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Abstract

Background: Early identification of pregnant women at risk for preeclampsia (PE) is important, 

as it will enable targeted interventions ahead of clinical manifestations. The quantitative analyses 

of plasma proteins feature prominently among molecular approaches used for risk prediction. 

However, derivation of protein signatures of sufficient predictive power has been challenging. The 

recent availability of platforms simultaneously assessing over 1000 plasma proteins offers broad 
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examinations of the plasma proteome, which may enable the extraction of proteomic signatures 

with improved prognostic performance in prenatal care.

Objective: The primary aim of this study was to examine the generalizability of proteomic 

signatures predictive of PE in two cohorts of pregnant women whose plasma proteome was 

interrogated with the same highly multiplexed platform. Establishing generalizability, or lack 

thereof, is critical to devise strategies facilitating the development of clinically useful predictive 

tests. A second aim was to examine the generalizability of protein signatures predictive of 

gestational age (GA) in uncomplicated pregnancies in the same cohorts to contrast physiological 

and pathological pregnancy outcomes.

Study design: Serial blood samples were collected during the first, second, and third trimesters 

in 18 women who developed PE and 18 women with uncomplicated pregnancies (Stanford 

cohort). The second cohort (Detroit), used for comparative analysis, consisted of 76 women 

with PE and 90 women with uncomplicated pregnancies. Multivariate analyses were applied to 

infer predictive and cohort-specific proteomic models, which were then tested in the alternate 

cohort. Gene ontology (GO) analysis was performed to identify biological processes that were 

over-represented among top-ranked proteins associated with PE.

Results: The model derived in the Stanford cohort was highly significant (p = 3.9E–15) and 

predictive (AUC = 0.96), but failed validation in the Detroit cohort (p = 9.7E–01, AUC = 0.50). 

Similarly, the model derived in the Detroit cohort was highly significant (p = 1.0E–21, AUC 

= 0.73), but failed validation in the Stanford cohort (p = 7.3E–02, AUC = 0.60). By contrast, 

proteomic models predicting GA were readily validated across the Stanford (p = 1.1E–454, R = 

0.92) and Detroit cohorts (p = 1.1.E–92, R = 0.92) indicating that the proteomic assay performed 

well enough to infer a generalizable model across studied cohorts, which makes it less likely that 

technical aspects of the assay, including batch effects, accounted for observed differences.

Conclusions: Results point to a broader issue relevant for proteomic and other omic discovery 

studies in patient cohorts suffering from a clinical syndrome, such as PE, driven by heterogeneous 

pathophysiologies. While novel technologies including highly multiplex proteomic arrays and 

adapted computational algorithms allow for novel discoveries for a particular study cohort, 

they may not readily generalize across cohorts. A likely reason is that the prevalence of 

pathophysiologic processes leading up to the “same” clinical syndrome can be distributed 

differently in different and smaller-sized cohorts. Signatures derived in individual cohorts may 

simply capture different facets of the spectrum of pathophysiologic processes driving a syndrome. 

Our findings have important implications for the design of omic studies of a syndrome like 

PE. They highlight the need for performing such studies in diverse and well-phenotyped patient 

populations that are large enough to characterize subsets of patients with shared pathophysiologies 

to then derive subset-specific signatures of sufficient predictive power.
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Introduction

Preeclampsia (PE) is a multisystem disorder of pregnancy defined by the new onset of 

arterial hypertension and proteinuria after 20 weeks of gestation. It is a leading cause 

of maternal and perinatal morbidities affecting 2–5% of women worldwide [1,2]. Despite 

recent advances in our understanding of the pathophysiologies that drive PE, we still 

lack molecular biomarkers of sufficient power for early risk prediction ahead of clinical 

manifestations [3,4].

The quantitative analyses of plasma proteins for early risk prediction have received 

significant attention [5-8]. For example, soluble fms-like tyrosine kinase 1 (sFlt-1) and 

placental growth factor (PIGF) are useful in identifying women who will not develop PE 

[9,10]. However, derivation of biosignatures with high positive predictive power to reliably 

identify women at risk for developing PE remains a high priority. The inclusion of additional 

biomarkers has been a suggested strategy to enhance positive predictive power [8,10].

