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Emergence and time evolution of micro-structured new-phase domains play a crucial role in determining
the macroscopic physical and mechanical behaviors of iron under shock compression. Here, we investigate,
through molecular dynamics simulations and theoretical modelings, shock-induced phase transition
process of iron from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) structure. We present a
central-moment method and a rolling-ball algorithm to calculate and analyze the morphology and growth
speed of the hcp phase domains, and then propose a phase transition model to clarify our derived growth law
of the phase domains. We also demonstrate that the new-phase evolution process undergoes three
distinguished stages with different time scales of the hcp phase fraction in the system.

T
he high-pressure states of iron have long been of great interest because of its technological and sociological
importance as well as its geophysical role within Earth core1. In particular, the structural phase transitions
induced by pressure and temperature have been extensively studied2. The structural phase transition of iron

under shock loading was first reported by Bancroft in 19563, where the transition pressure was determined as
about 13 GPa based on wave-profile analysis. After that, many research works have been done to investigate the
transition pressure, transition mechanism and equation of state both in theory and at experiment4–6. In 2002,
Kadau et al. first observed from large-scale molecular dynamics (MD) simulations the evolution process of phase
transition from bcc into hcp structure in iron7. Later, they also studied the shocked polycrystalline iron8. In 2005,
using the in situ X-ray diffraction technique with nanosecond resolution, Kalantar et al. directly confirmed the
phase transition mechanism of iron9. That is, the bcc-hcp phase transition includes uniaxial collapse along the
[001] direction and shuffling of alternate (110) planes of atoms. Using the same in situ technique combined with a
modified Warren-Averbach method, in 2008, Hawreliak et al. derived the conclusion that single-crystal iron
becomes nanocrystalline in shock transforming from bcc to hcp phase10, in reasonable agreement with results
from large-scale MD simulations.

In addition to its microscopic mechanism, clearly, a physical modeling of phase transition process for shocked
iron also crucially requires a deepened knowledge about the nucleation rate, growth speed, and the associated
morphology evolution of nanoscaled new-phase domains (here, hcp domains), which keep unsolved up to now.
This becomes particularly important when considering the above-mentioned experimental fact10 that shock
transformed iron is really characterized by nanoscale grains. Inspired by this observation, through systematic
MD simulations and a rationalized theoretical analysis, here, we study the non-equilibrium phase transition
process in iron under the critical pressure. For this purpose we develop a central-moment method and a rolling-
ball algorithm to calculate and analyze the morphology and growth speed of the single hcp phase domain. Then,
we propose a phase transition model to help understanding our derived domain growth law. Finally, we dem-
onstrate that the evolution process of hcp phase follows a three-stage description with different time scales of the
hcp phase fraction in shocked iron.

Results
The sample material we use in simulations is single-crystal bcc iron. The simulation tool is the well-known
LAMMPS software package11. The interatomic interaction is described by an embedded atom method (EAM)
potential12,13, which has been proved to be able to successfully describe the mechanical properties and structural
phase transition behaviors of iron under high pressure. The simulation box consists of 240 3 80 3 80 unit cells
and contains approximately 3 3 106 atoms. The x, y, z axes are along the [100], [010] and [001] directions,
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respectively. The periodic boundary conditions are applied along the
y and z directions to minimize the surface and edge effects. The shock
wave compression is generated using the momentum mirror method
along the x axis14. In order to study the non-equilibrium phase trans-
ition process in detail, the shock velocities are chosen in between 300
and 400 m/s, which produce pressures around the critical value for
phase transition. The velocity interval between two successive simu-
lations is 10 m/s.

To identify the crystal structures, the atomic coordination num-
bers and common neighbor analysis (CNA) values are calculated.
The single phase domain atoms are extracted using the cluster iden-
tification method. The phase interface shape is determined by our
developed rolling-ball algorithm15. The growth speed of the phase
domain is calculated using the central moment method and rolling-
ball algorithm.

Figure 1 shows the evolution snapshots from bcc to hcp structure
during the shock process. Figures 1(a)–(e) show the phase transition
mechanism. Here, the green and blue spheres denote the upper and
lower layers of atoms, and the red and yellow spheres mean that the
atomic displacements are along the [011] and [0�1�1] directions,
respectively. After the shock wave swept samples along the [100]
crystalline orientation, the atoms are compressed along shock dir-
ection and form hexagons in the (011) and (01�1) planes, as shown in
Fig. 1(b). Soon afterwards, some local atoms move through collective
thermal fluctuations along [011] or [01�1] direction, as shown in
Fig. 1(c). There is a relative slide between the two layers of atoms,
which causes that the distance between each atom in the layers and its
two second-neatest neighboring atoms along the y and z axes
becomes farther. Once the defects form, they will drive the slip planes
to slide alternately. The alternative slippage leads the bcc structure to
evolve into the hcp structure and the phase transition process is
finished, as shown in Figs. 1(d) and 1(e).

