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Abstract

Genetic heterogeneity in a mixed sample of tumor and normal DNA can confound characterization of the tumor genome.
Numerous computational methods have been proposed to detect aberrations in DNA samples from tumor and normal
tissue mixtures. Most of these require tumor purities to be at least 10–15%. Here, we present a statistical model to capture
information, contained in the individual’s germline haplotypes, about expected patterns in the B allele frequencies from SNP
microarrays while fully modeling their magnitude, the first such model for SNP microarray data. Our model consists of a pair
of hidden Markov models—one for the germline and one for the tumor genome—which, conditional on the observed array
data and patterns of population haplotype variation, have a dependence structure induced by the relative imbalance of an
individual’s inherited haplotypes. Together, these hidden Markov models offer a powerful approach for dealing with
mixtures of DNA where the main component represents the germline, thus suggesting natural applications for the
characterization of primary clones when stromal contamination is extremely high, and for identifying lesions in rare
subclones of a tumor when tumor purity is sufficient to characterize the primary lesions. Our joint model for germline
haplotypes and acquired DNA aberration is flexible, allowing a large number of chromosomal alterations, including
balanced and imbalanced losses and gains, copy-neutral loss-of-heterozygosity (LOH) and tetraploidy. We found our model
(which we term J-LOH) to be superior for localizing rare aberrations in a simulated 3% mixture sample. More generally, our
model provides a framework for full integration of the germline and tumor genomes to deal more effectively with missing
or uncertain features, and thus extract maximal information from difficult scenarios where existing methods fail.
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Introduction

Identification of DNA copy number aberrations and loss of

heterozygosity (LOH) in known or potential cancer-related

genomic regions offers the potential for application in basic or

translational science. Due to limits of tissue dissection, or when

dissection is impractical (e.g. high vascularity or hematological

cancers), a DNA sample may exhibit genetic heterogeneity

resulting from the mixture of tumor and normal tissues or from

subclonal structure. In such cases the task of fully characterizing

the genomes present in individual tissues or clones becomes

difficult.

Numerous computational methods have been proposed to

detect chromosomal aberrations in DNA samples from tumor and

normal tissue mixtures using single-nucleotide polymorphism

(SNP) genotyping arrays. Inference of aberrations present in the

DNA from heterogeneous mixtures of cells requires intermediate

data features from SNP arrays, i.e. the B allele frequency (BAF, the

proportion of the ‘‘B’’ allele in the sample) and log R ratio (LRR,

indicative of total copy number), since genotype calls alone may be

unaffected by the presence of a small proportion of aberrant cells.

In regions of allelic imbalance (AI), the center of the distribution

for a BAF of a germline heterozygous marker is shifted from the

expected heterozygote BAF of 0.5, with the magnitude of the shift

dependent on the event type and aberrant cell proportion, and its

direction (toward either 0 or 1) dependent on the allele on the

imbalanced chromosome (see [1] for examples). As a consequence,

BAFs at germline heterozygous sites across an AI region form two

bands that can be described with a bimodal distribution. The main

strategies for accommodating this BAF pattern are use of a two-

component mixture distribution and mirroring.

In one approach, the observed data are modeled as a two-

component mixture. We discuss and evaluate two such methods

here. genoCN [2], a discrete-state hidden Markov model (HMM)

based method, uses the BAFs at germline heterozygous sites as the

observed data and defines the emission function as a mixture of the

distribution functions for each of the two BAF bands, with each
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component having equal weight at every marker. PSCN [3] uses a

continuous-state HMM to model the observed allele-specific probe

signal intensities, with the two components assigned equal weight.

In the mirroring approach, the observed BAF values are reflected

about 0.5 to create a unimodal ‘‘mirrored BAF’’ (mBAF). If the

untransformed BAF distribution was normal, then the mirroring

process reliably creates a ‘‘half-normal’’ distribution in non-

aberrant regions. In imbalanced regions, the resulting mBAF

distribution is more difficult to predict since it will depend on the

magnitude of the BAF shift. If the BAF shift is large enough, then

the mirroring creates a normal distribution with a shift. However,

if the BAF shift is small and points in the two bands overlap the

reflection point, then the newly created distribution will be

distorted (bounded by and skewed toward 0.5, see examples in

Supplementary Figure S1). This folding of the null distribution and

distortion of the alternative distribution results in a loss of

discriminatory power in cases of low levels of imbalance compared

to analogous tests that use untransformed BAFs. Mirroring also

interferes with the estimation of tumor proportion based on the

observed data, since the function relating tumor proportion and

event type is based on the normal density, as well.

Each of the aforementioned methods assume that the observed

data are independent across SNP markers given the tumor DNA

aberration state. However, particularly at low proportions of aberrant

cells, leveraging the inherited haplotypes of the individual to define

specific expected patterns of BAF shifts offers a powerful strategy to

distinguish signal from noise. To illustrate the utility of this

information, we present a conceptual ‘‘re-orientation’’ process to

harness the dependence in the BAF data (Supplementary Figure S2).

With complete haplotype information for a given individual, the ‘‘A/

B’’ allele designations for each heterozygous marker could be

switched so that one chromosome carried all ‘‘A’’ alleles at

heterozygous markers while the other all ‘‘B’’ alleles. As a

consequence, the observed BAF at a marker for which the allele

label changed would be replaced with its complement (1-BAF).

Importantly, although an AI-inducing aberration would still produce

a ‘‘one-band’’ pattern after this process (as it would after mirroring),

the distribution of the reoriented BAFs would maintain normality,

even at the lowest levels of imbalance.

The challenge of this approach is that we do not observe the

haplotypes directly from DNA arrays. Several strategies have been

employed to cope with this limitation while still using haplotypes to

aid in detection or interpretation of AI. The POD method [4] first

uses combinations of parental genotypes to set up testing an

offspring’s BAF values for outliers, with BAF thresholds calibrated

on aberration-free chromosome arms. Using markers with BAF

outliers, POD discovers segments of abnormal representation from

one parent by applying two-sided binomial tests in sliding windows.