The derivation of predictive models of PE has largely been anchored in our current 

understanding of its underlying pathophysiologies. For example, the SCOPE study examined 

47 serum proteins based on their associations with PE and their biological roles in 

placentation and in cellular mechanisms implicated in its pathogenesis [6]. However, derived 

prediction models were of limited power [11]. An alternative and more exploratory approach 

has recently been enabled by the availability of highly multiplexed proteomic arrays that 

simultaneously measure over 1000 plasma proteins in a single blood sample [12-14].

The primary aim of this study was to derive separate proteomic signatures predicting the risk 

of PE in two independent cohorts (Stanford and Detroit) of pregnant women using the same 

highly multiplexed proteomic arrays and multivariate analysis approaches, and then test 

their generalizability across cohorts. A secondary aim was to demonstrate generalizability 

of proteomic signatures predicting a physiological, rather than a pathophysiological outcome 

to provide biological evidence for the adequate technical performance of the proteomic 

platforms across both study cohorts.

Materials and methods

Study design

Pregnant women presenting to the Obstetrics Clinics of the Lucile Packard Children’s 

Hospital at Stanford University were invited to participate in a prospective cohort study 

sponsored by the March of Dimes Prematurity Research Center to examine an array 

of environmental and biological factors associated with uncomplicated and pathological 

pregnancies [15,16]. All women were eligible if they were at least 18 years of age 

and in their first trimester of pregnancy. Blood samples were obtained during the first 

(7–14 weeks), second (15–20 weeks), and third (24–32 weeks) trimesters of pregnancy. 

In two subsets of women (18 with early- or late-onset PE and 18 with uncomplicated 

term pregnancies) with an equal number of serial blood specimens (2–3 per women; 98 

total) detailed proteomic analyses were performed. The control group represented a random 

selection from the general population seen at the Obstetrics Clinics. The number of women 
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included in the study is explained by the relatively low number of women who developed 

PE during the observation period including over 300 women. The study was approved by the 

Institutional Review Board of Stanford University School of Medicine and all participants 

provided written informed consent.

Gestational age (GA)

GA was determined by best obstetrical estimate as recommended by the ACOG [17].

PE diagnostic criteria

PE and its severity were diagnosed based on the criteria recommended by the Task Force of 

the ACOG on Hypertension in Pregnancy [18].

Plasma samples

Blood was collected into EDTA tubes, placed in ice, and double-spun. Plasma was stored at 

−80 °C and all processing was completed within 60 min of collection.

Proteomic assays

All analyses were performed in randomly allocated samples by SomaLogic, Inc. (Boulder, 

CO) using a highly multiplex aptamer-based platform [19,20]. The assay quantifies relative 

concentrations of proteins over a wide dynamic range (>8 log) using chemically modified 

aptamers with slow off-rate kinetics (SOMAmer reagents). Each SOMAmer reagent is a 

unique, high-affinity, single-strand DNA endowed with functional groups mimicking amino 

acid side chains. Nucleotide signals are quantified using relative florescence on microarrays. 

The assay has a historic median intra- and inter-run coefficient of variation of about 5%, and 

median lower and upper limits of quantification of 3.0 pM and 1.5 nM [19].

Derivation of a proteomic model predicting PE in Stanford cohort

For a matrix X containing all proteins (features), and a binary vector of PE Y, a multivariate 

logistic regression model with penalization (LASSO) was developed [21]. The equations are 

provided in the supplement.

A cross-validation procedure tested for the generalizability of the multivariate models to 

previously unseen samples. To account for interdependencies between samples from the 

same woman, for each cross-validation iteration, all samples corresponding to the entire time 

series from one woman were excluded from the training cohort used to build the model. The 

resulting model was then used for estimating PE for the excluded women. The procedure 

was repeated until an estimation of PE was obtained for all sampling times points and each 

woman.

Validation of a proteomic model predicting PE in Detroit cohorts

Using fixed parameters, the validity of the model derived in the Stanford cohort was tested 

using proteomic data from the Detroit cohort consisting of 90 women with uncomplicated 

pregnancies and 76 women with late-onset PE [12]. The analysis was then reversed. A 

proteomic model predicting PE was derived in the Detroit cohort, and then tested in the 
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Stanford cohort. Data on the same 1116 proteins were available to infer a predictive model 

in both cohorts.

