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a b s t r a c t

Identification of exact causative genes is important for in silico drug repositioning based on drug-gene-
disease relationships. However, the complex polygenic etiology of the autism spectrum disorder (ASD)
is a challenge in the identification of etiological genes. The network-based core gene identification
method can effectively use the interactions between genes and accurately identify the pathogenic genes
of ASD. We developed a novel network-based drug repositioning framework that contains three steps:
network-specific core gene (NCG) identification, potential therapeutic drug repositioning, and candidate
drug validation. First, through the analysis of transcriptome data for 178 brain tissues, gene network
analysis identified 365 NCGs in 18 coexpression modules that were significantly correlated with ASD.
Second, we evaluated two proposed drug repositioning methods. In one novel approach (dtGSEA), we
used the NCGs to probe drug-gene interaction data and identified 35 candidate drugs. In another
approach, we compared NCG expression patterns with drug-induced transcriptome data from the
Connectivity Map database and found 46 candidate drugs. Third, we validated the candidate drugs using
an in-house mental diseases and compounds knowledge graph (MCKG) that contained 7509 compounds,
505 mental diseases, and 123,890 edges. We found a total of 42 candidate drugs that were associated
with mental illness, among which 10 drugs (baclofen, sulpiride, estradiol, entinostat, everolimus, fluvox-
amine, curcumin, calcitriol, metronidazole, and zinc) were postulated to be associated with ASD. This
study proposes a powerful network-based drug repositioning framework and also provides candidate
drugs as well as potential drug targets for the subsequent development of ASD therapeutic drugs.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Autism is a highly heterogeneous and polygenic neurodevelop-
mental disorder that has been reported to occur in approximately 1
in 59 children [1–3]. Currently, risperidone and aripiprazole are the
only approved therapeutic options for partially improving autism
symptoms [4]. As the global prevalence of ASD continues to rise,
there is an urgent need for developing efficient and cost-effective
therapeutic options for this disease [5]. However, de novo drug dis-
covery is an expensive and time-consuming process; it takes
approximately 10 years and more than $1 billion to develop a
new drug [6]. As a complex polygenic disease, ASD is not suited
to the traditional drug development pattern of identifying lead
compounds that show activity against single therapeutic targets.
Therefore, there is a need to establish new and effective drug dis-
covery strategies for the treatment of ASD. In silico drug reposition-
ing is one of the attractive strategies for identifying the potential
therapeutic drugs for ASD.
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In silico drug repositioning is aimed at identifying new indica-
tions for existing compounds. Compared to the traditional drug
discovery approaches, in silico approaches combine and analyze
various forms of drug data and disease omics data to identify
new potential functions of existing drugs. Since this approach
has the advantage of systematically filtering multiple candidate
drugs, development time and costs are significantly reduced
[7,8]. Due to the generation of large amounts of transcriptome
data, transcriptome signature matching has become a promising
method for in silico drug repositioning [9]. This method assumes
that if a drug can reverse the gene expression pattern associated
with a diseased state back to the pattern associated with the
healthy state, then that drug may be a potential therapeutic option
for the disease [7]. The first step in this method involves the iden-
tification of disease-associated gene expression signatures, and
then, the identification of drug-induced changes in gene expression
using various resources, such as Connectivity Map (CMap) [10], in
order to screen candidate drugs [11]. For example, Dudley et al.
used CMap to compare gene signatures to transcriptome signa-
tures and found that the anticonvulsant, topiramate, can treat
inflammatory bowel disease [12]. So et al. proposed a framework
for drug repositioning that links GWASs and drug expression pro-
files from CMap [13]. However, ASD is heterogeneous and the
molecular mechanism involved have not been established, there-
fore, Dudley et al.’s method, which involves using differential
expression analysis to identify disease gene signatures is not suit-
able for ASD. Accurate identification of disease-relevant gene
expression signatures is key in transcriptomic signature matching.
In addition to drug transcriptome label data in CMap, there are
Fig. 1. Workflow for potential therapeutic drug repurposing for ASD. The workflow con
drug repositioning with method 1: drug-target gene set enrichment analysis (dtGSEA); c
graph construction.

3909
large amounts of drug-induced gene expression data that have
not been used. In So et al.’s framework, evidence for therapeutic
potential of candidate drugs found by manual literature search is
not comprehensive. Addressing these challenges will require a
more effective and systemic approach.

The network-based analysis method provides an opportunity
for accurately identifying ASD pathogenic genes, revealing molec-
ular mechanisms, and identifying drug targets, which offer possi-
bilities for drug repositioning. ASD is a polygenetic disease, gene
interactions significantly contribute to the highly heterogeneous
genetic structure and phenotypic complexity of ASD [14,15]. Net-
work analysis is an effective method for evaluating gene interac-
tions that can be used to develop potential gene interaction
networks with similar functions from high-dimensional transcrip-
tome data. These genes and gene interaction pathways may repre-
sent novel drug targets for ASD [16]. In addition, network-based
analysis methods can organize protein–protein interactions,
drug-target interactions, and drug disease modules in form of a
network to on molecular mechanisms, potential therapeutic drugs,
and offer evidence related to potential therapeutic drugs [17,18].

In this study, a novel network-based drug repositioning frame-
work was developed which integrates network-specific core gene
(NCG) screening from the transcriptome data of different brain
regions from children with ASD, drug repositioning methods based
on drug-gene networks and transcriptome signature matching, as
well as evaluation of the therapeutic potential of candidate drugs
based on a knowledge graph (Fig. 1). Moreover, we evaluated
and compared gene expression patterns and gene regulation net-
works in different brain regions of children with ASD. Molecular
tains 4 main steps: a identification of NCGs based on network analysis methods; b
drug repositioning with method 2: the Connectivity Map webtool; and d knowledge



H. Gao, Y. Ni, X. Mo et al. Computational and Structural Biotechnology Journal 19 (2021) 3908–3921
mechanisms were further investigated by functional enrichment
analysis.
2. Materials and methods