Trio-based phasing provides highly accurate haplotypes at infor-

mative loci and this method is therefore very useful in cases where

trio genotypes are available. Nik-Zainal et al [5] statistically phased

heterozygous SNP genotypes from a matched normal sample and

plotted the tumor BAFs by color according to alignment with the

inferred haplotypes, forming so-called Battenberg plots. A segmen-

tation algorithm was then applied to find switch points in these plots,

which were used to re-orient segments to extend haplotype

estimates to whole chromosome arms and facilitate the identifica-

tion of clonal and subclonal aberrations. We would expect this

approach to perform well when BAFs are well diverged but fail

when allelic imbalance magnitude is small. We previously suggested

the use of local phase concordance between observed BAFs and

statistically-estimated haplotypes to create a data transformation

amenable to break-point detection algorithms for regions of AI

smaller than entire chromosome arms [6]. However, this method

(hapLOH) ignored the magnitude of the BAF deviations and, in its

current implementation, does not utilize LRR values.

Here we propose a model for joint inference of germline

haplotypes and chromosomal alterations, including balanced and

imbalanced losses and gains, copy-neutral LOH, and tetraploidy

(J-LOH). We use a parametric model for haplotype variation to

integrate over uncertainty in haplotypes while naturally parameter-

izing the magnitude of AI with a combination of aberration type and

proportions of the components of the mixture (tumor and normal

DNA). In terms of the aberration types that are explicitly captured,

our model is most similar to that underlying GPHMM [7], in which

the observed data (mBAF and LRR) are related to the hidden

aberration states by normal density functions. To this framework, we

add a HMM for the inherited haplotypes that can be fit with existing

population genetic data. Knowledge of the germline haplotypes

allows us to model the expected patterns of BAFs in an AI region.

Our approach does not suffer from drawbacks of some other

approaches that attempt to use haplotype information in that we do

not rely on sliding windows of markers but instead evaluate each

marker for AI using the data at flanking SNP markers, with more

proximal markers contributing more information about AI, effec-

tively integrating over all window sizes. Our model is especially

motivated for application to samples with high normal DNA

contamination (.90%), where it becomes necessary to consider the

correlation among BAF values, although (like other methods) it will

work better at lower levels of contamination (so long as genotypes are

sufficiently accurate). Below we evaluate the performance of J-LOH

on a well-studied tumor cell line dilution series and a set of

computationally simulated dilutions, and also present results from

analysis of adjacent normal tissue from a study of the genomics of

hepatocellular carcinoma.

Results

Lab-based dilution samples
We ran J-LOH and other methods (ASCAT [8], genoCN,

GPHMM, PSCN, and hapLOH) on SNP array data from samples

Author Summary

Allelic imbalance, or a deviation from the expected 1-to-1
ratio of alleles where both were present in the germline,
can result when there has been an acquired deletion or
duplication of part of a chromosome and is a hallmark of
cancer genomes. Tumor genomic profiling studies often
involve analysis of samples that contain aberrant tumor
cells mixed with normal cells without these acquired
mutations. Methods for detecting chromosomal aberra-
tions that result in allelic imbalance within a heteroge-
neous sample have previously been proposed that use the
dispersion of within-sample allele frequencies measured at
germline heterozygous positions. Here we demonstrate
that combining this information with a measure for the
correlation in these dispersions, due to the imbalance of
one of the chromosomes, provides the most powerful
approach. Our method allows for sensitive identification of
short allelic imbalance events (e.g. 10 Mb) contained in as
few as 3% of the cells in a heterogeneous mixture.
Applications include profiling tumor genomes following
surgical resection where there exists high contamination
of normal tissue and identifying aberrations in subclones.
Our work provides a framework for further development of
methods that use observed data and population genetic
theory for inference of allelic imbalance.

A New Model to Detect Subtle Chromosomal Mosaicism
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with various low tumor cell proportions (10%, 14%, 21% and

30%) from a well-studied paired tumor-normal cell line dilution

series [1]. We applied GAP on the pure tumor cell line data to

obtain a sort of ‘‘gold standard’’ of aberration calls for evaluating

methods applied to the diluted samples. Comparisons of genome-

wide call concordance between each method and the tumor-

informed GAP calls are summarized in Table 1. Results are

presented for 3 accuracy metrics (criteria) to accommodate output

from all methods.

Concordance for nearly all methods decreases with tumor

purity, due to decreased signal in both BAF and LRR. (PSCN

actually shows a decreased concordance at 30% relative to some

lower purities, as noted elsewhere [3].) Among methods consid-

ered here, J-LOH is the least adversely affected by lower tumor

purity, maintaining a concordance for specifying copy number and

LOH of 0.78 at the lowest purity (10%), compared with 0.51 for

GPHMM. To gain a greater understanding of which innovations

were producing the biggest impact in results, we implemented a

simple, haplotype-free, version of our method (labeled as ‘‘K = 1’’).

Like GPHMM (and other methods except hapLOH), this version

ignores haplotype information. However, we accommodate the

increased dispersion in the BAFs via a mixture of two normal

distributions, rather than by modeling the distorted mBAF values.

Interestingly, this version of our model also appears superior to

GPHMM; for example, J-LOH (K = 1) showed a concordance (for

copy number and LOH) of 0.73, a modest decrease from the full

version of J-LOH. Other methods, specifically genoCN and

PSCN, had concordance values well below those obtained via J-

LOH, GPHMM, and hapLOH. ASCAT failed to produce a result

below 30% tumor purity, possibly due to limits embedded in its

implementation.

To investigate in more detail the results at the most difficult

setting, we plotted the aberration calls for the p-arm of chromosome

1 at the 30% and 10% tumor purity dilutions. Because of the large

number of aberration states, we combined certain aberration calls,

such as ‘‘2-1, 3-1, 4-1, Gain/Normal’’ (where one chromosome is

gained and the other left at copy number 1), for ease of visual

evaluation of the results. This grouping scheme (enumerated

completely atop the plots) is in line with the ‘‘gain or loss’’ metric

used by PSCN. Results for PSCN, genoCN, ASCAT, GPHMM,

GAP and J-LOH are displayed in Figure 1.

