainly affects the peritoneal cavity and
ovary close to the uterus but has also been reported in distal organs such as the lungs and brain [9].
The prevalence of endometriosis is difficult to establish with certainty due to the requirement of
surgical visualization of lesions for definitive diagnosis, but it is generally accepted that it occurs
in about 1 in 10 women of reproductive age [8,9,120]. Several theories exist attempting to explain
endometriosis pathogenesis such as peritoneal metaplasia or differentiation of circulating cells, but the
most widely accepted explanation is the retrograde flow of menstrual tissue through the fallopian
tubes [8,9]. Here, we will discuss evidence for the dysregulation of E2 and P4 signaling pathways in
both endometriotic lesions (Table 1) and the endometriosis-affected eutopic endometrium that lead to
P4 resistance and E2 dominance. These imbalances may explain the increased ability of lesions to grow
outside the uterus and cause pain and the decreased ability of the uterus itself to support successful
pregnancy establishment.

Table 1. P4 and E2 signaling factors dysregulated in endometriotic lesions.

Molecule Symbol Function Dysregulation Reference

P4 Signaling
Factors

Progesterone Receptor PGR Nuclear receptor Decreased [121–130]

Chicken ovalbumin upstream
promoter-transcription factor II COUPTFII Transcription factor Decreased [131]

Wnt family member 4 WNT4 Secreted signaling
protein Decreased [132]

Heart and neural crest
derivatives expressed 2 HAND2 Transcription factor Decreased [133]

Insulin-like growth factor
binding protein 1 IGFBP1

Circulating growth
factor binding

protein
Decreased [134]

Forkhead box O1 FOXO1 Transcription factor Decreased [122]

FK506 binding protein prolyl
isomerase 4 FKBP52 Immunophilin Decreased [135]

GATA binding protein 2 GATA2 Transcription factor Decreased [136]

E2 Signaling
Factors

Estrogen receptor 1 ESR1 Nuclear receptor Decreased [136–139]

Estrogen receptor 2 ESR2 Nuclear receptor Increased [136–139]

Myc proto-oncogene protein c-MYC Transcription factor Increased [140]

Cyclin D1 CCND1 Cell cycle regulator Increased [140]

Growth regulating estrogen
receptor binding 1 GREB Growth regulator Increased [140]

Fibroblast growth factor 9 FGF-9 Secreted growth
factor Increased [141]

Steroid receptor coactivator-1 SRC-1 Transcriptional
co-activator Increased [142]
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3.1. Progesterone Resistance

When endometrial tissue fails to respond properly to P4 exposure, this is termed P4 resistance, and
it manifests itself in endometriosis as failed induction of PGR activation, or P4 target gene transcription in
the presence of bioavailable P4 [6,7]. Under this definition, P4 resistance has been well-established in both
the endometriotic lesions and eutopic endometrium of women with endometriosis [121,122,143,144].
Loss of P4-responsiveness can have serious consequences in both cases since P4 signaling is required to
counteract E2-induced proliferation and to promote decidualization [7], which implies that P4 resistance
may lead to both increased lesion growth and a non-receptive endometrium.

One potential molecular cause of P4 resistance is a loss or alteration of PGR expression, which
has been documented in endometriotic lesions [121–130] and eutopic endometrium from women
with endometriosis [124,130,145–148]. Further study has confirmed direct correlations between PGR
loss with loss of P4-responsiveness in both lesions [149] and cells from the endometrium of women
with endometriosis [150]. However, the contribution of PGR loss to the P4 resistance observed in
endometriosis is controversial due to a few studies finding no significant difference in PGR levels in
eutopic endometrium from women with endometriosis [123,151] or lesions [152]. These discrepancies are
likely due to differences in experimental methods, lesion types and cell types analyzed, and resolution
of PGR isoforms. For example, the two studies cited here finding no difference of PGR expression in
the endometrium of women with endometriosis did not distinguish between PGR isoforms [123,151],
and one did not distinguish between cell compartments either [151]. The study finding no difference of
PGR expression in lesions looked specifically at rectosigmoid endometriosis lesions [152], whereas other
studies found differences in PGR levels when analyzing mainly ovarian or peritoneal lesions [121–130].
Studies that distinguished between PR-A and PR-B tended to find a decrease of PR-B in endometriosis
lesions [121,122,125,127] or endometrium [145,147,148], whereas reports of PR-A were mixed [121,122,
129,130,145–147]. Furthermore, there is direct evidence to support promoter hypermethylation [127,153]
and microRNA dysregulation [148,154] as potential mechanisms for PR-B loss in endometriosis. These
findings support the importance of proper PR-A/ PR-B ratio in endometrial function and implicate an
imbalance of PGR isoforms in the pathophysiology of endometriosis.