2.1. Data collection and sample selection

For ASD it is easier to use brain tissue transcriptome data to
identify dydregulated gene signals. To reduce technical errors, a
total of 5 datasets that qualified for our study were obtained,
including GSE102741 [19], GSE59288 [20], GSE51264 [21],
GSE62098 [22], and the dataset developed by Parikshak et al.
[16]. These 5 public datasets have the same sequencing platform
and a large sample size. Transcriptome sequencing data for a total
of 178 brain tissue samples were obtained from 5 datasets. The tis-
sues used for sequencing were obtained from 6 different brain
regions, including the dorsolateral prefrontal cortex (DPC, BA46),
superior frontal gyrus (SFG, BA8), corpus callosum (CC), BA9,
BA41-42-22, and Vermis (VM) (Table S1). All the samples had been
obtained from children (age < 18 years). The control group con-
sisted of 97 healthy individuals (24 girls and 73 boys, mean age:
10.07 years), while the ASD group consisted of 81 patients (19 girls
and 62 boys, mean age: 10.21 years). There was no statistically sig-
nificant difference in age between the two groups (p > 0.05).
2.2. RNA sequencing data preprocessing

Raw data for the four datasets (GSE102741, GSE59288,
GSE51264, GSE62098) from the GEO database were converted to
‘‘.fastq” format files using the fasterq-dump tool. We used fastqc
v0.11.8 to check the sequencing quality of the data and
trimmomatic-0.39 to trim and filter low-quality reads [23]. The
reads were mapped to GRCh37.73 annotations using TopHat
v2.1.1 [24]. Quantification of gene expression levels were per-
formed using union exon models with HTSeq v0.11.0 [25]. Process-
ing methods for the data in the 4 datasets were the same as those
for the Parikshak et al. dataset. Based on the reprocessed quantita-
tive file for gene expression levels, we divided the data into 6 gene
expression datasets according to tissue sources. Genes expressed in
at least 50% of the samples (counts of 10 or more) were retained.
2.3. Coexpression module analysis

Filtered raw read counts for all samples were normalized using
the ‘‘VST” command in DESeq2 [26]. After using the ComBat func-
tion in R package SVA to correct for the batch effect [27], expres-
sion data were divided into 6 datasets based on different brain
regions. WGCNA v1.67 was used to perform weighted gene coex-
pression network analysis on each dataset [28]. The
‘‘BlockwiseModules” function was used to construct signed coex-
pression modules, with each module containing at least 50 genes.
Modules were summarized by their module eigengene (ME), and
modules with eigengene correlations of > 0.85 were merged. For
module-trait analyses, ‘‘bicor” was used to establish the correlation
between gene expression and phenotypic data (ASD diagnosis). A |
cor| > 0.35 and p-value < 0.05 were set as cutoff criteria for ASD-
associated module screening. A positive correlation implied that
a module was upregulated in the disease group compared to the
control group while a negative correlation indicated downregula-
tion. We used gene significance (GS) and module membership
(MM) values to define the hub genes (GS > 0.30, MM > 0.6, p-
value < 0.05). We classified the significantly associated ASD mod-
ules composed of hub genes as strong correlation modules (SCMs),
which included upregulated SCMs and downregulated SCMs.
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2.4. ASD-related genes and evaluation of SCMs

We constructed an ASD-related gene set, that contained differ-
entially expressed genes (DEGs) and previously reported ASD
pathogenic genes. First, we identified DEGs between ASD samples
and controls in each brain region using edgeR v3.26.5 [29]. Read
counts were subjected to TMM normalization. Log2 (counts per
million, CPM) transformation was used for clustering to remove
outlier samples. To ensure that the different signals between
groups were not affected by hidden confounding factors, we used
R package ‘‘SVA” to calculate two covariates and design them into
the model. Using the exact test model to determine DEG in the
expression data for each brain region, multiple testing correction
was performed using the Benjamini-Hochberg method. Genes with
FDR values < 0.05 and logFC values > 1 (upregulated) or logFC val-
ues <�1 (downregulated) were reported as significant DEGs. Sec-
ond, we searched for previously reported ASD causative genes in
the SFARI Gene and AutismKB 2.0 databases [30,31]. Based on their
scores, the genes were into three categories high confidence (SFARI
score = 1 or AutismKB score > 16), strong candidate (SFARI
score = 2 or AutismKB score > 10), and suggestive evidence (SFARI
score = 3 or AutismKB score > 5) categories. Finally, hypergeomet-
ric distribution was used for enrichment analysis to establish the
significance of the overlap between the ASD-related gene set and
SCMs.

2.5. msPN construction and NSGs screening

Protein-protein interactions (PPIs) were downloaded from the
STRING database (Version 11, http://string-db.org/), and interac-
tions with a combined score of > 400 were selected for the con-
struction of the PPI network. We mapped the genes in SCMs to
the PPI network to obtain module-specific PPI networks (msPNs),
which included upregulated and downregulated msPNs. For each
msPN, we calculated the degree of each node using ‘‘degree” func-
tion in the R package igraph v1.2.2. Then, we selected nodes whose
degrees were greater than the mean value of the degrees for all
nodes in the network as network-specific core genes (NCGs):

N m½ � ¼ 1 ifdm >

Pn

i¼1
di

n

0 otherwise

(
m 2 ½1;n�

where by N[m] is the node in each msPN, dm is the degree of the
node, and n is the total number of nodes in each msPN. If N[m] is
equal to 1, then the node is NCG. Cytoscape v3.7.1 software was
used for network visualization.

2.6. Drug-target gene set enrichment analysis (dtGSEA)

We downloaded pharmaco-transcriptomics data from the Drug-
Bank database (https://www.drugbank.ca/) and drug-gene interac-
tions from Drug Targetor v1.21 (http://drugtargetor.com/), which
contains information on up-/downregulated genes due to the
metabolism of pharmaceutical compounds [32,33]. We combined
drug-target interactions from the two databases and deleted the
duplicates. Then, target genes for each drug were mapped to the
PPI network to construct drug-specific PPI networks (dsPNs). Genes
in each dsPN network were postulated to be drug target genes
(DTGs). The ENSEMBL peptide ID and gene name were converted
to an Entrez Gene ID using biomaRt.