At the 30% purity level, all methods except PSCN and genoCN

are consistent in their identification of the aberrant regions. In the

10% sample, however, there are several differences among

methods. J-LOH calls the copy-neutral LOH (cn-LOH) regions

at 8e7 bp and 1.2e8 bp as an unbalanced gain (possibly at the left

end of the chromosome as well, though GAP’s call here is not fully

specified). Despite these, J-LOH appears to offer greater precision

than is obtained from ignoring haplotypes, with more pronounced

distinctions among states; for example, J-LOH (K = 1) is less

confident in its call of the deletion at 7e7 bp than is J-LOH.

GPHMM calls the ‘‘3-0’’ region from 4e7 to 5e7 bp as cn-LOH

and misses the deletion at 7e7 bp. In fact, a key distinction between

GPHMM and J-LOH is that GPHMM miscalls every deletion

event across the genome at the 10% purity (cross-tabulation with

results from GAP; data not shown). This difficulty is consistent

with the lower signal expected in the mBAF quantity for the most

subtle forms of AI.

Low-purity computational dilutions
In order to test our method at even lower tumor purities, we

used a computational dilution data set with targeted tumor cell

proportions of 1% to 10%, simulated to mimic actual chromo-

somal loss or gain, thus keeping intact expected correlations
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among alleles (see Methods). We attempted to apply all of the

methods assessed on the real dilutions; additionally, we applied

hapLOH [6], which was specifically designed for low purities.

However, several of the methods (PSCN, genoCN, ASCAT) did

not produce output at these lower values and thus could not be

scored. At these lower purities we did not attempt to score the

remaining methods on their ability to differentiate among aberrant

event types but rather grouped all AI events into a single aberrant

class. In this most difficult setting, simply detecting the presence of

an aberration becomes a more pragmatic goal. Subsequent to

computational detection, laboratory-based methods may offer

more informative characterization depending on the specific

application. Comparisons of sensitivity among the methods are

presented in Table 2.

J-LOH maintained high sensitivity at rather low tumor purities,

e.g. 0.94 at 5% tumor purity and 0.64 at 3% purity. The gain by

using haplotypes can be seen via a direct comparison to results for

J-LOH (K = 1), which had sensitivities of 0.75 and 0.24,

respectively, for purities at 5% and 3%. GPHMM achieved

sensitivities less than 0.01 at 5% and 3%; only at 9% did it register

meaningful output. To attempt to apply all methods to the

simulated data, it was necessary to simulate the LRR data, as well.

Although hapLOH does not use this information (partially

explaining the reduction in sensitivity relative to J-LOH), it still

picked up aberrations (sensitivity 0.28) with high specificity at the

5% tumor purity. In order to gain insights on our improvement

over hapLOH, we modified J-LOH to have a reduced state space

of the two simulated aberration types only (hapLOH v1.0 allowed

2 aberrant states) and suppressed the use of the LRR data. This

version of our method exhibited slightly lower sensitivities at 9%

and 7% purities, compared with the full version that used LRR

data. At lower purities, it showed greater dropoff relative to the full

Figure 1. Posterior marginal probabilities for p-arm of chromosome 1. Results from J-LOH and J-LOH (K = 1) are presented for the 30%
tumor sample (top panel) and 10% tumor sample (bottom panel). The vertical height of the colored bars at each marker is proportional to the
posterior marginal probability of the corresponding aberration category. Aberration types were placed into categories based on allele copy gain or
loss. Horizontal bars at the top of each panel depict the regions called by other methods, from bottom: GAP, GPHMM, ASCAT, genoCN, and PSCN.
ASCAT and genoCN did not produce results in the 10% tumor sample. Empty segments of the GAP bar indicate regions with sub-clones or low
confidence scores.
doi:10.1371/journal.pcbi.1003765.g001
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(LRR-informed) version of J-LOH, although it still outperformed

hapLOH, most likely due to its full incorporation of the BAF data

and possibly to the fact that J-LOH models the aberration states as

a function of the estimated tumor proportion, which is how these

data were simulated. Since hapLOH and J-LOH generate per-

marker posterior probabilities for each state, we performed a full

comparison among these methods via a comparison of ROC

curves (Supplementary Figure S3).

We compared the resolution of calls from our methods on the

3% dilution data set in Figure 2. With simulated LRR values, J-

LOH is able to distinguish between deletion and cn-LOH

aberrations at this low proportion. The concordance between J-

LOH and J-LOH (K = 1) is greater for deletions than for cn-LOH

for these data, since the simulated LRR deviations contribute

more signal about copy number changes than does the larger

perturbation in AI from cn-LOH, and both versions of the model

use the LRR data equally. The haplotype-free model (K = 1)

misses several cn-LOH events (e.g. chromosomes 3, 5, 7, and 14)

and makes false calls for this aberration type (chromosomes 1, 7,

19). This illustrates that addition of the haplotype information

enables discernment of aberrations particularly in the most

difficult settings. We note this is a best-case scenario for these

data, with the LRR values simulated from a normal distribution,

offering motivation to properly model total intensity data. Below

3% tumor purity, there does not appear to be enough signal in the

data to pick up regions of the size we simulated here (data not

shown).

For certain settings, it may be useful to estimate the haplotype

(or haplotype cluster) that is in relative imbalance. This could be

used to associate the loss or gain of haplotypes with outcome,

progression or some other specific phenotype [9]. In our model the

over-represented allele is determined both by allele configuration

and aberration state. From this we can integrate out uncertainty in

the haplotypes to obtain the probability that a particular allele is

over-represented (see Supplemental Information Text S2 for

details). Similar to hapLOH, J-LOH has better performance than

the naive method of inferring the over-represented allele by

dichotomizing the BAF (Supplementary Table S1).

Adjacent normal tissue
We also applied our method to the normal samples from paired

normal-tumor samples collected for a study of hepatocellular

carcinoma [10]. The adjacent normal samples were collected in

order to identify and confirm aberrations in the tumor. However,

here we attempted to detect aberrations that exist in the normal

samples, due perhaps to contamination with tumor cells.

