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Abstract: Human Activity Recognition (HAR) that includes gait analysis may be useful for various
rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables
or cameras, have privacy and operational constraints, especially when used with older adults.
Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-
cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a
novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose
estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-
ODS MMW radar to obtain the micro-Doppler spectrogram and point clouds for 19 human joints.
We developed a multilayer Convolutional Neural Network (CNN) to recognize and classify five
different gait patterns with an accuracy of 95.7 to 98.8% using MMW radar data. During training of
the CNN algorithm, we used the extracted 3D coordinates of 25 joints using the Kinect V2 sensor
and compared them with the point clouds data to improve the estimation. Finally, we performed a
real-time simulation to observe the point cloud behavior for different activities and validated our
system against the ground truth values. The proposed method demonstrates the ability to distinguish
between different human activities to obtain clinically relevant gait information.

Keywords: human gait recognition; gait analysis; mmWave radar; machine learning; 3D point-cloud;
IWR6843ISK-ODS; neural network; Nvidia Jetson nano

1. Introduction

The United Nations Population Fund (UNFPA) report states that the population of
older adults (>60) will increase to 2 billion by 2050 [1]. This population is more prone to
developing neurodegenerative diseases, becoming frail, and having falls [2]. Continuous
monitoring of mobility and activity levels could provide valuable data to help mitigate
the impacts of disease and disability [3]. However, it is difficult to monitor one or more
individuals continuously and unobtrusively at home or in institutional settings. Fortunately,
recent technological advancements have paved the way for easier remote monitoring [4,5].
In this context, remote health monitoring by leveraging Machine Learning (ML) and
Artificial Intelligence (AI) methods is becoming more common [6]. Such technologies can
provide the ability to monitor patients remotely, provide health reports to doctors, and
detect potentially serious events, such as falls [7,8].

Important applications of remote health monitoring include continuous monitoring of
gait and recognition of different walking patterns and activities and events, such as sitting,
standing, laying, and falls [9]. Currently, gait analysis requires an evaluation by a healthcare
professional in a clinical setting, which can be costly and time-consuming. Remote gait
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analysis could help to detect changes and deviations from normal walking, which could
help health professionals to assess injury, illness severity, or recovery over extended periods
of time [10]. Human Activity Recognition (HAR) is the method of identifying or classifying
different human activities, such as sitting, walking, running, or falling. To date, various tech-
nologies have been used for HAR, such as wearable sensors, cameras, and radars [11–14].
In general, HAR involves monitoring activity over extended periods of time; however,
sensors and wearables are impacted by their limited battery life [15]. Wearable sensors also
require users to remember to use them regularly [16]. Video cameras can provide monitor-
ing over extended periods of time, but their performance depends on a clear line-of-sight
and can be impacted by lighting and climate conditions [17]. Further, video cameras have
privacy concerns for the user, making them less optimal for HAR [18].

Millimeter-Wave (MMW) radars have shown potential for HAR with high resolution
using their broad bandwidth of operating frequencies from 30 to 300 GHz [19]. MMW radar
can overcome the battery limitations of wearables and the privacy concerns of cameras
when used as a plug-in device attached to a wall power outlet and can operate in a variety of
climate and lighting conditions [20]. MMW radar generates a 3D point cloud representation
of joints that can be recognized as human locomotion using AI algorithms. Currently, most
HAR devices and clinical measures of gait focus on spatiotemporal parameters such as
gait speed, cadence, and distance [21,22]. MMW could provide additional information
about the quality of gait that is otherwise difficult to measure in community or free-
living environments. Based on the potential benefits of MMW, this paper aims to present
its use for human gait analysis using ML algorithms. The novel contributions of this
paper include:

• The use of MMW radar and ML to recognize and classify different abnormal gait
patterns commonly associated with frailty and disability, including walking with a
limp, walking with a stooped posture, and walking with an assistive device.

• The use of a low-cost MMW radar prototype with competitive object localization and
detection accuracy that can be used in both community and clinical settings.

• The use of micro-Doppler signatures and skeleton pose estimation techniques to
achieve a gait pattern classification accuracy of 95.7 to 98.8%.

The rest of the paper is organized as follows: Section 2 provides the background and
literature review. Section 3 explains the proposed MMW system, and the experimental
setup is presented in Section 4. Section 5 discusses the results and discussion. Finally,
Section 6 concludes the work.