Drug-target normalized enrichment scores (dtNES), were deter-
mined in four steps. First, for each dsPN, we calculated the degree
of each node using ‘‘degree” function in R pacakage igraph v1.2.2.
Then, based on the type of drug-gene interaction, we divided the
DTGs into drug-upregulated and drug-downregulated gene sets.
Node degrees of the drug-upregulated genes were positive while

http://string-db.org/
https://www.drugbank.ca/
http://drugtargetor.com/
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those of drug-downregulated genes were negative. The DTGs were
ranked in a descending order of node degrees. A ranking list of gene
importance was generated for each dsPN. The most a gene was top-
and bottom-ranked, the more important it was in the network. The
ranked gene list was further used for GSEA analysis. Second, based
on the msPN type, NCGs were separated into up- and downregu-
lated gene sets and simultaneously scanned with the ranked lists
of all dsPNs through gene set enrichment analysis (GSEA) [34].
For each dsPN, NCGs and DTGs overlapped by at least two genes.
Then GSEA pre-ranked list analysis was applied using 1000 permu-
tations to obtain significant dsPNs (FDR < 0.25). Third, based on the
results of GSEA, the drug action type was divided into two patterns.
The phenomenon in which upregulated NCGs were enriched in the
upregulated DTG set (upNES > 0) while downregulated NCGs were
enriched in the downregulated DTG set (dnNES < 0) was defined as
the ‘‘same” pattern. The phenomenon in which the upregulated
NCGs were enriched in the downregulated DTG set (upNES < 0)
and the downregulated NCGs were enriched in the upregulated
DTG set (dnNES > 0) was defined as the ‘‘opposite” pattern. Fourth,
the maximum absolute NESs against up- and downregulated NCGs
were defined as drug-target normalized enrichment scores
(dtNESs) for overlap, as follows: dtNES = max(abs(upNES), abs
(dnNES)). The dtNES exhibiting the same pattern were positive,
while scores of the opposite pattern were negative. Drugs corre-
sponding to a dsPN with a negative dtNES may reverse the regula-
tory direction of the gene network. When DTG sets overlapped
with either up- or downregulated NCG genes but not both, the
direction and score for the overlap were determined using the
NES of the more significant set. Results for up- and downregulated
NCGs that were simultaneously enriched in the up- or downregu-
lated DTG sets were discarded. For simplicity, we referred to this
approach for drug repositioning as the drug-target gene set enrich-
ment analysis (dtGSEA).
2.7. Drug repositioning based on Connectivity Map

Based on the principle of matching transcriptome signatures,
we used the ‘‘Query” web tool in CMap (https://clue.io/) to analyze
NCGs in the up- and downregulated msPNs to identify drugs with
therapeutic repositioning potential in ASD [35]. We considered
CMap connectivity scores (tau values) of + 95 or higher, and �95
or lower to be strong scores for identifying potential compounds
that affect the disease state. The most negative connections were
considered to be perturbations that elicit transcriptional effects
opposite of the disease state; these compounds are potential ther-
apeutic drugs. Similarly, the most positive connections were con-
sidered to be perturbations with similar effects.
2.8. Construction MCKG

The mental diseases and compounds knowledge graph (MCKG),
a comprehensive biological knowledge graph that associates com-
pounds and mental diseases, was constructed based on the AskBob
drug discovery platform (http://lwj1.ens.yun.pingan.com:5001/).
AskBob is a drug discovery commercial platform that was designed
and developed by PingAn HealthCare Technology. First, we used
the StanfordNLP tool to preprocess all PubMed documents pub-
lished before 2019. The preprocessing involved splitting of the doc-
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uments into sentences, sentence tokenization, and part-of-speech
tagging. Second, we applied named entity recognition (NER) based
on the LSTM-CRF model to every sentence for medical entity men-
tion detection [36]. Sentences that did not contain chemical or dis-
ease entities were discarded. The objective of entity linking was to
link each mentioned entity to a dictionary of chemical and disease
medical entities as defined by the Unified Medical Language Sys-
tem (UMLS) (www.nlm.nih.gov/research/umls) and Medical Sub-
ject Headings (MeSH) (http://www.ncbi.nlm.nih.gov/mesh). In
case the entity could not be linked to the dictionary, it was dis-
carded. Dependency analysis was performed using the Stan-
fordNLP tool to obtain the dependency path of a given chemical
and disease entity pair in a sentence [37]. Third, relation type of
the given entity pair in the sentence was identified by matching
the dependency path and high-confidence rule patterns as evalu-
ated by experts. In case the rule pattern could be matched, a rela-
tion tuple containing the chemical, relation, and disease was
obtained. The relation tuples were stored in the medical knowl-
edge database. Finally, we used all DO terms under the disease of
mental health term (DOID: 150) in the Disease Ontology (DO,
http://www.disease-ontology.org) database to extract mental
disease-related relational tuples from the medical knowledge base
[38]. Finally, we constructed the MCKG and visualized it in the Ask-
Bob platform.
2.9. Toxicogenomic data analysis

We downloaded rat in vivo toxicogenomic data from DrugMa-
trix and Open TG-GATEs databases [39]. The DrugMatrix database
includes two datasets: GSE59927 and GSE57822 [40], which can be
downloaded from the GEO database. The rat GeneChip array data,
which was downloaded from the Open TG-GATEs database,
includes two subsets: rat in vivo liver single dose, and rat in vivo
liver repeat dose. Microarray data were downloaded from ftp://
ftp.biosciencedbc.jp/archive/open-tggates/LATEST/. Repeat probes
were combined with the maximum value and annotated using R
package annotate v.1.52.1 to obtain gene symbols. Entrez gene ID
and gene symbol were mapped using the R biomaRt package for
both human and rat. Limma V3.30.13 was used to obtain differen-
tially expressed genes [41]. The threshold for DEGs was set as |
logFC| > 0 and p < 0.05. The DEGs for each compound under differ-
ent conditions (time, dose, and tissue) were sorted in a descending
order of logFC to generate a ranked list. Then, the GSEA algorithm
was used to determine reversal of the expression profile of NCGs in
the 4 rat in vivo data subsets. The principle was the same as that of
dtGSEA.
2.10. Functional enrichment analysis

Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomics (KEGG) pathways enrichment analyses were per-
formed using clusterProfiler v3.12.0 R package [42]. In case large
numbers of comparisons were performed, the Benjamini-
Hochberg method was used to adjust raw p-values. GO terms with
q values < 0.05 and KEGG pathways with q-values < 0.05 were con-
sidered significantly enriched. The list of abbreviations is provided
in Box 1.

https://clue.io/
http://lwj1.ens.yun.pingan.com%3a5001/
http://www.nlm.nih.gov/research/umls
http://www.ncbi.nlm.nih.gov/mesh
http://www.disease-ontology.org
http://ftp%3a//ftp.biosciencedbc.jp/archive/open-tggates/LATEST/
http://ftp%3a//ftp.biosciencedbc.jp/archive/open-tggates/LATEST/
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Box 1 List of abbreviations.
3. Results

3.1. ASD brain region-specific gene coexpression module dysregulation

Raw data were analyzed and processed via a unified data pro-
cessing flow to eliminate bias (Fig. S1A). Fig. 2A shows changes
in the PCA plot before and after batch effect adjustment. After qual-
ity control and filtering of the gene expression data, we obtained a
total of 20,119 genes. A total of 18 SCMs were identified in 4 brain
regions, BA46, BA8, CC, and BA41-42–22(Fig. 2B, Fig. S2E). No
SCMs were identified in the BA9 and VM brain regions. Among
these SCMs, 8 modules (upregulated: 3, downregulated: 5) were
in BA8; 5 modules (upregulated: 3, downregulated: 2) were in
BA41-42–22; 3 modules (upregulated: 1, downregulated: 2) were
in BA46, while 2 modules (upregulated: 1, downregulated: 1) were
in CC (Fig. 2B). More infiormation on the SCMs is provided in
Table S2.

The ASD-related gene set contained a total of 2,475 genes,
including 773 differentially expressed genes (DEGs)and 1,805 pre-
viously reported ASD causative genes (Table S3, see Methods). A
total of 426 DEGs, including 234 upregulated and 192 downregu-
lated genes were found in BA8. BA8 was found to have the highest
number of DEGs, followed by CC (221 DEGs), BA41-42–22 (147
DEGs), VM (113 DEGs), BA46 (32 DEGs), and BA9 (4 DEGs)
(Fig. 2C and Fig. S1B). Among the DEGs, there was no gene that
was differentially expressed in all regions (Fig. 2D). About 91.50%
of the genes were dysregulated in only one region while 8.5% of
the genes were deregulated in more than two regions (Fig. 2E,
Table S4). GO enrichment analysis revealed that downregulated
DEGs in BA8, BA41-42–22, and CC were enriched in nervous sys-
tem development, synaptic vesicle, and neurotransmitter trans-
mission terms (Fig. S1C-E). Upregulated DEGs in BA8, BA41-42–
22, and VM were enriched in immune system process term. No sig-
nificant functional enrichment results were found for the DEGs in
BA46 and BA9. More findings are shown in Table S5. Among the
1805 previously reported ASD causative genes, there were 318
high-confidence genes, 674 strong candidate genes, and 813 genes
with suggestive evidence. Hypergeometric distribution testing
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revealed significant enrichments of ASD-related genes among 9
SCMs (p < 0.05, Table 1), which were mainly distributed in BA8
and BA41-42–22 (Fig. S2E). The detailed enrichment results of
the genes in the SCMs are given in Table S2.

To elucidate on the biological functions of SCMs, we performed
GO analyses with genes in each SCM. The downregulated modules
in BA46, BA8, and BA41-42–22 were associated with synaptic func-
tion and nervous system development. For example, the lightyel-
low (Fig. 2F), darkorange (Fig. 2G), and darkmagenta (Fig. S2A)
modules in BA8 were enriched in axon development, neuron differ-
entiation, and cell–cell adhesion. Salmon SCM of BA41-42–22 was
enriched in synaptic and axonal functions (Fig. 2I); moreover, the
upregulated royalblue module in BA41-42–22 was enriched in
immune system functions (Fig. 2H). The upregulated gene in the
darkgrey module in BA8 was enriched in mitochondrial respiratory
electron transport chain and mitochondrial ATP synthesiscoupled
electron transport functions (Fig. S2B). The downregulated white
module in BA41-42–22 was associated with sodium ion transport
and ion transmembrane transport (Fig. S2C). The pink module in
BA46 was enrichment in mitochondrial functions (Fig. S2D).
Enriched GO terms for these SCMs are shown in Table S6.

3.2. NCGs are associated with ASD

Pathways and hub proteins within PPI networks are important
drug targets. Therefore, precise selection of target genes involved
in molecular mechanisms of ASD is critical for drug repositioning.
The combined use of gene coexpression data and protein interac-
tion data improves the confidence of the corresponding PPI net-
work, thereby enabling a high-confidence ASD-related molecular
network to be obtained. The strong correlation between network
topology and biological function is associated with the presence
of proteins with high node degrees in the network that may exert
a strong influence on network function through multiple interac-
tions. In this study, we constructed a pipeline that uses transcrip-
tome data and PPI networks to screen network-specific core genes
(NCGs) for drug repositioning (Fig. 1A). Screening procedures for
NCGs are shown in Methods Section 2.5.

Based on region-specific SCMs, we constructed 18 msPNs,
which contained a total of 993 protein-coding genes (Fig. 3A,
Fig. 3B). After calculating the degrees of the network nodes, a total
of 365 NCGs (18.28% of the total number of coexpression module
genes) were screened out of the 993 genes (Fig. 3A). There were
166 (31.92% of 520), 108 (43.37% of 249), 52 (56.52% of 92), and
39 (29.55% of 132) NCGs, for the BA41-42–22–, BA8-, CC–, and
BA46-msPN genes, respectively (Fig. 3A, Fig. 3B). A detailed msPN
protein-coding gene list and NCGs can be found in Table S2. Func-
tional enrichment analysis of the msPNs revealed that functions for
each coexpression module were not only retained, but were also
more focused than those of the larger group. For example, for the
lightyellow msPN in BA8, GO enrichment analysis showed that
the genes were involved in regulation of axonogenesis and axon
development (Fig. 3C). The darkorange msPN network of BA8
was enriched in cerebral cortex neuron differentiation (Fig. 3C).
The royalblue msPN in BA41-42–22 was enriched with phagocyto-
sis and immune response-related genes (Fig. 3D). The darkgrey
msPN network of BA8 was enriched with mitochondrial electron
transport function genes(Fig. 3D) (Table S7).