In addition to dysregulated PGR expression, alterations in PGR signaling mediators and regulators
also contribute to P4 resistance [6]. Due to the importance of the PGR-induced IHH-COUPTFII-WNT4
pathway in regulating epithelial proliferation and decidualization during early pregnancy as discussed
above, these molecules are of great interest in the context of P4 resistance in endometriosis. In a histological
comparison of IHH expression in endometrial biopsy samples from women with endometriosis and
healthy controls, IHH expression was decreased in secretory phase endometrium from endometriosis
patients [155]. Correspondingly, later studies found COUPTFII [131] and WNT4 [132] expression levels
decreased in both endometrial samples from women with endometriosis and endometriotic lesions.
These findings identified a major pathway downstream of P4 signaling that is disrupted in women
with endometriosis and may lead to endometrial non-receptivity in these patients by interfering with
regulation of uterine epithelial proliferation and stromal decidualization. In endometriotic lesions,
the PGR target HAND2 was also found decreased along with an increase in FGF signaling, which it
normally controls [133]. This is another molecular consequence of P4 resistance that may lead to the
increased invasiveness of endometriotic tissue [133]. Further confirming the comprehensive disruption of
P4 signaling in endometriosis, HOXA10 [156], IGFBP1 [134], PLZF [144], MIG-6 [144], and CRISPLD2 [51],
all PGR targets implicated in endometrial function based on mouse studies, have been shown to be
dysregulated in endometriosis patients. These findings once again reinforce the idea that loss of P4
signaling in endometriosis disrupts the fine-tuned regulation of the endometrium necessary to maintain
normal uterine function and fertility.

Though dysregulation of PGR target genes displays the consequences of P4 resistance in
endometriosis, dysregulation of PGR signaling regulators may help explain the cause of P4 resistance.
The expression of the pioneer transcription factor FOXO1 is reduced in both the endometrium [144,157]
and stromal cells from lesions [122] of women with endometriosis. Given the requirement of FOXO1
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for proper stromal cell decidualization and regulation of endometrial epithelial integrity along with the
overlapping binding regions and in vivo regulation of PGR [53–55], the loss of FOXO1 in endometriosis
could be partially responsible for the dysregulation of both PGR expression and downstream signaling.
However, since FOXO1 is also regulated by PGR, it is difficult to conclude which molecule becomes
dysregulated first in endometriosis based on the current literature. Another molecule with potential
implications for P4 resistance in endometriosis is Notch homolog 1 (NOTCH1). NOTCH1 and
other Notch signaling molecules have been found decreased in endometrium from women and
baboons with endometriosis, and silencing of NOTCH1 impaired decidualization in isolated human
endometrial stromal cells potentially by downregulation of FOXO1 [157], reminiscent of P4 resistance
in endometriosis. Interestingly, aberrant NOTCH1 signaling has also been shown in endometriotic
lesions, but in this case increased NOTCH1 activation correlated with reduced PGR expression [126].
In vitro reduction of NOTCH1 signaling restored PGR and P4-responsiveness, revealing a direct
relationship between Notch signaling regulation and the maintenance of proper P4-responsiveness,
both of which are disrupted in endometriosis [126].