We present results from two patients in Figure 3, along with the

BAF and LRR data from the tumor samples for comparison to

what we found in the adjacent normal. For the first patient (left

column of Figure 3), J-LOH identifies in the normal sample some

of the AI events visually evident in the tumor. While most of the AI

regions identified by J-LOH are also detected with hapLOH

(panel c), J-LOH appears to offer greater resolution in the specific

types of events. For example, J-LOH distinguishes deletions and

duplications, even though the method was applied to the BAF data

only. Notably these types are consistent with LRR deviations

visible in the tumor sample data (panel b). There are numerous

‘‘spikes’’ in the plot of the results from J-LOH, perhaps due to

Table 2. Genome-wide sensitivity and specificity for low purity simulations.

9% 7% 5% 3%

J-LOH 0.99(1.00) 0.98(0.99) 0.94(0.99) 0.64(0.99)

J-LOH (K = 1) 0.97(0.99) 0.94(0.99) 0.75(0.99) 0.24(0.99)

GPHMM 0.31(1.00) - - -

hapLOH 0.79(0.99) 0.52(0.99) 0.28(0.99) 0.01(1.00)

J-LOH{ 0.98(0.99) 0.95(0.99) 0.81(0.98) 0.31(0.98)

({) With a limited state space (normal, cn-LOH, hemizygous deletion only) and no use of LRR, approximating the settings for hapLOH.
Sensitivity is defined as the proportion of simulated aberrant markers that are called correctly. Specificity (shown in parentheses) is defined as the proportion of
simulated non-aberrant markers that are called correctly. GPHMM has sensitivity less than 0.01 for purities less than 9%. Blank table entries (‘‘-’’) are due to either zero
output or sensitivities ,0.01. PSCN, genoCN, and ASCAT failed to produce meaningful output at all purity levels.
doi:10.1371/journal.pcbi.1003765.t002

Figure 2. Whole genome posterior marginal probabilities for simulated 3% tumor sample. Results from J-LOH and J-LOH (K = 1) are
presented for the simulated 3% tumor sample. The vertical bars represent the model state probabilities as in Figure 1. The horizontal bar at the top
depicts the simulated aberration regions. The white gaps in the plot represent genome regions where the pure normal cell line sample shows LOH.
doi:10.1371/journal.pcbi.1003765.g002
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Figure 3. Unpaired analyses of adjacent normal samples. Posterior probabilities from the normal sample, tumor sample BAFs and LRRs, and
normal sample BAFs and LRRs are presented for sample pair GSM809143/GSM809144 (a–c) and sample pair GSM809109/GSM809110 (d–f). Results
from GPHMM are represented by horizontal bars above the posterior probability plots (a,d), and results from hapLOH are represented by green and
orange curves (higher and lower levels of imbalance, respectively) overlaid on the BAF data (c,f).
doi:10.1371/journal.pcbi.1003765.g003
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genotyping errors (homozygotes called as heterozygotes may exert

large influence). Results from applying GPHMM were fairly

consistent to those from J-LOH except on the distal portions of

chromosome 1p and chromosome 22q, where GPHMM identified

small regions of cn-LOH (panel a). We estimated the proportion of

aberrant cells in the normal sample to be 16.2%, very close the

estimate obtained from GPHMM (16.0%). However, for a second

pair (right column of Figure 3), J-LOH estimated the tumor

proportion in the normal sample to be 13.1%, and GPHMM

estimated 12.2%. In this sample, both methods identified the cn-

LOH on chromosomes 14 and 17, and the mono-allelic

duplication on chromosome 12. Each of these were consistent

with visual inspection of the tumor BAF/LRR. We note the

regions called by GPHMM were much shorter for the events on

chromosomes 12 and 17. For the chromosome 17 event, at least,

the aberration that we pick up is visible in the tumor sample.

Although this analysis was conducted as a small comparison

among J-LOH, hapLOH and GPHMM, a quick inspection of

results from the other sample pairs indicates that we often pick up

large events that are not evident in the matched tumor samples

(data not shown). This is possibly due to the presence of clonal

mosaicism in this putatively normal tissue (e.g. [11]) or to sampling

of different subclones in the tumor and the normal sample.

Discussion

We have presented a likelihood-based framework for modeling

somatic copy number changes jointly with an individual’s germline

haplotypes. Our method, which we term J-LOH, leverages haplotype

information to differentiate subtle patterns in the BAF data from noise

and also models the magnitude of observed BAF values. The main

application considered here was the detection of acquired chromo-

somal aberrations present in tumors or other clonal populations,

among DNA from mostly normal cells using SNP microarrays.

To apply our statistical approach, we made several simplifying

assumptions. First, we do not model tumor heterogeneity directly but

rather assume a single tumor proportion that applies to the entire

genome. Second, we assume a diploid background for the tumor. As

to the first assumption, our model is fairly flexible, allowing up to 21

distinct underlying states of various degrees of allelic imbalance; thus

we may indirectly accommodate subclonal events via an alternate

state that would exhibit a more subtle BAF deviation. Further, our

model can be applied indirectly to detect subclonal aberrations by

conditioning out events likely to derive from a primary clone. As to

the second assumption, changes in ploidy will affect the calibration of

LRR data in our model (e.g. the baseline shift). However, this should

have a relatively minor impact at the lowest tumor purities that have

motivated this model. Ultimately, we view J-LOH as unique in its

combination of full likelihood model and haplotype information and

may serve as a foundation on which further improvements may be

made by relaxing certain assumptions.