3.3. Repositioning candidates as identified by dtGSEA and CMap
approaches

Through dtGSEA, dsPNs with NCGs were scanned to reposition
drugs (Fig. 1B) while through the CMap database, drugs were repo-
sitioned (Fig. 1C, see Methods for the detailed procedures). Based
on 365 NCGs from 4 brain regions, a total of 72 compounds (with-



Fig. 2. Coexpression network analysis and functional enrichment network for the identified genes. a PCA plot before batch effect removal based on gene expression and after
ComBat batch effect removal. Dots with different colors correspond to different brain regions. b Relationships of MEs (module eigengenes) and ASD in the 4 brain region. Each
row in the table corresponds to a module. The numbers in the table report the correlations of the corresponding MEs and traits (P < 0.05, modified Bonferroni test). The table is
color-coded by correlation according to the color legend. c Bar plot representation of differential gene expression in different brain regions. d Venn diagrams of differentially
expressed genes. e The percentages of all differentially expressed genes distributed in the brain regions are shown in the pie chart. f GO term enrichment analysis of genes in
the light yellow SCM of BA8. g GO term enrichment analysis of genes in the dark orange SCM of BA8. h GO term enrichment analysis of genes in the royal blue SCM of BA41-
42-22. i GO term enrichment analysis of genes in the salmon SCM of BA41-42-22. The x-axis shows the -log (q-value), and the y-axis shows the GO terms. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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out duplication) that may have therapeutic effects were screened
using these two methods (Table S8).

Through the dtGSEA approach, we obtained a total of 1981
dsPNs and 18,876 drug target genes (DTGs). These dsPNs contained
a total of 189,899 drug-gene interactions, among which 94,581
were upregulation interactions while 95,318 were downregulation
interactions. To determine the extent to which a compound tar-
geted the NCGs, we defined dtNES with a plus or minus sign
through GSEA. A negative dtNES indicated that a drug could
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reverse the expression of NCGs in msPNs. We obtained a total of
35 drugs (BA41-42–22: 14 drugs, BA8: 7 drugs, CC: 8 drugs,
BA46: 6 drugs) with negative dtNESs, among which 7 drugs (sul-
piride, estradiol, proscillaridin, vincristine, cyclopenthiazide, zinc,
and glyburide) were identified in >2 brain regions (Table S9). For
example, baclofen (dtNES = �1.46, FDR = 0.026), which was found
in BA41-42–22, ranked first among 14 drugs (Fig. 4A). Similar find-
ings are shown in Fig. S3. Sulpiride, identified in BA8
(dtNES = �1.47, FDR = 0.096), was also found in BA41-42–22



Table 1
Hypergeometric distribution testing results of 18 SCMs.

Region Module SCMsize DEGs Causative gene P-value

BA46 red 169 – 10 0.94
pink 70 1 3 0.88
tan 63 2 6 0.20

BA8 lightyellow 223 43 38 5.11E-25
darkorange 174 32 25 4.90E-14
white 116 3 20 5.85E-04
sienna3 76 12 7 1.04E-04
darkgreen 130 1 5 0.98
darkgrey 105 6 3 0.61
purple 157 4 33 3.00E-06
darkmagenta 62 3 21 1.37E-09

BA41-42–22 royalblue 71 14 9 1.34E-07
tan 125 4 15 3.02E-02
salmon 109 – 21 6.22E-04
cyan 74 1 2 0.97
white 46 – 8 0.05

CC thistle1 109 5 6 0.39
midnightblue 118 2 3 0.99

Fig. 3. Module-specific PPI network and functional analysis. a Venn diagram. In the Venn diagram, the largest ellipse represents the number of genes in the SCM, the medium
ellipse represents the number of genes in the module-specific PPI network (msPN), and the smallest ellipse represents the number of NCGs. b msPNs and NCGs. The named
nodes represent NCGs from the msPN, the orange nodes represent NCGs from BA41-42–22, the deep sky blue nodes represent NCGs from BA8, the light green nodes represent
NCGs from CC, the pink nodes represent NCGs from BA46, and the dark cyan nodes represent the intersections of NCGs from different brain regions. The gray nodes are
proteins in the msPN, and the gray edges represent protein interactions in the msPN. c Functional enrichment revealed that the genes in the msPNs are related to the nervous
system. d Functional enrichment revealed that the genes in the msPNs are related to other functions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. Drug repositioning results and MCKG. a Significant drug-target normalized enrichment score (dtNES) for ASD from BA41-42–22. The x-axis shows the positive dtNES
�1 and the negative dtNES + 1, and the y-axis shows the drug name. b Significant CMap connectivity score for ASD from BA41-42–22. The x-axis is the score ((positive score �
95)/10 and (negative score + 95)/10) and the y-axis is the name of the drug. The horizontal bars indicate the computationally predicted therapeutic scores for the drugs based
on comparison of the gene expression signatures of the drugs with the NCGs. A negative score indicates that a drug exhibits an expression pattern that is oppositional to the
disease; such, drugs are potential therapeutic drugs. c Overview of the knowledge graph and processing pipeline. d Forty-two drug candidates and the mental illness
association network fromMCKG. Yellow nodes represent drugs, magenta nodes represent mental illnesses, and differently colored edges indicate different relationship types.
The pie charts show the percentages of relationship types. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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(dtNES = �1.24, FDR = 0.132) (Fig. S3A), while estradiol was found
in both BA8 (dtNES = �1.33, FDR = 0.097) and CC (dtNES = �1.70,
FDR = 0.024) (Fig. S3C).

Up- and downregulated region-specific NCGs were entered into
the CMap database, and a total of 46 compounds (BA41-42–22: 8,
BA8: 18, CC: 15, BA46: 5) with potential therapeutic effects were
obtained, among which XE-991 was identified in both BA8 and
BA41-42–22 (Table S9). These compounds included FDA-
approved drugs, including sulpiride (score = �95) and entinostat
(score = �95),which were found in BA41-42–22 (Fig. 4B); epothi-
lone (score = �97) and everolimus (score = �97), which were
found in BA8 (Fig. S4A); and fluvoxamine (score = �95), which
was found in CC (Fig. S4C). In addition, we identified some new
chemicals, including XE-991 (BA41-42–22: score = �99, BA8:
score = �99), BI-2536 (BA8: score = �98), SB-216763 (BA46:
score = �99), and ER-27319 (CC: score = �97).