2. Background and Literature Review

Gait analysis examines the different postures of a human body between consecutive
foot strikes of the same foot (gait cycle). Motion analysis laboratories use infrared motion
capture cameras and force plates, which are the current gold standard for gait analysis;
however, they are impractical for long-term monitoring in community or general clinical
settings because of their cost and scale. While laboratory gait analysis can accurately
measure various parameters, such as joint angles, muscle force, step/stride length, body
posture, and ground reaction forces [23], it does not automatically recognize or classify gait
into commonly known abnormal patterns.

To overcome some of the limitations of laboratory-based gait analysis, wearable
sensors such as accelerometers, gyroscopes, and magnetometers are becoming more com-
mon for gait analysis. The advantage of wearables over other techniques is their abil-
ity to take readings in free-living environments [23]. Furthermore, wearables are small
and inexpensive compared to other technologies. Zebin et al. [24] used data from five
lower body inertial measurement units (IMUs) and the Convolutional Neural Network
(CNN) to accurately classify activities such as walking, stairs, sitting, standing, and lying.
However, wearable sensors cannot currently recognize and classify different abnormal
walking patterns.
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Surface electromyography (sEMG) is commonly used during gait analysis and gives
important information regarding muscle activity [25]. Rescio et al. [26] showed that sEMG
improves pre-fall detection accuracy compared with wearable IMUs. However, even
slightly incorrect placement of sEMG electrodes drastically reduces the detection accuracy.
These challenges make sEMG impractical for long-term community-based gait analysis.

Portable gait mats placed on a hard floor have been used for gait analysis. These mats
are equipped with pressure sensors that measure ground reaction forces. The mats are low
cost, portable, and noninvasive. However, they are typically only 3–5 m in length and not
applicable to community environments.

Acoustic tracking using ultrasonic pulses has been used in some studies [27,28]. How-
ever, it does not provide optimal results in the presence of noise. This technique also
requires a direct line of sight [29,30].

Vision-based systems use a motion camera to capture a subject’s gait and translate it
to a 3D computerized object [31,32]. Therefore, such systems are widely used to examine
gait by measuring joint angles, joint locations, and mobility in 2D and 3D. Privacy is a
significant concern with vision-based systems [9].

Zhao et al. [33] presented RF-Pose for human pose estimation. It estimates the human
pose by creating a 2D dynamic skeleton stick figure during walking activity. However, it is
challenging to predict and distinguish hand movements and joints using a 2D stick figure,
especially when a subject is walking with external assistance, for example, using a cane
or walker.

MMW radar has emerged as a promising technology that can complement or replace
other gait analysis and HAR systems over extended periods of time. MMW radar is low-
cost and noninvasive in nature and can work under a variety of operational conditions [34].
Furthermore, it offers remote monitoring without direct line of sight. MMW radar generates
point cloud data, reducing privacy concerns, and the data can be processed using AI and
ML algorithms for HAR. Sengupta et al. [35] proposed a voxelization method using radar
and Natural Language Processing for pose estimation. That study estimated 25 skeleton
points using MMW radar. One concern is the increased computation cost due to the high
dimensionality of the input data. An and Ogras [36] reduced the input data dimension by
mapping 5D time-series point cloud data from MMW radar to a lower dimension. They
then used the convolution neural network (CNN) to estimate human joints accurately.
In addition, micro-Doppler signal components can help to reveal gait information. For
example, considering a walking person, the Time-Frequency Representations (TFR) of the
radar backscattering depict the micro-Doppler components due to swinging arms and
legs [37]. A normal gait generates a periodic signal in its TFR. However, changes in gait,
such as falling, generate a Doppler shift that can help with HAR.

The proposed method combines skeleton pose estimation and micro-Doppler signa-
tures to recognize and accurately classify five different gait patterns. The following gait
patterns were used for our study because they represent common abnormal patterns among
older adults.

(1) Normal Gait—Walking normally with good posture and without an assistive device.
(2) Limping—Many gait deficits lead to asymmetry in movement; limping is a common

gait disorder characterized by asymmetry in step/stride length and lateral trunk
movement. A similar pattern can be seen in people with hemiparesis due to disorders
such as stroke, Multiple Sclerosis (MS), and brain injury [38].

(3) Stooped posture—A stooped posture is common in frail persons who have difficulty
overcoming the postural demands of gravity. A stooped posture is also common with
various neurological disorders, such as dementia and Parkinson’s Disease [39].