Disruption of PGR signaling in endometriosis could also be caused by dysregulation of steroid
receptor chaperone proteins like FKBP52. FKBP52 expression has been found decreased in both the
endometrium and lesions of women with endometriosis [59,135], and the endometrial FKBP52 decrease
alongside PGR decrease was confirmed to be due to endometriosis pathology in a non-human primate
model of endometriosis [158]. Furthermore, endometriosis model mice lose FKBP52 expression in their
lesions, and conversely, deletion of Fkbp52 increased lesion growth [135]. HOXA10 may also be involved
in this process since its expression is reduced in endometriosis [156], and in vitro experiments implicated
it in the regulation of FKBP52 [59]. Evidence from both baboon and human endometriosis also implicates
increased microRNA (miR)-29c expression as a potential mechanistic cause for FKBP52 loss [159].

STAT3 is another PGR regulator discussed earlier in this review with an important function in
fertility [63]. Given its interaction with PGR during early pregnancy establishment, one might have
hypothesized STAT3 activation would be reduced in endometriosis due to the context of P4 resistance,
however pSTAT3 is aberrantly increased in the endometrium of both women and non-human
primates with endometriosis [160]. This is likely explained by increased levels of interleukin 6
(IL-6) [161], which can activate STAT3 [162]. Abnormal STAT3 activity is associated with increased cell
proliferation [163] which may occur through up-regulation of hypoxia-inducible factor 1-alpha (HIF1A)
in the endometrium [160], illustrating its pleiotropic roles. Thus, while loss of STAT3 compromises
uterine function, aberrant activation is associated with endometriosis, indicating the need for tight
regulation of STAT3 in conjunction with PGR signaling. One potential mechanism suggested for
increased STAT3 activation in endometriosis is down-regulation of protein inhibitor of activated
STAT3 (PIAS3) which has been observed in women and non-human primates with endometriosis [164].
One effect of STAT3 overexpression in endometriosis appears to be the up-regulation of the oncogenic
gene repressor B cell CLL/lymphoma 6 (BCL6), a known target of STAT3 [165] and shown to be
increased in the secretory phase endometrium of women with endometriosis [166]. Furthermore,
sirtuin 1 (SIRT1), a transcriptional regulator associated with both oncogenic and tumor-suppressor
roles, binds and co-localizes with BCL6 and is also up-regulated in endometrium from women and
non-human primates with endometriosis, significantly correlating with BCL6 expression levels [167].
Further experiments in mice and cell culture showed that increased BCL6 and SIRT1 expression
caused reduced P4 signaling through the IHH pathway, specifically by binding the gene promoter of
IHH pathway protein glioma-associated oncogene homolog 1 (GLI1) to repress its transcription [167].
In turn, reduced expression of GLI1 was shown in the endometrium of women with endometriosis,
confirming a mechanistic role for STAT3, BCL6, and SIRT1 overexpression in the P4 resistance of
endometriosis [167].

Earlier in this review we discussed the importance of the large-scale gene regulatory role for
GATA2 and SOX17 in P4 signaling of the endometrium. In endometriosis, there appears to be a
switch from a GATA2 driven P4-responsive state to a GATA6-driven P4-resistant state based on CpG
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methylation patterns [136]. Moreover, SOX17 expression is reduced in women with endometriosis,
correlating with a drop in IHH expression, which it normally regulates by binding a distal enhancer to
promote endometrial receptivity in the healthy endometrium [68]. In addition, ARID1A, a chromatin
remodeling complex protein potentially regulated by SOX17, is decreased in endometrium from
endometriosis patients [69]. Evidence showing direct binding of ARID1A to PR-A as well as loss
of P4 signaling in mice with conditional ablation of Arid1a in the uterus implicates the decrease of
ARID1A in endometriosis in the P4 resistance phenotype as well [69]. Expression of HDAC3, another
epigenetic regulator, was also found decreased in endometrium from women with endometriosis as
well as non-human primate and mouse models of endometriosis [119]. Further mechanistic study
linked loss of HDAC3 to loss of P4 signaling, revealing yet another P4 signaling regulator implicated
in the P4 resistance of endometriosis [119].

3.2. Estrogen Dominance and Inflammation

Concurrent with P4 resistance, endometriosis development and progression is driven by the
upregulation of E2-induced cell proliferation and inflammation, which can both promote lesion growth
and compromise endometrial receptivity [9,168,169]. Local E2 levels are increased in endometriosis due
to upregulation of E2-producing p450 aromatase expression [170] and reduction of 17β-hydroxysteroid
dehydrogenase type 2 (17βHSD2), which is normally induced by P4 to convert E2 to the less potent
estrone but is decreased in P4-resistant conditions [171].