3.4. Evaluation therapeutic potentials of drug candidates

To assess the therapeutic potentials of candidate drugs identi-
fied through drug repositioning, we constructed MCKG (Fig. 1D,
Fig. 4C, see Methods). The MCKG included 2 types of entities (com-
pounds and mental diseases), 6 types of relationships (treat,
reduce, protect, prevent, induce, and unknown), 8014 nodes
(7509 compounds, 505 mental diseases), and 123,890 edges.
Detailed MCKG data are available on the AskBob platform (http://
lwj1.ens.yun.pingan.com:5001/).

We mapped a total of 72 potentially therapeutic compounds to
MCKG, amoung which 42 were covered by MCKG (Table S8), that
were associated with 206 mental disease nodes and1370 edges
(Fig. 4D, Table S10). Among the 37% of the compound-disease rela-
tionships that were annotated as non-induced, there were 30
drugs, accounting for 71.43% of the total number of covered drugs.
They included 18 drugs (e.g., sulpiride, estradiol, baclofen, and cur-
cumin) identified by the dtGSEA method (Fig. 5A) and 13 drugs
(e.g., everolimus and fluvoxamine) identified by the CMap method
(Fig. 5B). Notably, sulpiride was identified by both methods. The
remaining 30 drugs that were not annotated by MCKG were mostly
compounds obtained through the CMap database. In MCKG, mental
diseases associated with these drugs included ASD (autistic disor-
der of childhood, autistic disorder, infantile autism), depressive
disorder, anxiety disorder, and schizophrenia. Verification of the
MCKG revealed that 10 (baclofen, calcitriol, curcumin, entinostat,
estradiol, everolimus, fluvoxamine, metronidazole, sulpiride, and
zinc) of the 42 drugs were associated with ASD (Fig. 5C). Among
them, the therapeutic effects of everolimus (https://clinicaltri-
als.gov/: NCT01929642, NCT01730209) and fluvoxamine
(NCT00655174) on autism have been evaluated in registered clin-
ical trials. The remaining32 drugs were annotated to have thera-
peutic, protective, and reducing effects on other mental illnesses.
The therapeutic effects of these drugs on autism merit further
studies. Fig. 5D shows source brain regions and methods for the
72 drugs, levels of evidence associated with ASD or several mental
diseases and other characteristics, such as research subjects (e.g.,
humans or animals) and study type (e.g., clinical trials, randomized
controlled trials). More information can be found in MCKG and the
expanded literature links in the database. Analysis of the mecha-
nisms of action (MOAs) of the 72 drugs revealed that the HDAC
inhibitor, estrogen receptor agonist, glycogen synthase kinase inhi-
bitor, and mTOR inhibitor categories had more drugs, including
entinostat, estradiol, SB-216763, and everolimus (Table S8). We
also investigated some of the drugs identified by dtGSEA, including
sulpiride, estradiol, and baclofen, and the target genes of these
drugs (Fig. 5E), The target genes for sulpiride included PEX2,
EHHADH and SCP2. Estradiol was found to reverse the expression
patterns of some mitochondrial genes (e.g., MRPL33, MRPL27,
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NDUFA4, NDUFB5) and ASD-related genes (e.g., MTOR, TUBB3).
Baclofen’s target genes included HDAC1, RPL35, and CBFB. More
drug enrichment and target gene information is shown in Fig. S5.
We also useD the rat in vivo toxicogenomic data in the DrugMatrix
database and the Open TG-GATEs database to further validate the
drug candidates. We found experimental data for 23 of the 72 com-
pounds in the two databases. A total of 17 drugs (sulpiride and
estradiol among others) were found to reverse the expression of
NCGs (Table S11). For example, at different doses and time,
Papaverine reversed the expression of some NCGs in BA41-42–22
(Fig. S7A). Sulpiride was shown to reverse the expression of NCGs
in BA41-42–22, BA8, and gene expressions in 365 NCGs after 9 h of
middle dose administration in rats (Fig. S7B). In addition, 7 of the
72 drugs (sulpiride and estradiol among others; Fig. S7C) were
reported in the study by So et al.
3.5. Applicability of the pipeline in other psychiatric disorders

To verify the applicability of the pipeline for other diseases, we
performed additional experiments. We used our pipeline for com-
prehensive analysis of a dataset from the study by Vargas et al.
(data can be downloaded from GSE5281) [43,44]. From the tran-
scriptome data of 6 brain regions, we obtained a total of 75 candi-
date compounds, among which 31 drugs had evidence for the
treatment of Alzheimer’s disease (Table S12). Although the 75
compounds do not include 6 drugs, our pipeline achieved a more
comprehensive and accurate result.
4. Discussion

In this study, we constructed a drug repositioning framework
(Fig. 1) that is different from previous studies that integrated DEGs,
PPI, and CMap data to identify drug targets and candidate drugs
through network analysis. Our pipeline take into account the char-
acteristics of polygenic, heterogeneity, and dysfunctional gene net-
work of ASD. It integrates multiple easily available data sets, using
a combination method of coexpression network, PPI network and
topological analysis to accurately identify key pathogenic genes.
By scanning drug-induced gene expression data, we obtained an
accurate and comprehensive drug candidate list, with an increas-
ing likelihood of subsequent experimental studies success. Using
this framework, we systematically analyzed functional characteris-
tics of transcriptomes of different brain regions and repositioned
potential therapeutic drugs. The MCKG provides further evidence
for the effectiveness of our drug repositioning approach.