Our approach offers improvements over existing methods that use

either the dispersion of BAFs or their directions but fail to model both

pieces of information. In data simulated from real tumor and paired

normal samples run on an Illumina 370K SNP array, we can detect a

cn-LOH region about 3 Mb in length at 5% purity and 10 Mb at 3%

purity, analyzing unpaired samples only. At the lowest tumor purities,

J-LOH showed superior performance over existing methods

evaluated here. Since our model was most similar in structure to

that in GPHMM, we focused most heavily on these comparisons. To

attempt to isolate further the reasons for improvement offered by

incorporating haplotypes, we fixed our model to a reduced state

space, i.e. J-LOH (K = 1). The superiority of this reduced model over

GPHMM at first surprised us, as we considered these models to be

essentially equivalent. However, there are several key differences.

GPHMM does not utilize a log R ratio scale coefficient, and is thus

less flexible in fitting log R ratio data. Also, GPHMM includes an

extra ‘‘fluctuation’’ state, which could be an advantage in certain

settings but may affect the aberration calling at low tumor purities

where the likelihood is essentially less peaked among states. Finally,

and perhaps most importantly, GPHMM models the mBAF quantity

discussed previously, whereas our model uses a mixture of normal

distributions to accommodate the increased dispersion in the

untransformed BAFs. Mirrored BAFs deviate severely from normal-

ity at low tumor proportions, so even the reduced version of our

model which assigns equal weight to component memberships offers

an additional and rapid tool for the field. The full version of the model

provides further improvement over the reduced version by incorpo-

ration of germline haplotype information, which essentially provides

prior weights for the component memberships.

Our method shares several attributes with another haplotype-

aware method, hapLOH. Both are based on HMMs, and in this

study we have applied with the same transition rates (essentially

priors on aberrant event sizes and prevalence). Most obviously,

both are designed to take advantage of haplotype information,

with hapLOH taking phased haplotypes as input and J-LOH using

a full model for population genetic information. The incorporation

of a full model offers several potential advantages. First, integrating

out uncertainty in haplotypes rather than using a single estimate

may be useful when the distribution of haplotype estimates is

rather flat (several distinct possibilities are equally likely) and this

integration offers a natural mechanism for handling haplotype

uncertainty. Second, J-LOH does not use consecutive 2-site

haplotypes only, but rather attempts to model the phase at

multiple heterozygous genotypes jointly, potentially increasing

power to test larger groups of alleles together for evidence of

imbalance. In addition to the distinct manner in which they

incorporate haplotype information, the methods (or software

packages) differ in several additional key aspects. First, whereas

hapLOH makes no assumption on the distribution for BAFs at

heterozygous sites in aberrant regions, J-LOH assumes normality.

As a result, J-LOH may excel at sensitivity, but should be less

robust with outliers and misspecified BAF distributions. Second, in

its current implementation, hapLOH makes no use of log R ratio

information. This diminishes its ability to differentiate among

aberrant types, although post hoc analyses could add some of this

back in a less integrated fashion. Third, our method assumes a

global mixture proportion, which will be insufficiently flexible in

cases where multiple clones contribute to the genomic signal,

although this will be less severe when a single clone dominates the

landscape. (In concurrent work, we are adapting J-LOH to

accommodate heterogeneity directly.) hapLOH does not explicitly

identify subclones or tumor proportion, and thus it may remain

more robust to heterogeneity for inferring aberrant regions.

Finally, hapLOH is fairly thrifty with computation power and

allows reanalysis of imbalance without having to re-estimate the

haplotypes. Therefore, it scales well with larger sample sizes.

Although we have focused here on detecting AI in low-purity

tumor samples, there are numerous other applications of our

method. For example, a potential problem in analyzing mixtures

of tumor and normal DNA sources is the identification of germline

heterozygous sites, which may be observed with error or called as

missing. Our method is ideally suited for joint inference of

genotypes and aberrant events, as it uses information from both

the BAFs and patterns of linkage disequilibrium. This is analogous

to methods for pure normal samples that attempt to infer or

correct genotypes with information about population haplotypes

[12,13]. More subtle, yet important, phenomena, could also be
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queried with our model. One example is assessment of the

relationship between specific haplotypes and copy number

aberrations [9], for which our model could be applied by testing

for associations with each latent haplotype cluster (a consensus or

ancestral haplotype), marker-wise along the genome. Our software

explicitly allows for the probabilistic identification of the cluster

from which the amplified or lost chromosome derived. Essentially,

this offers a haplotype-based association test, either to test the

combined effect of multiple alleles on the same chromosome or to

powerfully tag an untyped variant of significance.

A final possible application for J-LOH would be to take

advantage of the increased sensitivity offered from careful

modeling of the germline and tumor for inference of aberrations

in secondary or tertiary subclones that may be at extremely low,

yet variable, frequencies. Thus, due to tumor heterogeneity,

methods such as ours may be important for study of the entire

tumor genome even in the case when tumor purity is high. We

expect there will emerge clinically relevant implications of findings

from such subtle phenomena and that the incorporation of

haplotype information, such as we provide here, will become an

essential component in state-of-the-art software packages for

analysis of somatic chromosomal aberrations using data from

DNA microarrays and next-generation sequencing data.

Materials and Methods

The J-LOH model
Here we give a formal description of our model. We assume

array data from M SNP markers, consisting of a B allele frequency

(BAF) bm, log R ratio (LRR) rm, and genotype calls gm at each

marker m (1,…,M), with b, r and g denoting the set of values at all

M sites. For low values of tumor purity (e.g.,20%), we assume g is

an accurate representation of germline genotypes, since the BAF

and LRR values will be minimally perturbed.

To model the observed array data, we introduce a latent

variable lm to denote the aberration type in the tumor cells (e.g.

deletion, cn-LOH, duplication, etc.) at marker m (1,…,M).

Given the vector of specific aberration states l and the

proportion v of DNA with aberrations, we assume b and r
are independent, i.e.

f (b,r,gDl,v)~f (b,gDl,v)f (rDl,v), ð1Þ

an assumption made in previous approaches (e.g. in GPHMM

and genoCN).

These methods have further assumed conditional independence

across markers, i.e.

f (rDl)~P
M

m~1
f (rmDlm) ð2Þ

and

f (b,gDl)~P
M

m~1
f (bm,gmDlm), ð3Þ

greatly simplifying their computation. However, the assumption of

independence in equation (3) ignores critical information provided

by haplotypes, which not only summarize the dependence among

SNP genotypes but also inform the expected patterns of b given g

for values of l corresponding to AI in the tumor.