(4) Using a walker—Many people with gait and balance disorders use walkers. The ability
to detect whether someone is using a walker can help to determine whether they are
complying with their prescribed use or have adopted the device independently or
whether they were using it at the time of a fall [40]. We used a front-wheel rolling walker
in this work, because these are very commonly used in home and institutional settings.
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(5) Using a cane—Many people with gait and balance disorders use canes. The ability
to detect whether someone is using a cane can help to determine whether they are
complying with their prescribed use or have adopted the device independently [40].

3. Proposed MMW Radar Gait System

The proposed MMW radar gait system is a low-cost solution for distinguishing dif-
ferent human activities and gait patterns. It consists of several steps. First, the system
generates the micro-Doppler signatures based on point cloud data from the MMW radar.
Then, a CNN algorithm identifies different human activities using micro-Doppler as an
input. To train the CNN algorithm to accurately estimate the locations of human joints, we
used 3D joint coordinates obtained from the Microsoft Kinect V2 sensor as ground truth.
Then, the trained model reconstructed 19 human joints and their skeleton from the point
cloud generated by the MMW radar. Figure 1 illustrates the flow diagram of the MMW
radar gait system.
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Figure 1. A flow diagram of the MMW radar gait system.

3.1. Detection Using Micro-Doppler Signatures

The MMW signals from the radar generate various scattering points after reflecting
from a human body. The scattering points of different body parts create the point cloud
specific to that part of the body. Generally, these points have different velocities or Doppler
shifts because of movements, such as the movement of legs or arms. For example, the right
leg will have velocity in the opposite direction to the left leg during a walk or run. Therefore,
the Doppler of every point cloud will be different for different body parts. Hence, each
activity creates a unique micro-Doppler signature calculated using the velocity of scattered
points over time. For this study, we used the Texas Instruments (TI) IWR6843ISK-ODS
MMW radar, as shown in Figure 2 [41].
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TI IWR6843ISK-ODS MMW Radar

The TI IWR6843ISK-ODS MMW radar uses Frequency-Modulated Continuous-Wave
(FMCW) to precisely measure the velocity range and angle by sending continuous frequency-
modulated signals. It consists of three transmitting and four receiving antennas with a
120◦ field of view with a range of approximately 12 m, enough to cover areas of various
residential and clinical settings.

The micro-Doppler Signatures steps are illustrated in Figure 3. At the start, the
IWR6843ISK-ODS MMW radar sends multiple FMCW chirps with a 60.75 GHz carrier
frequency. The chirps help to calculate different parameters, such as velocity, range, and
angle. For example, velocity is calculated by finding the Doppler shift across Coherent
Processing intervals (CPIs). In contrast, beamforming using multiple antennas helps
to analyze the angle. In the second step, the measured velocity, range, and angle are
transformed into a 3D data cube, as illustrated in Figure 3. Radar processing consists of
five steps:

1. Range and velocity estimation is performed in the first step using the Fast Fourier
Transform (FFT).

2. Moving Target Indication (MTI) removes the static clutter points (surrounding reflec-
tions) from the data.

3. The Constant False Alarm Rate (CFAR) detects static points among the noisy data in
the fourth step.

4. The fifth step includes angle estimation using the FFT.
5. Finally, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is

applied to separate the scattered points into different categories, such as regular
walking or walking with a limp [42].
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The Kalman filter tracks subjects’ movements and associates relevant scattered points
with different activities, thus making point clouds for each activity.