Among the 6 selected brain regions, 4 brain regions had signif-
icant gene expression level imbalances, especially BA8 and BA41-
42–22. BA8 is associated with cognitive and memory functions
[45], while BA41-42–22 is associated with various cognitive func-
tions, including semantics, memory, and auditory cognition [46].
Among the downregulated DEGs, SCMs and msPNs that we identi-
fied from these 2 regions, they were highly enriched in the neuron,
dendrite, and axon development terms, implying that synaptic
dysfunction and abnormal neuronal homeostasis are common
underlying molecular mechanisms of ASD. Upregulated SCMs in
BA41-42–22 were enriched in immune processes, implying that
alterations in gene pathways associated with immune function
can have effects on brain development and cognition. Indeed, the
central role of immune dysregulation in ASD has been reported
[47]. In a study by Parikshaket al., BA9 showed dysregulation in
people aged 2–67 years, however, we did not detect significant dif-
ferences between diseased and healthy groups in children aged 2–
18 years [16]. We only found 4 upregulated genes (SNORD14E,
SLC10A1, NPAS4, and IFI6) in BA9. These results contrast to the
551 DEGs found in the BA9 brain region in Parikshak et al.’s study.

http://lwj1.ens.yun.pingan.com%3a5001/
http://lwj1.ens.yun.pingan.com%3a5001/
https://clinicaltrials.gov/
https://clinicaltrials.gov/


Fig. 5. Evaluation of drug candidates. a Sankey diagram of potential drugs identified by the dtGSEA method in the MCKG. b Sankey diagram of potential drugs identified by
the CMap method in the MCKG. The first column (left) shows the brain regions. The second column (right) shows the potential drugs. c Ten drug candidates related to ASD in
the MCKG. The yellow nodes represent drugs, and the magenta nodes represent mental illness. d Comprehensive information heatmap of 72 drug candidates. Each column
represents a candidate drug, and each row represents an attribute of the candidate drug (for example, the method, brain region, whether or not it is from the MCKG, whether
or not it can treat ASD, the type of study, the subject, etc.). Yellow indicates whether the drug candidate is related to other mental illnesses in the MCKG. e Target NCGs and
GSEA results of drug candidates identified by the dtGSEA method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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The absence of significant changes in the BA9 and VM regions does
not mean that children with autism do not have dysregulated
genes in these two regions. We observed large differences in gene
expression levels among these 6 regions. Notably, the NPAS4 gene
was the only one that was upregulated in all four brain areas.
NPAS4 can regulate the formation of inhibitory synapses on excita-
tory neurons, and its dysregulation in the brain can regulate
depression, anxiety, ASD, and cognitive disorders [48]. In addition,
we identified an SCM associated with mitochondrial function in
both BA46 and BA8. Interestingly, a reverse regulation pattern
was observed for the two SCMs: an upregulated mitochondrial-
related SCM in BA46 that included mitochondrial ribosomal pro-
teins (MRPS12, MRPL17, MRPL37, MRPL55) and a downregulated
SCM in BA8 that included NADH dehydrogenase genes (NDUFA1,
NDUFA4, NDUFA6, NDUFB1, NDUFB3, NDUFB4 and NDUFB5) as
well as cytochrome c oxidase genes (COX7B, COX14, COX4I1).
Mitochondria have been implicated in various aspects of neural
development, including synaptogenesis, synaptic plasticity, neu-
ronal differentiation, and neurotransmission. Studies have also
found mitochondrial dysfunction in ASD patients [49,50]. Abnor-
malities in the mitochondrial electron transport chain (ETC) com-
plex levels and deficiencies of enzymes in the mitochondrial
respiratory chain cause of brain dysfunction in children with ASD
[51]. Mitochondrial complex I (NADH dehydrogenase) and com-
plex IV (cytochrome c oxidase [COX]) are central to oxidative phos-
phorylation, ETC, and ATP production in eukaryotes [52]. Complex I
levels in the frontal cortex were found to be suppressed in children
with autism [53]. Anitha et al. reported downregulated expressions
of mitochondrial complex I and complex IV genes in autistic brains
[54]. Our findings in BA8 are consistent with the findings of these
studies. However, it has not been established why mitochondrial
SCM in BA46are upregulated. The SCMs with different functions
in different brain regions elucidate on the molecular mechanisms
of brain dysfunction in children with ASD. Genes and pathways
in these SCMs are potential effective targets for ASD treatment
and prevention.

In recent years, PPI networks and network-based methods have
been used for drug target discovery and drug repositioning studies
[55,56]. msPNs constructed by integrating gene expression data
and PPI data are more reliable than those integrating gene expres-
sion data or PPI data alone. Usually, networks have redundancy,
therefore, identifying key genes and proteins is crucial for drug
repurposing. In addition, the correlation between network topol-
ogy and function determines that key genes in the network can
have significant effects on network function through multiple
interactions. Protein products of genes that are affected by drugs
often lie at the center of important functional PPI networks [57].
If a drug can affect the expression of key genes, then tit can have
a significant impact on the entire network, in turn altering the
abnormal expression of multiple genes and reversing the disease
state. Based on this idea, a total of 365 NCGs were selected from
18 msPNs, and the drugs screened with these genes were consid-
ered the most likely to affect the network and thus correct the dis-
ease state. Based on the two drug repositioning methods, we
identified a total of 72 potential therapeutic compounds using
the dtGSEA and CMAP database, a subset of which have been stud-
ied or shown to reduce and treat ASD.