To model the dependence among observed data across markers,

we leverage the expectation that chromosomal aberrations

covering a contiguous region are likely due to a small number of

molecular loss or gain events (often 1). We thus accommodate the

dependence across markers with a model for haplotype variation.

To do so, we apply a widely-used model for haplotype phasing and

imputation, i.e. that underlying the software fastPHASE [14]. We

start by assuming there is a set of haplotype clusters, representing

ancestral haplotypes, from which haplotypes in a ‘‘present-day’’

sample have derived. These latent haplotype clusters, parameter-

ized by haplotype-specific allele frequencies and relative cluster

weights, capture the dependence among genotypes at different

markers (or ‘‘linkage disequilibrium’’), summarizing the major

forms of haplotypes present in a collection of diploid samples.

Specifically, assume there are K haplotype clusters and let

zm = (zm1, zm2) indicate an ordered pair of latent clusters from

which an individual’s two inherited haplotypes are derived at site

m, with zma[f1, . . . ,Kg, for a = 1,2. We observe alleles as A or B
according to cluster-specific allele frequencies. Given zm2 = k, the

ath allele at marker m is derived as a B with probability hkm, with h
denoting the set of all such probabilities. We let gm (gm[f0, 1, 2g,
the number of inherited B alleles) denote the genotype at marker

m, with the following conditional distribution:

p(gmDzm~(j,k),n)~

(1{hjm)(1{hkm) gm~0,

(1{hjm)hkmz(1{hkm)hjm gm~1,

hjmhkm gm~2:

8><
>:

We further assume z1a, . . . ,zMa (a~1, 2) form a Markov chain

on f1, . . . ,Kg, with n denoting all parameters for this Markov

chain, including its transition probabilities and emission probabil-

ities h. The essential difference between the model underlying

fastPHASE and that used here is the ordering of cluster indicators

(zm1, zm2). For clarity in our exposition, we label each component

of zm as maternal or paternal (arbitrarily).

The key to our method is the integration of haplotype information

and aberration event, which we accomplish by expanding the state

Figure 4. A joint model for germline haplotypes and acquired
DNA aberration (J-LOH). Here we extend the HMM-based GPHMM
model (bottom left) to include haplotype information, also modeled via
an HMM similar to fastPHASE (top left). However, one key difference
from GPHMM is that in our model, we do not use mirrored BAFs but
rather model the untransformed BAF (b) and log R ratio (r) data directly.
Also, unlike in fastPHASE, the pair of z in our model are ordered. In the
joint model (right), l1,…,lM and z1,…,zM form two a priori independent
Markov chains, with l describing the somatic mutation events and z the
germline allelic dependence. The inclusion of germline genotype
information contained in g helps in better modeling dependence of
observed BAF (bm) and generating more accurate posterior probabilities
of aberrant states (lm).
doi:10.1371/journal.pcbi.1003765.g004
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space of lm to explicitly define an ordered pair (with respect to z) of

states for any aberration type leading to allelic imbalance. e.g. ‘‘2-0’’

and ‘‘0-2’’ (cn-LOH), ‘‘1-0’’ and ‘‘0-1’’ (deletion), ‘‘2-1’’ and ‘‘1-2’’

(duplication), etc., plus ‘‘1-1’’ (normal diploid), ‘‘0-0’’ (homozygous

deletion) and ‘‘2-2’’ (balanced duplication). Similar to GPHMM, we

limit the maximum total copy number to 5; for our model this results

in 21 states for the aberration chain (l ).
It is worth noting that for any pair (e.g. ‘‘2-1’’ and ‘‘1-2’’) of

unbalanced aberration states, say l1 and l2, even though the full

conditional (‘‘posterior’’) probability p(lm~l1, zDb, r, g,:) is not

necessarily equal to p(lm~l2, zDb, r, g,:), the equality is always true

for p(lm~l1Db, r, g,:)~p(lm~l2Db, r, g,:), as long as we use

symmetric TPMs. As a result, although there exist up to 21 internal

states in the model, we report conditional probabilities for up to 12

(3 balanced states plus 9 imbalanced), after summing over the pairs.

In contrast to (3), we obtain independence across markers only

by conditioning on both l and z, i.e.

f b, gDl, z, v, hð Þ~P
M

m~1
f bmDgm,lm,zm,v,hð Þp gmDzm,hð Þ: ð4Þ

Finally, we combine equations (1), (2) and (4) and sum over

possible values for l and z to obtain the following likelihood:

f (b,r,gDt,n)~
X

z,l

P
M

m~1
f (bm,rm,gmDzm,lm,v,h)

8<
:

9=
;p zDnð Þp lDtð Þ, ð5Þ

where f (bm,rm,gmjzm,lm,v,h)~f (rmjlm,v)f (bmjgm,lm,zm,v,h)
p(gmjzm,h) and t denotes the set of parameters for the conditional

distributions of b and r (e.g. emissions), including, among others,

the tumor proportion v.

A schematic for our joint model for haplotypes and chromosomal

aberrations is depicted in Figure 4. In summary, we assume

l1, . . . ,lM and z1, . . . ,zM form two a priori independent Markov

chains and z is ordered w.r.t. l, with l describing the somatic

mutation events and z the allelic dependence. Estimates for h and

parameters of the transition probability matrix (TPM) for z and can

be obtained from fitting fastPHASE to external reference popula-

tion data. The TPM for l is defined in Supplementary Text S1.