We used a sliding window to collect Doppler features over time. In the proposed
method, the attenuation of the scatter point intensity is compensated for due to the range
effect and normalized to one. After that, these points are fed to the CNN for training. The
normalized point cloud’s Doppler pattern acts as a signature for different activities and
helps to classify different activities. The micro-Doppler signature of each activity differs, as
shown in Figure 4.
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The last step of this approach is to distinguish five different activities based on the
micro-Doppler signature of each activity. For that, we use a four-layered CNN, as illustrated
in Figure 3, due to its high accuracy and low loss rate. We experimented with multiple CNN
layers during our analysis, and our results show that optimal results are achieved with four
convolution layers. Figure 3 shows that each layer consists of a 3 × 3 kernel, with depths of
32, 64, 128, and 256, respectively. Further, we use the Leaky-Rectified Linear Activation
Unit (ReLU) to mitigate the dying ReLU impact that sends a few neurons to the inactive
state [43]. Next to ReLU, a 2D max-pooling layer reduces the computation complexity by
downsampling the previous layer’s output while keeping the most dominant features. This
is achieved by sliding a 2 × 2 window across the CNN output and returning the maximum
pixel value in its stride. We also use dropout regularization between layers with a dropout
probability of 5% [35]. This reduces the number of parameters at each epoch, resulting in
lower computation and a high training speed. The output of the CNN layers is flattened to
a 1D vector, as depicted in the Figure 3. After passing through the dense layer, the final
output will have k nodes against k features/activities we are planning to classify. Finally,
these outputs are normalized and associated with each class/activity probability using
the softmax function. Hence, the class with maximum probability is the predicted human
activity. In our study, we combined these micro-Doppler signatures (using CNN) results
with the joint estimation techniques to obtain precise results.

3.2. Skeletal Pose Estimation Technique

The skeletal pose estimation technique combines the 5D time-series point cloud data
from MMW radar with the 3D joint coordinate data from the Kinect V2 sensor. Kinect
provides 25 joint coordinates for training, while CNN combines this training data with
time-series data to accurately predict the locations of 19 human joints, as shown in Figure 5.
The flow diagram of the used method is illustrated in Figure 6.
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TI’s MMW extracts the 5D time-series data to frames, including the (x, y, z) coordinates,
reflection intensity, and Doppler shift, using reflected chirp signals. However, the reflected
chirp signals arrive at the radar randomly due to unexpected body movements or delays.
As a result, the frames do not have consistent point locations. To achieve better prediction
accuracy using the CNN, the frames should have consistent data locations and shapes.
Therefore, we performed data preprocessing using matrix transformation and sorting
algorithms. The transformation also reshapes the data in the matrix, thus, making it an
ideal input for the CNN. Furthermore, it caters for the outliers caused by scattering in the
training process, because such phenomena are inevitable in real applications.

The second step involves converting these frames to 19 joint positions using the CNN,
as shown in Figure 5. The proposed CNN algorithm uses a 5-channel feature map as the
input. It consists of two convolution layers, one flattening layer, and two fully connected
layers. Next, multiple Batch Normalization (BN) layers are used after the convolution layer
and between the fully connected layers to avoid major data distribution changes.

The input data obtained by the transformation matrix are passed through convolution
layers with 16 and 32 channels, respectively. Each layer is followed by a dropout layer
(with probabilities of 0.3 and 0.4) to avoid high dependency on a particular neuron. The
output of these layers is passed through a flattering layer, which creates an input vector for
fully connected layers. The first fully connected layer consists of 512 neurons, while the
last layer consists of 57 neurons of 19 joints (3D points for each point). The fully connected
layers also use dropout layers to eliminate dependency on a particular neuron.

The training of the proposed CNN requires the ground-truth value. Therefore, the
Kinect V2 sensor was used to measure the referencing coordinates. Generally, it is difficult
to predict hand motions of people using canes or walkers. Therefore, we extracted six
extra ground truth points using the Kinect system, as shown in Figure 6. For example,
we estimated locations 9, 11, 13, and 15 for the right hand. The point with the highest
prediction was considered the right wrist during the final estimation, so all other points
were discarded.

We placed the MMW radar and Kinect V2 sensor during the experiment to capture
the data to train our model. That configuration led to a spatial offset in the x-axis that was
addressed during the preprocessing phase. We ensured the frame alignment by connecting
both devices to the same laptop and timestamping the data frames from each device.
Our proposed method tracks the (x, y, z) coordinates using the referencing/ground truth
coordinates of Kinect to compare our model outputs during the real simulation, as shown
in Figure 7.

Figure 7 illustrates the point clouds, ground truth values, and estimated values ob-
tained using the proposed method. Figure 7 shows that the MMW radar extracted point
clouds have sparsity, due to the limitations of radio wavelength and inherent noise, which
makes it difficult to estimate the activity or pose accurately. The proposed MMW gait
system accurately estimates various joint locations for different activities and is closer to
ground truth values, as visualized in Figure 7.