Since E2′s effects are primarily enacted through ESR1 and ESR2, their expression levels are
important in the assessment of E2 action in endometriosis. ESR1 levels are reportedly increased in the
secretory phase endometrium of women with endometriosis compared to controls [172,173], which may
lead to increased estrogenic activity and proliferation, compromising normal uterine function. ESR2
expression is unchanged in eutopic endometrium from women with endometriosis [173] although one
study reported increased ESR2/ESR1 ratio in endometriosis-affected endometrium [174]. The role of
ESR2 in normal uterine physiology is not clear since ESR2 knockout mice have been reported to have
no overt uterine defect [76,77]; however, one study implicated ESR2 in control of proliferation through
epidermal growth factor (EGF) signaling [78].

In contrast, the majority of the evidence indicates that endometriotic lesions upregulate ESR2 and
downregulate ESR1, although reports are mixed [136–140,142,175]. Discrepancies are likely due to the
lesion type being studied since the majority of studies analyzed only ovarian lesions [136–139], but those
including peritoneal lesions contrastingly showed relative increases in ESR1 [140,175]. Mechanistically,
there is evidence to support changes in promoter methylation as a cause for the increase in the ESR2/ESR1
ratio in endometriotic cells, since regions of the ESR1 promoter become hypermethylated, leading to
decreased expression [136,137], whereas a CpG island in the ESR2 promoter becomes hypomethylated,
leading to increased expression [137]. Since E2 action through ESR1 upregulates PGR expression, the loss
of ESR1 in lesions has been suggested as a possible explanation for the loss of PGR [9]. These mechanistic
insights support the conclusion that the ESR2/ESR1 ratio increases in endometriotic lesions.

The increase in ESR2 levels in lesions may be responsible for increased lesion survival and
inflammation because E2 can act through ESR2 to induce the cyclooxygenase-II (COX-2)-prostaglandin
E2 (PGE2) feedback loop [176], which is well known to increase the inflammation and pathology of
endometriosis [177]. E2 also induces ESR2 to bind the Ras-like, estrogen-regulated, growth inhibitor
(RERG) promoter, inducing its expression [178]. In cooperation with PGE2, RERG was shown to
translocate to the nucleus and induce cell proliferation, providing further evidence for the potential
mechanism of E2-induced proliferation in endometriotic lesions [178]. Another study identified the
E2-induced, proliferation-related proteins Myc proto-oncogene protein (c-myc), cyclin D1 (CCND1),
and growth-regulating estrogen receptor-binding 1 (GREB1) as increased in expression alongside ESR2
in lesions [140], providing further clues to the mechanism of E2-dependent lesion growth. Additionally,
FGF-9 is a cell growth-inducing factor shown to be induced by E2 and upregulated in endometriotic
lesions [141], likely in part due to the loss of P4-induced HAND2 which would normally suppress
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it [41]. ESR2 upregulation in endometriotic lesions was reproduced in a mouse model of endometriosis,
where its activity was shown to drive lesion growth and be an effective target for the inhibition of
lesion growth [179]. Mechanistically, ESR2 apparently interacts with cytoplasmic inflammatory factors
to inhibit apoptosis and promote the invasiveness of lesions [179].

Intriguingly, there is also evidence to implicate immune cell responsiveness to E2 in endometriosis.
A growing body of evidence has implicated immune system dysregulation in endometriotic lesion
growth, one aspect of which is elevated macrophage populations [180]. Peritoneal fluid macrophages
from women with endometriosis were shown to upregulate the expression of ESR1 and ESR2, and the
expression of ESRs correlated with an increase in inflammatory cytokines [181]. Further experiments
in a mouse model of endometriosis showed that E2 treatment caused an increase in the macrophages
present in lesions as well as the expression of macrophage migration factors [182]. In that study, ESR2
was the predominant E2 receptor expressed in macrophages from both women with endometriosis
and endometriosis model mice [182]. Thus, E2 appears to directly cause an increased inflammatory
response through ESR2 in addition to enhancing endometriotic cell proliferation in endometriosis.