We now examine the emission functions for b and r in equation

(5). Let hm denote the ordered allele configuration, i.e.

hm[H~f(A,A),(B,B),(A,B),(B,A)g. Then we can write the

conditional distribution of b in the emission as

f bmDgm,lm,zm,t,hð Þ~
X

hm[H
f bmDhm,lm,tð Þp hmDgm,zm,hð Þ,

where

p hmDgm,zm~(j,k),hð Þ~
(1{hjm)hkm

(1{hjm)hkmz(1{hkm)hjm

hm~(A,B), gm~1,

(1{hkm)hjm

(1{hjm)hkmz(1{hkm)hjm

hm~(B,A), gm~1,

1 hm~(A,A), gm~0, or

hm~(B,B), gm~2,

0 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Here we have assumed the genotype calls are correct. (A more

comprehensive model could allow for genotyping error by

applying small deviations from the quantities above.) This

assumption seems to work well for our purpose of identifying

regions of aberration. In fact, in our results, after applying tQN

[15] we simply called genotypes (AA, BB or AB) via simple

thresholds for BAFs (e.g. 0.8 and 0.2) from mixture sample itself.

Critically, at heterozygous sites (gm = 1) our model differentiates

the two possible haplotype configurations, while methods assum-

ing BAF independence usually equally split probability among

them.

We define a(lm) and b(lm) as functions on the state space of l
that give parent-specific copy numbers. Then the distribution for

the BAF at a heterozygous marker m, given aberration type and

inherited allele configuration, is assumed to be normal with the

expectation as a weighted average of the ‘‘would-be’’ BAF of the

normal and tumor cell, that is

bmDhm,lm,t*N m(b)(hm,lm,v),sb

� �
,

where

m(b)(hm,lm,v)~

0:5(b(lm){a(lm))v

(a(lm)zb(lm))vz2(1{v)
z0:5 hm~(A,B),

{0:5(b(lm){a(lm))v

(a(lm)zb(lm))vz2(1{v)
z0:5 hm~(B,A):

8>><
>>:

Since we ignore the possibility of somatic point mutations at

these markers, at homozygous sites the BAF has a distribution that

is independent of mixture proportion and aberration type;

therefore, BAFs are informative for l at heterozygous sites only,

and f bmDhm,lm,tð Þ is 1 at non-heterozygous sites (either missing or

homozygous). For the LRR, we assume normality, regardless of

genotype, i.e.

rmDlm,t*N (m(r)(lm,v),sr),

where

m(r)(lm,v)~q log2

a lmð Þzb lmð Þð Þvz2(1{v)

2
,

and q is a sample specific LRR scale coefficient.

Parameter estimation for aberration HMM
In our model, we have assumed parameters of the population

genetic model n are known. In practice, we estimated these from

an external reference sets of appropriate genetic ancestry; here we

used the HapMap CEU panel [16]. Additionally, since the

likelihood surface is multi-model for n, we run J-LOH with

multiple estimates of n, obtained from different random starting

values for the EM. We then average posterior probabilities for l
from each run of the EM for n, as this has worked well for other

applications of this model, such as genotype imputation [14].

To estimate the tumor genome parameters for J-LOH (e.g. v,

sr, sb, q and a GC correction factor), we implemented an EM

algorithm. We conducted expectation calculations (‘‘E step’’) in

parallel by chromosome, as aberration events are assumed to be

independent across chromosomes. Then in the ‘‘M step’’, we
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updated global model parameters based on information from the

entire genome; thus, the running time of the EM was determined

by the chromosome with the greatest number of markers. The new

estimates are derived via numerical methods using posterior

probabilities of latent aberration states at each marker, obtained

with forward and backward algorithms (see Supplementary Text

S2).

Since our model accommodates a potentially large number of

latent states, we have observed multiple modes of the likelihood for

v. We have therefore instituted a few approaches to select starting

values for v in the EM algorithm. For lab dilution samples with a

range of possible tumor proportions, we first performed a grid

search at proportions from 6% to 30% in steps of 2%, and then

used the value that maximized the likelihood as an initial value in

subsequent EM steps. For the computational dilution data, we

assumed the tumor proportion was low, and selected 5% as an

initial value. We generally attain convergence of our estimate for

the tumor proportion v within 15 iterations.

Software
J-LOH was written in C and compiled with openMP library for

parallel computation. We compiled and ran our program a Mac

Pro with two 6-core 2.66 GHZ Intel Xeon CPUs and 40 G RAM.

With 319,000 SNP markers, 10 haplotype clusters and 21

aberration states, the computation time was approximately 20

seconds per EM iteration. The per iteration time was reduced to

about 6 seconds with cluster count 5; and about 1 second with our

haplotype-unaware model (K = 1). If TPM estimation is needed,

the running time would increase, e.g. for cluster count 5 setting, to

about 120 seconds. J-LOH and scripts for displaying output will be

made available at scheet.org/software.

Lab-based dilution samples
In this dilution series, a breast cancer cell line (ATCC CRL-

2324) was mixed with the matched normal cell line (CRL-2325) at

10 different target proportions [1]. Mixed DNA samples were

hybridized onto Illumina HumanCNV370 BeadChips and fluo-

rescent signals were processed using the BeadStudio software

(Illumina Inc.). We downloaded the microarray data from NCBI’s

GEO website (accession GSE11976). For GPHMM and J-LOH,

the array data was pre-processed with the normalization tool tQN

[15]; for others, we applied the genomic wave correction program

from PennCNV [17] to diminish the wave effect in the log R ratio.

We applied our method along with the other methods

(GPHMM 1.3, ASCAT 2.1, genoCN 1.06, PSCN 1.0, hapLOH

1.0) with default settings to SNP array data from dilution samples

with 30%, 21%, 14% and 10% tumor DNA. PSCN was run with

minimal segmentation size 40. GPHMM was run with a tumor

proportion range of 0.02–0.5. For J-LOH, parameters for

fastPHASE were estimated with a reference population using 1,

5 and 10 for the number of haplotype clusters. We ran J-LOH

with 25 iterations of the EM for each random start. At each

marker, the aberration state was called using the mode of the

posterior probabilities.

To compare J-LOH with other methods, we first analyzed the

pure tumor sample with GAP, which is designed for tumor

samples, to come up with a ‘‘gold standard’’ set of calls to which

we could compare results from applying various methods to the

diluted tumor samples (our aim is not to compare the methods to

GAP, per se.) GAP was chosen for this purpose for the following

reasons. 1) A recent review [18] demonstrated superior perfor-

mance of GAP for recall and false-discovery rate evaluation; as a

conclusion the author recommended GAP for advanced users.