Later, these estimations are combined with the micro-Doppler estimate to predict five
different human activities, as discussed in Algorithm 1.
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3.3. MMW-Based HAR Algorithms

This algorithm identifies different human activities using micro-Doppler as an input
for MMW [Mi : i = 1, 2, 3, 4, 5] with five different walking postures. First, it generates the
radar signals of inputs in the form of d = Range, v = Velocity, and θ = Angle. The range is
used to locate the users, and the distance from the radar can be calculated by d:

d =
f1F × c× Tc

2× B
=

f1F × c
2× S

(1)

where f1F represents the IF frequency (time-domain signals), c is the speed of light, the
duration of each chirp signal is denoted by Tc, and B represents the reflected signals.

To distinguish between multiple users, the velocity of each user is collected and
denoted by ν:

ν =
ω× λ

4π × Tc
(2)

where ω represent the phase difference, and λ represents the wavelength.
To find the exact position in the spatial Cartesian coordinates system, we derive the

Angle of Arrival Estimation (AoA) = θ using multiple neighboring receiving antennas
di − Rx. This AoA = θ is derived using the relation

θ = sin−1
(

ω× λ

2π × di − Rx

)
(3)

Algorithm 1: The MMW-based HAR algorithm using the CNN.

Require: MMW [Mi : i = 1, 2, 3, 4, 5]
Ensure: Walking Posture Wp

[
Wp : p = 1, 2, 3, 4, 5

]
for Mi ← 1 : 5 do

read radar signal
estimate d← Range
estimate v← Velocity
estimate θ ← Angle

end for
for Mi ← 1 : 5 do read MMW and Kinect V2 data

extract x, y, z coordinates
extract 5D points j← 19 points
extract 3D points k← 25 points

estimate skeleton joints
[
Sj = j− 6

]
B total 19 points

estimate Sj + MDpS B MDpS : micro-Doppler Signatures
get prediction probabilities Wp

[
Wp : p = 1, 2, 3, 4, 5

]
end for
Read Wp

[
Wp : p = 1, 2, 3, 4, 5

]
Predict Walking Posture

After that, a four-layered CNN identifies different human activities using micro-
Doppler Signatures MDpS as the input. The data alignment and labelling are calculated
using ν and time (t) as

MDpS =
ν

t
(4)

The prediction of skeletal pose estimation is further based on the Kinect V2 sensor
and MMW radar values. The Kinect V2 sensor records 25 human joints = j in a 3D
coordinate system, whereas the MMW radar records 19 human joints with five coordinates
x, y, z, D, I. Then, these joints are subtracted from the joints of the 3D system using
the formula Sj = j − 6. These six subtracted values are actually the joints of the hand
recorded twice.
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Finally, the walking prediction Wp
[
Wp : p = 1, 2, 3, 4, 5

]
is done using the relation

Wp = Sj + MDpS (5)

DBSCAN is applied to separate the scattered points into different categories, such as
normal walking or walking with a limb.

• W1: walking normal.
• W2: walking with stooped posture.
• W3: walking with limp.
• W4: walking with a walker.
• W5: walking with a cane.

4. Experiment Setup

Table 1 lists the configuration parameters of the TI’s IWR6843ISK-ODS MMW radar
used to classify human activities into the five working classes (W1, W2, W3, W4, W5)
listed above.

Table 1. IWR6843ISK-ODS Radar Parameters.

Parameter Physical Description

Start Frequency 60.75 GHz
Number of TX 3 TX
Number of RX 4 RX

Number of samples per chirp 96
Number of chirps 288

Maximum velocity 16.2 km/h
Velocity resolution 0.324 km/h

Idle time 30 µs
ADC valid start time 25 µs

F_s (Sampling frequency) 2.950 Msps
F_c (Central frequency) 63.008 GHz

Valid sweep Bandwidth (BW) 1780.393 MHz
Periodicity (TFrame ) 55 ms

Max unambiguous range (Rmax ) 8.083 m
Range resolution(∆R) 0.084 m

Max unambiguous Doppler (Dmax ) ±4.450 m/s
Doppler resolution (∆D) 0.093 m/s

Range Detection Threshold 15 dB
Doppler Detection Threshold 15 dB

We proposed a clinical study that was approved by the Institutional Review Board
(IRB) at the University of Dayton and recruited approximately 74 participants. The partici-
pants’ demographics are provided in Table 2. The obtained datasets were used to train our
deep learning CNN model and apply it in real-time.

Table 2. The participants’ distribution.