ASD is a persistent neurodevelopmental disorder. It has over-
lapping clinical features and a commonmolecular mechanismwith
many mental disorders, including schizophrenia [58], ADHD [59],
and bipolar disorder [60]. Drugs with therapeutic effects on the
symptoms of mental illnesses are more likely to be useful for treat-
ing ASD. Therefore, we constructed MCKG and used it to evaluate
the identified drugs. We found that 10 of the 72 drugs were
directly linked to autism. They are baclofen, sulpiride, estradiol,
entinostat, everolimus, fluvoxamine, curcumin, calcitriol, metron-
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idazole, and zinc. Baclofen is a gamma-aminobutyric acid (GABA)
agonist that is used for relieving pain and muscle spasms [61]
and has been shown to havea therapeutic effect on autism. A
recent randomized double-blind placebo-controlled trial revealed
that baclofen improves hyperactivity symptoms in children with
ASD [62]. Sulpiride is a dopamine D2-receptor antagonist with
the potential for treating schizophrenia and autism [63,64]. In
our study, both drug repositioning methods indicated that sulpir-
ide may have a therapeutic effect on ASD. We found that sulpiride
reversed the changes in fatty acid metabolism-related genes (PEX2,
EHHADH, SCP2) and genes involved in the process of cell adhesion
molecule binding (PAK2, MAPR1, PICALM, and YES1). Abnormali-
ties in fatty acid metabolism have been associated with neurode-
velopmental disorders. Fatty acids levels have been shown to be
dysregulated in autistic children [65]. In addition, fatty acids exert
a stimulatory action on the dopamine D2 receptor, implying a
potential mechanism for sulpiride treatment of autism [66].
Besides, abnormal cell adhesion molecules and pathways are
important in ASD pathogenesis [67]. Estradiol (E2), a steroid sex
hormone has been shown to exhibit antioxidant effects, neuropro-
tective roles, effects on brain cognition and memory, and the abil-
ity to alleviate symptoms of several neurological diseases,
including Parkinson’s and Alzheimer’s diseases [68–70]. In addi-
tion, E2 has been shown to decrease repetitive behaviors and ame-
liorate ASD-associated social behavioral deficits [71]. Our findings
suggest that E2 can reverse alterations in the expression of mito-
chondrial genes (MRPL33, MRPL27, NDUFA4, NDUFB5, NDUFB4)
and in a large number of genes encoding ribosomal proteins (RPL
and RPS genes). E2 has been shown to diminish complex I or com-
plex II mediated phosphorylated respiration, thereby, protecting
against mitochondrial dysfunction [72]. Additionally, E2 can cause
alteration in ribosomal RNA levels within brain regions. Ribosomal
proteins such as RPL10 are susceptibility genes for ASD [73]. Our
results (Fig. 3B, midnightblue msPN) and those of many other stud-
ies have revealed that RPL and RPS genes are dysregulated in
patients with ASD [74,75]. Therefore, we postulate that E2 exerts
a therapeutic effect on ASD by improving mitochondrial dysfunc-
tion and regulating ribosomal protein genes. This should be further
investigated. Entinostat is an HDAC inhibitor that has been found
to normalize abnormal epigenetic regulation of genes, thereby
improving synaptic and social interaction defects associated with
ASD in shank3-deficient mice with an autism-like phenotype
[76]. Everolimus is used to control seizures, improve autism and
depressive symptoms, and treat epilepsy and ASD in tuberous scle-
rosis complex [77,78]. It has been shown that fluvoxamine can
treat autistic symptoms in adults, and it can also significantly
improve some clinical symptoms of autism in children, such as
problems with eye contact and language use [79,80]. Curcumin
reduces autistic symptoms by suppressing mitochondrial dysfunc-
tion and oxidative nitrosative stress [81].

In general, top-ranked drugs have a greater capacity when com-
pared to other drugs inreversing gene expression patterns in order
to achieve the purpose of treating diseases. In addition to the
above-mentioned drugs (baclofen and sulpiride), XE-991, SB-
216763 and mepacrine were ranked highly by the two methods
used to identify drugs from 4 brain regions. XE-991 and SB-
216763 are small molecules discovered in the CMap database.
These drugs have a strong potential for treating ASD. XE-991 is
an M�current inhibitor, its inhibition may improve cognitive abil-
ities. XE-991 has been shown to exhibit neuroprotective effects,
enhance memory and learning in mice, and reverse cognitive
impairment associated with neurodegeneration [82,83]. SB-
216763 is a glycogen synthase kinase inhibitor that can improve
cognitive impairment by inhibiting glycogen synthase kinase-3b
(GSK3b). GSK-3plays a central role in cognitive dysfunction. For-
tress et al. reported that SB-216763 reduces memory as well as
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learning deficits and alleviates saikosaponins-induced cognitive
deficits [84]. Mepacrine, a phospholipase A2(PLA2) inhibitor (qui-
nacrine), has been used as an antimalarial drug and as an antibi-
otic. PLA2 reduction was shown to ameliorate cognitive deficits
in a mouse model [85], while elevations in phospholipase A2 con-
centrations were found to lead to oxidative stress and neuroin-
flammation, which are causes of ASD [86]. These results findings
that our pipeline is efficient at identifying ASD therapeutic candi-
dates for drug repositioning.

Based on gene networks, the developed drug repositioning
pipeline can also be used to explore the molecular mechanisms
of ASD. Based on a network created to achieve the purpose of drug
repositioning for ASD, drugs with therapeutic potential can be
obtained and evaluated in the context of the present knowledge.
To ensure reliability of drug identification, we accurately identified
disease gene network as well as hub genes and verified drug func-
tions using the knowledge graph. In addition, two drug reposition-
ing methods were used to comprehensively scan the effects of
existing drugs on gene expression patterns from different
perspectives.

Our study has the following limitations. First, the dtGSEA
method relies on known drug-gene pairs. This information is far
from complete, which may cause some promising candidates to
be missed. Besides, if a drug has too few target genes, this method
will not be able to identify the drug. However, the drug reposition-
ing method based on the CMap database makes up for these short-
comings. Second, although we found that these drugs may treat
ASD, our results are preliminary, and further experimental valida-
tion is required. Nevertheless, our proposed drug repositioning
pipeline has significant implications. Given the lack of effective
therapeutic drugs for ASD, our proposed method can achieve
large-scale screening of existing drugs, providing valuable clues
to help researchers in drug development and drug screening. Third,
we did not explore orther brain regions and may, therefore, have
missed some transcriptomic characteristics. However, since we
identified relevant ASD pathogenic mechanisms, these missing
brain regions do not affect the validity and effectiveness of our
entire pipeline. Due to these limitations, we recommend that
before our drug repositioning pipeline is used for further research,
drug characteristics (for example, their ability to penetrate the
blood–brain barrier) and relevant evidence should be carefully
investigated.
5. Conclusion

We have designed and built a drug repositioning pipeline that
integrates pathogenic gene screening, drug repositioning, and drug
verification. Our proposed workflow enables the analysis of molec-
ular mechanisms associated with ASD and the identification of
multiple candidate drugs with potential therapeutic effects,
thereby providing clues for further studies on ASD treatment. In
addition, this pipeline, developed based on network analysis, can
be applicable to other complex psychiatric disorders and polygenic
diseases.
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