In addition to the targets of E2 and ESRs that induce cell proliferation and inflammation in
endometriosis, it is also important to consider the potential effects of SRCs on ESRs in endometriosis.
Expression profiling of SRCs in endometriotic lesions identified SRC-1 as the predominant SRC in
endometriosis [183]. Although one study found that SRC-1 expression was decreased in the epithelium
of proliferative phase endometriotic lesions [184], additional research initiated in endometriosis model
mice and validated in human endometriosis revealed that in spite of a decrease in total SRC-1, levels of
a truncated form were increased [142]. Furthermore, this new isoform of SRC-1 was shown in vitro
to decrease tumor necrosis factor alpha (TNFα)-mediated apoptosis in endometriotic cells, leading
to increased cell survival and invasion and mirroring the in vivo disease pathophysiology [142].
Additional experiments revealed interaction between this SRC-1 isoform and ESR2 in endometriosis
that may mediate a synergistic role in promoting cell survival [179]. Indeed, disruption of the SRC-1
isoform-ESR2 access with inhibitors suppressed endometriotic cell growth in isolated human cells and
in a mouse model of endometriosis [179,185]. Taken together, these findings support an important role
for SRC-1 isoform and ESR2 upregulation in the development and progression of endometriosis.

Although LIF expression is induced by E2 in the endometrium, and estrogenic activity is increased
in endometriosis, LIF levels have been reported to be decreased in the glandular epithelium of women
with this disease [186]. This could be due to increased inflammatory factors in endometriosis that
can suppress LIF [187]. The decrease in LIF secretion from glands may also be due to intrinsic gland
dysfunction in endometriosis. Specifically, the gland-specific transcription factor Forkhead box A2
(FOXA2) is required for LIF expression in mice [188], but it is decreased in endometrium from women
with endometriosis [139,189]. Thus, though increased estrogenic activity promotes harmful inflammation
and cell proliferation in endometriosis, it apparently fails to properly induce LIF expression.

4. Pathologies Related to Steroid Hormone Signaling Dysregulation in Endometriosis

4.1. Infertility

One of the major clinical pathologies associated with endometriosis is infertility [168,190–194].
Although up to 50% of women with endometriosis struggle with fertility problems, the causal link
is unclear and controversial [190]. Several possible mechanisms have been proposed by which
endometriosis may cause fertility defects including (1) anatomical distortions, (2) diminished ovarian
reserve, (3) chronic inflammatory conditions, and (4) compromised endometrial receptivity [191,193].
Due to the well-studied involvement of P4 and E2 signaling in endometrial receptivity, we will focus
our discussion of P4 and E2 dysregulation in endometriosis-related infertility on that topic (Figure 1).
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Figure 1. Schematic diagram illustrating the primary known signaling pathways and transcriptional
regulators involved in P4 and E2 governance of endometrial epithelial-stromal crosstalk that are
dysregulated in endometriosis. P4 resistance and E2 dominance in endometriosis results in epithelial
proliferation and defective decidualization that can compromise endometrial function. Abbreviations:
ARID1A, AT-rich interaction domain 1A; BCL6, B cell CLL/lymphoma 6; COUPTFII, chicken ovalbumin
upstream promoter-transcription factor II; E2, estrogen; ERK, extracellular signal-regulated kinase; ESR1,
estrogen receptor 1; FGF, fibroblast growth factor; FKBP52, FK506 binding protein prolyl isomerase 4;
FOXO1, Forhead box O1; GATA2, GATA binding protein 2; HAND2, heart and neural crest derivatives
expressed 2; HOXA10, homeobox protein-A10; IHH, Indian hedgehog; MAPK, mitogen-activated
protein kinase; P4, progesterone; PGR, progesterone receptor; SIRT1, Sirtuin 1; SOX17, sex determining
region Y box 17; WNT4, Wnt family member 4.
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Because of the integral involvement of P4 and E2 signaling pathways in early pregnancy
establishment and their dysregulation in the endometriosis-affected endometrium that we have
described above, it is intuitive to draw a conceptual link between the P4 resistance and E2 dominance
of endometriosis and the endometrial non-receptivity associated with this disease. In addition to
the broad conceptual link, several specific molecular pathways we have discussed are implicated
in both female infertility and endometriosis. For example, total endometrial PGR expression and
PR-A/PR-B expression ratio are critical for successful mammalian pregnancy as shown primarily in
mice [16–20], but either PGR total expression or PR-A/PR-B ratios are dysregulated in the endometrium
of many women with endometriosis [124,130,145–148]. In fact, a recent translational study showed
that in women diagnosed and treated for endometriosis, PGR expression levels were higher in women
with subsequent spontaneous pregnancies within one year versus those who did not successfully
achieve pregnancy [195]. Additionally, the inhibitory action of PGR on ESR1 normally prevails in the
endometrium during the window of receptivity, but women with endometriosis exhibit increased ESR1
through the mid-secretory phase, which encapsulates the implantation window in women [172,173].