Parameter Mean ± SD (Range)

Age 24 ± 7.36 (21–53)
Height (cm) 170 ± 5.55 (160–185.42)
Weight (kg) 75 ± 12.59 (55–115)

BMI 25.47 ± 4.36 (19.26–40.75)
Gender (M/F) 42/32

The testing environment is shown in Figure 8. The environment consisted of a MMW
radar sensor placed on top of a tripod with a height of 2 m and rotated with a tilt angle
of 15 degrees for better area coverage. Based on the Robotic Operating System (ROS) on
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the Ubuntu-running Nvidia Jetson nano platform, we developed an interface program to
connect the TI MMWAVEICBOOST and collect the radar 3D point cloud over the USB port.
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Data Collection and Labelling

The data were recorded in three scenarios, as shown in Figure 9. We asked participants
to walk perpendicularly in front of the sensor for one minute. This step included walking
forward and backwards. Then, we asked participants to walk parallel to the sensor for
one minute, walking forward and backwards. Finally, we asked the participants to walk
freely in front of the sensor for one minute. The aim was to collect more data from different
angles to improve the model’s training at different angles.
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Figure 9 only shows data collection for limping and stooped posture due to space
limitations. We used a python script to convert the files into CSV files containing all
measurement values, such as time, target_idx, x, y, z, range, velocity, doppler_bin, bear-
ing, intensity, elevation, posX, posY, posZ, velX, velY, and velZ. The micro-Doppler data
collection process is illustrated in Figure 10.
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Similarly, data collection using the Kinect V2 sensor to train the model for reconstruc-
tion of the human joints is presented in Figure 11.
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5. Results & Discussion

First, we performed a real-time simulation to observe the point cloud behavior for
different activities and then validated our system against the ground-truth values. Second,
we calculated the training and prediction accuracy levels.

5.1. Monitoring Individual Activity

We tested each participant condition/activity separately, for example, normal walking,
limping, and stooped posture. We monitored the point cloud and the prediction message
on the MMW system dashboard as circled by yellow color. For example, Figure 12 shows a
person walking normally in the library environment. We can visualize that the generated
point cloud structure is similar to the ground truth value or actual standard walking pose.
Similarly, the MMW radar gait dashboard classifies it as “walking normally”, as highlighted
by the yellow circle. The same trend is visible for the remaining activities illustrated in
Figures 13–16.
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5.2. Monitoring Multiple Activities

In this step, we examined the detection of multiple activities for an individual. The
participant was asked to perform multiple activities, such as walking normally and then
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limping to monitor the sequences of change in the output and the changes in the prediction
message. As an example, we show the following scenarios:

• Scenario 1: Walking normally and then limping (Figure 17).
• Scenario 2: Limping and then stooped posture (Figure 18).
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5.3. Monitoring Different Subjects with Different Activities

The proposed system has the ability to detect multiple subjects with different po-
sitions/activities at the same time. Therefore, as examples, we examined the results by
considering the following scenarios:
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• Scenario 1: Two subjects, one walking with a walker and one walking with a stooped
posture (Figure 19).

• Scenario 2: Three subjects, one walking with a walker, one walking normally, and one
limping (Figure 20).
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5.3.1. The Accuracy Evaluation and Time Analysis

Table 3 compares the accuracy of the predicted 3D joint coordinates against the ground
truth. Here, we computed the Mean Absolute Error (MAE) and Root-Mean-Squared Error
(RMSE) for x, y and z coordinates of different joints, as illustrated in Table 3. We trained
five different models and averaged them to eliminate the system errors. The average MAE
for all 19 joints was 5.86, 2.98, and 5.49 cm for the x, y, and z axes, respectively. Similarly,
the average RMSE was 8.66, 4.45, and 7.75 cm for those coordinate axes, respectively.
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Table 3. Average Localization Error for 3D joint coordinates.