Derivation and validation of proteomic models predicting GA as an exemplary 
physiological outcome

A multivariate linear regression model with penalization (LASSO) was used to derive 

a model predicting GA at the time of blood collection in women with uncomplicated 

pregnancies. Proteomic models predicting GA were independently derived in the Stanford 

and the Detroit cohort and then tested for validity in the alternate cohort.

Data transformation and controlling for batch effects

A variety of transformation approaches including log transformation were examined. 

Similarly, batch effects between the two cohorts were examined with SVA/ComBat [22]. 

None of these approaches improved predictive power of derived models as judged by 

respective areas under the curve (AUCs, data not shown). Consequently, data were not 

transformed for the final analysis.

Consideration of GA at the time of sampling when predicting PE

Various analyses were performed to examine whether integrating GA at the time of sampling 

into the model would improve predictive power. Approaches included consideration of 

trimesters, using LASSO with a non-linear kernel, using a local LASSO (multiple fits over 

a sliding window on GA followed by smoothing), and using a varying coefficient approach 

that could smoothly change the model over GA [23]. None of these approaches improved the 

generalizability between the two datasets as judged by respective AUCs.

Univariate analyses

Univariate analyses of protein abundance were performed using mixed effect models with 

GA at time of sampling as a fixed effect and allowing for a random effect for each woman 

[24]. This approach accounts for multiple correlated measurements from the same woman.

Unpaired t-test was used for continuous data and Chi-square test was used for categorical 

data to examine group differences of demographic and pregnancy data. Unadjusted p values 

<5E–02 are reported. Adjusting for multiple comparisons in our analysis, a p value <3.8E–

03 is required to indicate statistical significance.

Correlation network

Spearman’s correlation analyses using R were performed between all pairs of proteins. The 

correlation network was built in data collected from all women of the Stanford cohort. The 

graphical representation of the correlation network shows edges for significant correlations 

between two respective proteins (p < 1.0E–37, Bonferroni’s corrected and further adjusted 

for sparse representation). The graph layout was calculated using the t-SNE algorithm [25].
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GO enrichment analysis

Gene ontology (GO) analysis affords a more integrative examination of the proteomic data, 

which can point to biological processes that underlie PE. The GO enrichment analysis was 

performed to identify GO terms that were over-represented among top-ranked gene products 

associated with PE. Enrichment analysis was performed using the “topGO” R package and 

Fisher’s exact test [26,27].

Results

All raw data are available at https://figshare.com/articles/

Proteomic_Models_in_Preeclampsia/7962998.

Study subjects

Patient and pertinent pregnancy data are provided in Table 1. The body mass index in 

women with PE was higher in the Stanford (p = 6.0E–03) and the Detroit cohort (p = 

2.4E–02) when compared to women with uncomplicated pregnancies. Gravity was higher in 

women with uncomplicated pregnancy than in women with PE in the Detroit cohort (p = 

3.3E–02). The fraction of nulliparous women, GA at delivery for late PE, and the percentage 

of severe PE were similar in the Stanford and Detroit cohorts. Women in the Detroit cohort 

were younger (p < 1.0E–03), had a higher body mass index (p < 1.0E–03), and higher 

gravidity (p = 1.0E–02) compared with the Stanford cohort. Sharply contrasting with the 

Stanford cohort, was the racial distribution in the Detroit cohort which consisted of 94% 

African Americans (p < 1.0E–03).

Assay quality control

All quality metrics for the proteomic assay were met with plate scale factors of 1.24 

and 1.46, and SOMAmer calibration factors <0.4 for 95% of SOMAmers. The median 

coefficient of variation was 4.1%.

GA

All women had ultrasound exams during the first trimester of pregnancy. In 35 women, 

GA was determined based on standard ultrasound metrics according to the guidelines of the 

ACOG [17]. In one woman, GA was known based on the date of in vitro fertilization.

Proteomic models predicting PE in the Stanford and Detroit cohorts

Plasma proteins formed a correlation network that highlights the inter-connectivity of the 

proteomic changes over the course of a pregnancy (Supplementary Figure 1). Among the top 

20 proteins included in each model best predicting PE in the Stanford or Detroit cohort, only 

leptin was shared.