2) Since our main focus is to demonstrate improvement over an

existing state-of-art HMM-based method (GPHMM), we utilized a

break-point method to minimize bias that could result from

choosing another HMM-based approach. 3) The author of

GPHMM stated ‘‘the results of GAP have very good agreement

with those obtained by GPHMM in the pure cancer cell line

data’’, so by using results from GAP for comparison we did not

intentionally put GPHMM at any disadvantage.

We defined the concordance metric as the percentage of

markers with calls consistent with GAP and considered the

following three criteria: (a) equal total allele copy number and

LOH status, which was used to define a self-consistency metric for

the evaluation of GPHMM [7]; (b) gain/loss of inherited alleles,

which is the natural summary of PSCN, and (c) existence of allelic

imbalance, which allowed comparison with hapLOH.

We restricted the marker set to the 319,000 markers in the

intersection with the HapMap CEU marker set. All markers on

chromosomes 6 and 16 were excluded from further analysis, as

deletions are present in the normal cell line sample [18]. For

purposes of scoring concordance and other metrics, we also

excluded regions based on our own GAP analyses, including LOH

regions inferred to be in the normal sample and markers in GAP

calls with low confidence (score = 4) or subclonality. Additionally,

since some other methods have minimum region lengths (e.g.

PSCN), we also excluded short GAP calls (#40 markers). After

these actions, the denominator for calculating concordance rate

consisted of 226,868 SNP markers, or about 71% of the 319,000

SNP markers originally in the intersection with HapMap.

Low-purity computational dilution samples
We created computational dilutions with mixture proportions of

tumor from 1% to 10% in steps of 1%. For selected tumor LOH

regions, BAFs were interpolated from the pure normal and pure

tumor BAFs, according to the intended aberration event (either

deletion or cn-LOH) and mixture proportions, as described in [6].

LRR values were simulated according to the theoretical model

used in GPHMM [7]. The simulated aberrations covered 72,986

markers, including 23,152 in copy-neutral LOH regions and

49,834 in hemizygous deletion regions. The lengths of the

aberrant regions are between 250 and 10,720 markers, with a

mean of 2,918 markers.

We ran all methods with the same settings as for the lab-based

dilution samples. For J-LOH, we did not estimate the aberration

state TPM with the EM as we did for lab dilutions; rather, we fixed

values so that aberrant events had a mean length of 600 markers

(about 20 Mb) and covered 10%. Concordance with the simulated

aberrant states was calculated the same as for the lab-based

dilutions but with marker exclusions as described in [6]. To

calculate sensitivity and specificity for hapLOH we first grouped

both aberrant states and then contrasted this total probability with

that for the normal state. For other methods, including J-LOH, we

used the state called by the software. In order to compare with

hapLOH, we ran a modified version of our method, where the

latent state space was limited to include normal, deletion and cn-

LOH events only. ROC curves were obtained by choosing

different thresholds for the posterior probability of being in some

aberrant state.

Adjacent normal tissue
We downloaded data from GEO (accession GSE32649) from a

study of hepatocellular carcinoma [10], in which both cancer and

surrounding normal tissues from 86 patients were analyzed on an

Illumina 370K array. We ran J-LOH on the normal samples only,

with a fixed TPM assuming that aberrant events had a mean

length of 600 markers (about 20 Mb) and covered 0.1% of the
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genome. We visually inspected posterior probability plots and

array data of matched tumor samples for aberrant regions with

matching boundaries and event type.

Supporting Information

Figure S1 The distributions of untransformed BAF (top)
and mirrored BAF (bottom) at heterozygous markers in
normal regions (blue color) and allelic imbalanced
regions for various magnitudes of allelic imbalance. As

the magnitude of allelic imbalance decreases, the distribution of

mirrored BAF deviates more from normality.

(PDF)

Figure S2 Schematic diagram for re-orientation pro-
cess. This diagram illustrates the re-orientation of ‘‘A/B’’ alleles

at heterozygous markers in an allelic imbalanced chromosome

region, with knowledge of haplotypes information. In an allelic

imbalanced region, the BAF has either a ‘‘shifted up’’ (blue) or

‘‘shifted down’’ (red) distribution, forming two bands on opposite

sides of 0.5. We reverse ‘‘A/B’’ allele as necessary such that one

chromosome carries all ‘‘A’’ alleles at heterozygous markers while

the other all ‘‘B’’ alleles. Accordingly, the observed BAF at a

marker of which the allele label is changed would be replaced with

its complement (1-BAF). For example, if the original BAF has the

red distribution, the complement (1-BAF) would have the blue

distribution. The BAFs after re-orientation become ‘‘one-band’’

and maintain normality. In contrast, the distribution of the

mirrored BAF is bounded by 0.5 and distorted.

(PDF)

Figure S3 Comparison of ROCs between hapLOH and J-
LOH at tumor purities 3% and 5%. We first classify existence

of any aberration state by applying different thresholds to the

posterior probability of being normal to obtain the ROC. Since

hapLOH uses only the BAF information, we ran J-LOH first with

both BAF and LRR and then with BAF inputs only.

(PDF)

Table S1 Accuracy of various methods for inferring
over-represented alleles. At a heterozygous marker in allelic

imbalanced regions, either allele ‘‘A’’ or ‘‘B’’ is over-represented in

the tumor. We compare the accuracy for inferring over-

represented alleles in the tumor. Accuracy is defined as the

proportion of heterozygous markers in AI regions where the over-

represented alleles are inferred correctly. The true over-represent-

ed alleles are ascertained from dichotomizing BAFs in AI regions

in pure tumor cell line. The naive method selects the allele by

comparing the mixture BAF to 0.5. Both J-LOH and hapLOH

infer with enhanced accuracy.

(PDF)

Text S1 Transitions probability matrix for the aberra-
tion state HMM.

(PDF)

Text S2 Estimation of model parameters.

(PDF)
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