No. Point Description
X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm)

MAE RMSE MAE RMSE MAE RMSE

1 Head 6.35 9.46 2.59 3.59 7.10 9.58
2 Neck 5.68 8.71 2.47 3.23 6.47 8.87

3 Spine
Shoulder 5.51 8.46 2.13 3.02 6.30 8.61

4 Shoulder Left 5.82 8.80 2.28 3.28 5.77 8.01

5 Shoulder
Right 5.64 8.58 2.66 4.02 6.01 8.11

6 Elbow Left 6.41 9.12 3.26 5.01 7.08 9.61
7 Elbow Right 6.85 9.63 3.61 5.62 7.30 9.81
8 Wrist Left 9.23 12.66 4.02 5.71 12.45 16.23
9 Wrist Right 9.62 13.14 4.13 6.14 13.03 16.52
10 Spine Mid 5.05 7.81 2.02 2.86 5.71 7.85
11 Spine Base 4.55 7.12 2.45 3.87 4.87 6.72
12 Hip Left 4.54 7.02 2.45 3.87 4.72 6.56
13 Hip Right 4.45 7.02 2.56 4.04 4.82 6.67
14 Knee Left 4.46 7.01 3.07 4.52 2.14 3.43
15 Knee Right 5.10 7.42 3.27 4.72 2.50 4.21
16 Ankle Left 4.45 7.08 3.08 4.54 2.23 3.42
17 Ankle Right 5.81 8.32 3.34 5.09 1.65 4.26
18 Foot Left 5.48 8.25 3.72 6.02 2.05 4.12
19 Foot Right 6.27 8.87 3.46 5.42 2.10 4.69

19 points Average 5.86 8.66 2.98 4.45 5.49 7.75

The results suggest that the x and z axes have slightly larger errors than the y-axis
since the observed movements involved more horizontal and vertical displacement of
all body parts. In contrast, the error along the y-axis was minimal (2.13–4.13 cm) due to
the smaller displacement in depth. Generally, most joints’ MAE errors were smaller than
8 cm. The most notable exceptions were the right and left wrist joints. As an explanation,
the joints related to the hands need a higher resolution for localization. Since the MMW
radar’s range resolution is 0.084 m at 1780.393 MHz, as mentioned in Table 1, it is difficult
for the model to reconstruct these points precisely.

We used the Nvidia Jetson nano, which includes a Graphical Processing Unit (128-core
Maxwell) and a Central Processing Unit (Quad-core ARM A57 @ 1.43 GHz) which offers
the required computational power for HAR [44]. For different configurations, the total
inference time required to process all 50,400 frames ranged from 2.2 s to 3.7s. The total
power consumption ranged from 3900.2 mW to 5763.4 mW. The average frame processing
time ranged from 54.3 µs to 92.5 µs.

5.3.2. Prediction Accuracy

Figure 21 illustrates the training and validation accuracy during the training process.
In contrast, Figure 22 visualizes the training and validation losses. Figures 21 and 22 show
that the model adjusted the weights to identify all the activities correctly. Furthermore,
the accuracy and loss function improved with more epochs, indicating that the model can
generalize and accurately predict the outcome on validation data.
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Lastly, Figure 23 plots the confusion matrix for all activities. The first element shows
that our proposed method predicted normal walking (W1) with an accuracy of 97.2%. In
contrast, it predicted normal walking as a stooped posture 1.3% of the time. Similarly, it
confused normal walking, limping, and cane and walker walking 0.6%, 0.2%, and 0.7%
time, respectively.
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Figure 23. Confusion matrix for five different human activities.

The proposed method attained the highest prediction accuracy of 98.8% for walking
with a walker, closely followed by a prediction accuracy of 98.4% for walking with a
cane. However, the first three activities (W1, W2, and W3) demonstrated slightly lower
prediction accuracy levels, because their gait patterns overlap sometimes. Nevertheless,
the lowest accuracy of 95.7% is still clinically relevant for HAR for rehabilitation or remote
monitoring purposes.

6. Conclusions

This study demonstrated the ability of the MMW radar system to accurately identify
five different gait patterns. The proposed system combines pose estimation techniques
with micro-Doppler signatures obtained by the low-cost radar system. The use of MMW
radar for gait analysis preserves users’ privacy, does not require line of sight, can track
multiple people at the same time, and can operate in varied environmental conditions. The
information generated by this approach could be used to recognize other gait patterns and
kinematic variables, such as joint angles.

This work has the potential to provide a number of practical clinical benefits, including
the ability to track changes in the gait of one or more individuals over extended periods of
time in both home and institutional settings. This would allow healthcare professionals to
remotely monitor and assess the effectiveness of rehabilitation interventions outside the
clinical setting and provide data that may indicate the need for additional interventions. In
institutional settings, such as skilled nursing facilities, this system could provide data on
the walking ability of residents to mitigate fall risk and to direct resources more effectively.
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