Validation of proteomic model predicting PE in the alternate cohort

The model derived in the Stanford cohort was highly significant (p = 3.9E–15) with 

excellent performance of the classifier separating PE from uncomplicated pregnancies (AUC 

= 0.96) (Supplementary Figure 2A). However, the model could not be validated in the 
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Detroit cohort (p = 9.7E–01, AUC =0.50) (Supplementary Figure 2B). Similarly, the model 

derived in the Detroit cohort was highly significant with fair performance of the classifier (p 
= 1.0E–21, AUC = 0.73) (Supplementary Figure 2C), but failed validation in the Stanford 

cohort (p = 7.3E–02, AUC = 0.60) (Supplementary Figure 2D). These results did not change 

when excluding women with early-onset PE from the Stanford cohort.

Proteomic model predicting a physiological (GA) outcome in the Stanford and Detroit 
cohorts

The rational for deriving proteomic models predicting GA in studied cohorts and confirm 

their generalizability across cohorts was to provide biological evidence supporting adequate 

technical performance of the proteomic platforms in both study cohorts (Supplementary 

Figure 3). The model derived in the Stanford cohort was highly significant (p = 1.1.E–

101) with high predictive power (R = 0.93), and readily passed validation in the Detroit 

cohort (p = 1.1E–454, R = 0.91). Similarly, the model derived in the Detroit cohort was 

highly significant (p = 1.1.E–92) with high predictive power (R = 0.92), and readily passed 

validation in the Stanford cohort (p = 1.1E–488, R = 0.92).

Individual proteins associated with PE and GA

The majority of the top-ranked proteins associated with PE were not shared by the two 

cohorts (Figure 1(A)). In contrast, the majority of the top-ranked proteins associated with 

GA were shared by the two cohorts (Figure 1(B)). The plasma level of the top-ranked 

protein included in the model predicting PE in the Stanford cohort only (SPARC-like 

protein 1), and the Detroit cohort only (MMP7 or matrilysin) are depicted over the 

course of pregnancy for women with PE and women with uncomplicated pregnancies in 

Supplementary Figure 4.

GO analysis

The most significant genes corresponding to the proteins most highly associated with 

PE (p < 1.0E–04) were extracted from both datasets (Supplementary Figure 5). Proteins 

pointing to inflammatory and immune processes were prominent in the Stanford cohort, 

while proteins pointing to apoptotic and cell regulatory processes were prominent in the 

Detroit cohort. The GO analysis indicates that molecular functions and biological processes 

separating women with PE from women with uncomplicated pregnancies differed between 

the two cohorts.

Discussion

Multivariate analyses of large highly multiplexed proteomic datasets revealed highly 

significant and cross-validated proteomic signatures predicting PE in individual cohorts 

over the course of a pregnancy. However, these signatures were not generalizable across 

cohorts. Our results point to a broader issue that is likely relevant to the conduct of 

proteomic discovery studies in cohorts of patients suffering from a clinical syndrome, 

such as PE, driven by heterogeneous pathophysiologies. While novel technologies including 

highly multiplex proteomic arrays and adapted computational algorithms allow for novel 

discoveries that cross-validate in a particular study cohort, they may not be generalizable. A 
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likely reason is that the prevalence of pathophysiologic processes leading up to the “same” 

clinical syndrome can be distributed differentially in studied cohorts. As such, signatures 

derived in individual cohorts may capture different aspects of the pathophysiological 

spectrum, which is mirrored by different proteomic signatures [11,28]. Our findings indicate 

the need for studies in diverse and well-phenotyped patient populations that are large enough 

to carefully characterize subsets of patients with shared pathophysiologies and derive subset­

specific proteomic signatures of sufficient predictive power.

The requirement for such studies is reflected by the difficulties to derive sufficiently accurate 

and clinically useful proteomic signatures for the early prediction of PE [29]. One metric 

used to assess the performance of classifiers (proteomic signatures) to predict PE is the AUC 

of receiver operating characteristic (ROC) curves, which depicts the relationship between a 

classifier’s true- and false-positive rates [30,31]. While some studies report AUCs > 0.8 in 

specific settings and patient subgroups, the majority of studies report AUCs < 0.8 equating 

with a fair performance only [5,6,12,32-34].

Single markers including the angiogenic factors sFlt-1 and endoglin, or the ratio between 

two markers, namely sFlt-1 and PLGF, have received particular attention as predictors of 

PE [35,36]. While these markers are either significantly elevated or decreased before disease 

manifestation in a portion of women who later develop PE, they remain in the normal range 

for a significant fraction of women with PE [32,33,37,38].