The rise in ESR1 in endometriosis corresponds to a decrease in αv/β3 integrin [196], which is an
adhesion molecule normally expressed in the endometrium during the receptive window and putatively
involved in successful implantation [172]. HOXA10, a P4 target decreased in the endometrium of
women with endometriosis [156] and required for fertility in mice [38,39], was also identified as
a direct regulator of αv/β3 integrin expression [197]. Furthermore, non-human primates induced
with endometriosis exhibit reduced HOXA10 and αv/β3 integrin expression [198]. In addition to
regulating αv/β3 integrin, HOXA10 regulates FKBP52, a PGR regulator required for implantation and
decidualization [57,59] and reduced in the endometrium of women and non-human primates with
endometriosis [59,135,158].

Several other steroid hormone-regulated pathways we have discussed are both implicated in
endometriosis and closely involved in pregnancy establishment. Proteins involved in regulation
and mediation of the P4-responsive IHH pathway including GATA2, SOX17, IHH, COUPTFII,
and WNT4 are required for successful implantation in mice [29,30,34,65,67] but are reduced in the
endometrium of women with endometriosis [68,131,132,136,155], revealing a potential large-scale
molecular connection between P4 resistance and fertility problems in endometriosis. The transcriptional
regulators FOXO1, ARID1A, and HDAC3 are three additional factors associated with P4 signaling that
are required for uterine receptivity in mice and down-regulated in the endometrium of women with
endometriosis, further corroborating the association between the P4 resistance of endometriosis with
infertility [55,69,119,144,157]. Finally, the E2-responsive cytokine LIF, required for fertility in mice and
women [96,97], is both decreased generally in endometrium from women with endometriosis [186]
and specifically correlated with failure to achieve pregnancy in women with the disease [199]. Taken
together, the evidence of dysregulation in these pregnancy-associated pathways and molecules in
endometriosis is a strong indicator of a causative relationship between endometriosis and endometrial
non-receptivity related to P4 and E2 signaling dysregulation.

4.2. Pelvic Pain

In addition to infertility, it is commonly known that many women with endometriosis experience
pelvic pain. Indeed, one study found 80% of women diagnosed with chronic pelvic pain to have
endometriosis, firmly establishing the association [200]. Several mechanisms have been proposed
for the pain of endometriosis including invasion of lesions into highly innervated regions, increased
endometrial nerve density, increased neuroangiogenesis, neuroinflammation, and central and peripheral
sensitization [201–203]. A comprehensive discussion of endometriosis pain is not our purpose here,
but we will briefly mention several links that have been discovered between E2 signaling and the pain
mechanisms of endometriosis. First, several factors involved in nerve growth and found upregulated in
women with endometriosis [8] have been found to be regulated by E2, including nerve growth factor
(NGF) [204], vascular endothelial growth factor (VEGF) [205], and brain-derived neurotrophic factor
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(BDNF) [206]. Additionally, hormonal therapies designed to combat the E2 dominance of endometriosis
have been shown to decrease endometrial nerve fiber density in women with endometriosis, implying
a role for E2 in increased innervation [207]. E2 has also been implicated in the neuroinflammation of
endometriosis by increasing macrophage-nerve interactions in endometriotic lesions [182]. Furthermore,
a recent study revealed a role for E2 in regulating the axonal guidance protein slit guidance ligand
3 (SLIT3) in the process of neuroangiogenesis in endometriotic lesions [208]. Finally, nociceptors are
sensory nerve endings that transmit noxious stimuli to the central nervous system in the presence of
potential damage, and transient receptor potential cation channel subfamily V member 1 (TRPV1), an ion
channel protein associated with these neurons, has been found to be increased in endometriotic lesions
of women with chronic pelvic pain [209] and to be responsive to E2 [210]. These mechanisms, among
others, are potential avenues by which E2 elevation in endometriosis may worsen the pain associated
with the disease.