A strength and novelty of our study is the combined analysis of two independently collected 

datasets containing over a thousand simultaneously measured plasma proteins on the same 

platform. This provided a unique opportunity to examine whether comprehensive proteomic 

findings inferred in one cohort would generalize in an alternate cohort. Another strength 

is the derivation of proteomic models for two different clinical endpoints, one physiologic 

(GA) and the other pathophysiologic (PE) in nature. The divergent findings that proteomic 

models predicting a physiological pregnancy outcome generalized across the two cohorts, 

while proteomic models predicting PE did not, strengthen the conclusion that cohort-specific 

proteomic differences in women with PE likely mirror differences in the predominant 

underlying pathophysiology. In other words, the proteomic assay performed well enough 

to infer a generalizable model predicting GA in both cohorts, which makes it less likely that 

technical aspects of the assay, including batch effects, accounted for observed differences.

Our study has several limitations. The Stanford cohort included women with early- and 

late-onset PE, while the Detroit cohort included only women with late-onset PE (>34 weeks 

GA) [12]. While it has been suggested that this dichotomy separates women into two 

groups with different underlying pathophysiologies, such notion is still subject of ongoing 

investigations [39,40]. An alternative view is that early- and late-onset PE along with disease 

severity represent a pathophysiological spectrum with mixed contributions from the placenta 

and maternal factors that increase susceptibility of the vasculature to damage [11,37,41]. 

Our cohort size was too small to examine proteomic differences between women with early- 

and late-onset PE. However, we could address a related question and examine whether the 

proteomic model derived in the Detroit cohort (late-onset PE) could predict PE in the subset 

of women in the Stanford cohort with late-onset PE. The fact that such prediction failed 
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supports the view that differential pathophysiological processes, unrelated to the onset of 

PE, led to development of PE in the two cohorts. The Stanford cohort was heterogeneous 

with 42% of women being nulliparous, 44% suffering from severe PE, and 89% being 

Caucasian. Importantly, the Detroit cohort had similar fractions of nulliparous women and 

women with severe PE. Strikingly different, however, was the racial distribution. Ninety-four 

percent of women in the Detroit cohort were African American. The possibility that racial 

differences contributed to the diverse proteomic signatures is intriguing. Racial and ethnic 

differences in protein signatures associated with PE have previously been reported [42,43]. 

However, alternative explanations could account for such differences including different 

environmental conditions, variable healthcare settings, and phenotypical dissimilarities not 

necessarily captured by the studies.

Our findings have important implications for the design of omic discovery studies for a 

syndrome like PE. They highlight the need for performing such studies in diverse and well­

phenotyped patient populations that are large enough to characterize subsets of patients with 

shared pathophysiologies to then derive subset-specific signatures of sufficient predictive 

power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Highest-ranking proteins associated with PE differ between cohorts. (A) All 1116 proteins 

included in the analysis are plotted according to their respective p value when comparing 

women with PE to women with uncomplicated pregnancies in the Stanford (x-axis) and the 

Detroit (y-axis) cohorts. The highest-ranking proteins are not shared between the Stanford 

and the Detroit cohorts. (B) In contrast, the highest-ranking proteins predicting GA are 

shared between the Stanford and the Detroit cohorts . APOB: apolipoprotein; BMP1: bone 

morphogenetic protein 1; BMP10: bone morphogenetic protein 10; CDK8: cyclin-dependent 

kinase 8:cyclin-C complex; CSF1R: macrophage colony-stimulating factor 1 receptor; 

DDR1: discoidin domain receptor 1; DR6: tumor necrosis factor receptor superfamily 

member 21; GPC3: glypican-3; GRN: granulins; GSTP1: glutathione S-transferase P; IGI-I 

sR: insulin-like growth factor 1 receptor; sLeptin R: Leptin receptor; MMP7: matrilysin; 

PIGF: placenta growth factor; PPID: peptidyl-prolyl cis-trans isomerase D; PRL: prolactin; 

RAN: GTP-binding nuclear protein Ran; SAP: serum amyloid P-component; SPARCL: 

SPARC-like protein 1; TFF3: trefoil factor 3; TXD12: thioredoxin domain-containing 

protein 12; XPNPEP1: Xaa-Pro aminopeptidase 1.
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