5. Hormone Therapies for Endometriosis

Treatments for endometriosis that aim to alter E2 and P4 signaling are currently in use, such as
combined oral contraceptives (COCs), progestins, gonadotropin-releasing hormone (GnRH) agonists, and
aromatase inhibitors, and others are still under development, such as GnRH antagonists, selective estrogen
receptor modulators (SERMs), and selective progesterone receptor modulators (SPRMs) [211–213] (Table 2).
These treatments generally aim to treat the lesion growth itself and/or the pelvic pain of the disease.
Currently, no medical treatments are available to treat the infertility associated with endometriosis
because hormone therapies interfere with ovarian function [194], although some evidence indicates a
possible benefit to timed treatments combined with surgery or assisted reproductive technologies [168].

Table 2. Hormone therapies for endometriosis.

Treatment Type Molecular Action Therapeutic Effect Reference

Estrogen (E2)
Signaling
Modifiers

Gonadotropin-releasing
hormone (GnRH)

agonists

Decrease E2 production
through negative feedback

Reduce
endometriosis-related

pain
[213,214]

GnRH antagonists
Decrease E2 production by

competing for GnRH
receptors

Reduce
endometriosis-related

pain
[215,216]

Aromatase inhibitors
Decrease E2 production by

inhibiting conversion of
androgens to E2

Reduce
endometriosis-related
pain and lesion size

[217–219]

Selective estrogen
receptor modulators

(SERMs)

Decrease estrogen receptor 1
(ESR1) action through direct

inhibition

Reduce endometriotic
lesions [213,220–222]

Progesterone (P4)
Signaling
Modifiers

Combined oral
contraceptives (COCs)

Suppress ovarian steroid
production and supplement

P4 levels

Reduce
endometriosis-related
pain and recurrence

after surgery

[217,223–225]

Progestins Supplement P4 levels
Reduce

endometriosis-related
pain and lesions

[212,217,226–235]

Selective progesterone
receptor modulators

(SPRMs)

Interact with progesterone
receptor (PGR) to enhance

downstream effects

Reduce
endometriosis-related

pain and lesions
[212,236,237]

Several medical treatments for endometriosis directly aim to reduce E2 production or action in
order to mitigate E2 dominant conditions. GnRH agonists are normally second-line treatments that
decrease hormone levels by downregulating the pituitary through negative feedback mechanisms [213].
In randomized controlled trials (RCTs), GnRH agonists have been shown to be effective in reducing
endometriosis-related pain [214], but they may also have adverse effects such as bone mineral density
loss due to a hypoestrogenic state, requiring hormone “add-back” for long term use [213]. GnRH
antagonists are also currently under investigation for endometriosis treatment. Like GnRH agonists,
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they downregulate gonadotropins, but they do not cause flare-ups like GnRH agonists because they
rapidly and directly compete for GnRH receptors [215]. A recent RCT showed one GnRH antagonist
to be effective at reducing endometriosis pain but to have similar hypoestrogenic adverse effects as
GnRH agonists [216]. Aromatase inhibitors such as anastrazole or letrozole are also in use for some
endometriosis patients, although they are recommended only for women who do not respond to other
available treatments due to severe side effects [217]. In a mouse model of endometriosis, aromatase
inhibitors decreased lesion size by increasing apoptosis and diminishing VEGF and PGE2 levels [218].
Clinical trials have shown some success for aromatase inhibitors in reducing chronic pelvic pain,
but significant adverse effects such as irregular bleeding and joint pain have been reported [219]. There
is also a relatively new category of drugs under investigation aimed at targeted downregulation of E2
signaling termed SERMs, and these bind directly to ESRs in a tissue-specific manner [213]. These have
been shown to reduce lesions through downregulation of ESR1 and cell proliferation in rat models
of endometriosis [220,221], but a clinical trial in which treatment group endometriosis pain returned
more quickly after surgery tempers enthusiasm presently and points to the need for further study
before SERMs can be broadly used [222].

Other medical treatments for endometriosis primarily center on treating the dysregulation of
P4 signaling in endometriosis. COCs consisting of a formulation of E2 and progestins that suppress
ovarian steroid production are often used as a first-line therapy for chronic treatment of endometriosis
pain due to their practical benefits and safety over long-term use [217]. COCs have shown efficacy in
preventing endometriosis recurrence after surgical removal of lesions [223] as well as pain associated
with the disease [224,225]. It has been suggested that progestin-only therapies may be a better choice
since the inclusion of E2 could exacerbate estrogenic conditions in the context of P4 resistance [238].
Progestin-based therapies such as norethisterone acetate, levonorgestrel, and medroxyprogesterone
acetate (MPA) are another first-line treatment choice for endometriosis pain [217]. These compounds
cause decidualization and atrophy of both the eutopic endometrium and endometriotic tissue [212]
and have proven to be effective at reducing endometriosis-related pain in clinical trials [226–228]. MPA
was specifically shown to have equivalent efficacy to a GnRH agonist at reducing pain but without the
adverse hypoestrogenic effects on bone density [227]. In fact, one study revealed that MPA can decrease
ESR1 and ESR2 while increasing PR-A and PR-B in the endometrium women with endometriosis [229].
Another drug in this category, danazol, works by promoting a high androgen, low E2 environment [230].
Danazol has demonstrated efficacy in treating pain and reducing lesions in endometriosis, but significant
androgenic side-effects occur [230]. A more recently developed progestin, dienogest (DNG), shows much
promise. DNG has been shown to successfully reduce endometriosis-associated pelvic pain with limited
adverse effects such as minor irregular bleeding [231,232]. Furthermore, DNG inhibits endometriotic
stromal cell proliferation [233], increases the PR-B/PR-A ratio and decreases the ESR2/ESR1 ratio [234],
and inhibits E2 production and aromatase expression [235].

While progestins are an effective treatment option for many women with endometriosis,
P4 resistance renders many others unresponsive to progestin treatment [239]. This dilemma serves
as a call for new treatment strategies, one of which may be SPRMs currently under investigation.
These drugs interact directly with PGR to alter its downstream effects for the purpose of reducing
proliferation and prostaglandin production [212]. Mifepristone trials have indicated its efficacy in
endometriosis pain improvement and lesion reduction, although results are mixed [236,237]. One early
report indicated asoprisnil, which has mixed P4 agonist/antagonist activity and endometrial selectivity,
also succeeded in lowering endometriosis-related pain, but this trial was apparently cut short due to
some women developing endometrial hyperplasia [212]. Clearly, further investigation must be carried
out to assess the safety and efficacy of this class of molecules, but it represents a potential new avenue
for women who do not respond to currently available therapies.
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6. Conclusions

Endometrial homeostasis is clearly tightly interwoven with P4 and E2 signaling. Mutual
cooperation and regulation of P4 and E2 pathways is absolutely critical for uterine function and fertility,
and when dysregulation of these pathways occurs, pathologies like endometriosis and infertility are
common. Recent work enabled by sensitive cistromic and transcriptomic analyses has particularly
revealed critical details of P4 and E2 signaling regulators and modulators that are key to maintaining
healthy gene regulatory networks in the endometrium. Deepening knowledge of the molecular
underpinnings of normal P4 and E2 signaling in the endometrium juxtaposed with the dysregulation
in endometriosis that results in E2 dominance and P4 resistance has begun to enable more targeted
and individualized treatment options for women suffering the effects of endometriosis, and further
study in this area has great potential to unlock treatment opportunities with more permanent efficacy
and with fewer adverse effects than currently available therapies can provide.
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