Figures 1(f) and 1(g) exhibit the formed hcp phase domains in the
shocked region, where the hcp atoms are shown in blue color and the
boundary atoms are shown in red color. From Fig. 1(f), it is clear that
the nucleation sites of hcp phase domains are randomly located. The

initial morphology of the single phase domain is ellipsoid-like, see
the inset to Fig. 1(f). There are only two kinds of phase domains in the
system. One kind is to stack into ellipsoid-like along (01�1) crystal
plane by alternative slippage along [011] and [0�1�1] directions. The
other kind is to stack into ellipsoid-like along (011) crystal plane by
alternative slippage along the [01�1] and [0�11] directions. With the
formation and growth of the hcp phase domains, different domains
begin to interact and collide with each other. When the sliding types
of two collided phase domains are the same, they link to form a bigger
phase domain. If the sliding types of two collided phase domains are
different, they form grain boundary and interact with each other, as
shown in Fig. 1(g).

In general, once a phase domain core forms, it will gradually grow
up through the outward movement of the phase interface. The
growth speed depends on the driving force of phase transition and
the synergic movement of interface atoms, which are closely related
to the shape of phase interface. Therefore, the morphology evolution,
growth speed, and the interactions among phase domains have
always been a focus in the study of phase transition kinetics. In this
work, we extract the single phase domain atoms, directly determine
and visualize the phase interface shape by detecting surface atoms of
the phase domain, as shown in Fig. 2, where panels (a)–(c) show the
atomic evolution of the single phase domain, and panels (d)–(f) are
the corresponding evolution of the phase interface shape. One can
observe from Fig. 2 that the phase domain forms ellipsoid-like by a
superposition of several layers of atoms. The growth of the phase
domain mainly has two ways. The first way is the slide of each layer of
phase plane, as shown in Figs. 2(a) and 2(b). The interfacial atoms
surrounding the phase domain change into hcp arrangement via
synergic movements. This type of growth is continuous. The second
way is the successive activation process of new phase planes, as
shown in Figs. 2(c), where two newly occurred phase planes are
labeled as 13 and 14 in number. Compared to the slipping process
of phase plane, the energy threshold for activating a new phase plane
is higher, and an energy accumulation is needed. As a result, this type
of growth is discontinuous.

Figure 1 | Microstructure evolution in iron from bcc to hcp structure during the shock process. Panels (a)–(e) show the phase transition mechanism,

while panels (f)–(g) show the formed new phase domains in the shocked region.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3628 | DOI: 10.1038/srep03628 2



Based on its ellipsoidal-like appearance, the single phase domain
can be reasonably approximated as an ellipsoid with uniform density.
Their central moments should be the same. By comparing the eigen-
values and eigenvectors of central moments for the single phase
domain and an ideal ellipsoid, we can determine the morphology
parameters of the phase domain. The eigenvalues and eigenvectors of
the central moment for the single phase domain satisfy

Axi~mixi for i~1, 2, 3ð Þ: ð1Þ

Here, the expression of the central moment A is given by

A~
Xn

i

mi ri{rð Þ ri{rð Þ, ð2Þ

where mi and ri are the mass and position of the ith atom in the phase

domain, respectively, and r~
Xn

i
ri

.
n is the centroid. Whereas, the

central moment of a uniform ellipsoid with the principal-axis lengths
of a, b and c is given by
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where r is the atom density. Therefore, the three principal-axis
lengths of the phase domain can be expressed as
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In this paper, we calculate the central moment and principal-axis
lengths according to the expressions (2) and (4) for multiple phase
domains. The calculated results indicate that the three principal-axis
directions (namely, three eigenvectors) approximately are [100],
[011] and [01�1] for all phase domains. This demonstrates that the
phase domain has different growth speeds along the shock loading
direction, relative sliding and normal directions of phase planes.
Figure 3 shows the principal-axis lengths and growth speeds of two
phase domains which form at different times under the same shock
velocity. One can observe that both the length and growth speed
along the normal direction of phase plane are the smallest. The
growth speed of the phase domain is prominently supersonic within
a range 4 3 104 to 5 3 103 m/s. The time dependence of the principal-
axis lengths can be approximately scaled as L , t0.465 on average. In
addition, we also note, from the growth speed curves along the [01�1]
direction, remarkable oscillations with a period of ,0.02 ps, which
implies a discontinuous growth mode. The phenomenon is possibly
caused by the fact that only the atomic layers exceeding a critical size
are able to promote the activation of the new atomic layer. This is
similar to the dislocation growth process, in which dislocation core
should exceeds a critical size for the emission of dislocations.

Furthermore, based on the above results, we calculated and plotted
the time evolutions of surface areas and volumes of the two phase
domains according to the surface area and volume formulae of ellips-
oid, as the red symbols shown in Fig. 4. To verify the reliability of our
proposed central-moment method, we counted the numbers of total
atoms and surface atoms for each phase domain (blue symbols in
Fig. 4), and calculated the surface areas and volumes of phase
domains (green symbols) using our developed rolling-ball algorithm.
From Fig. 4, it can be observed that the calculated results by the
central-moment and rolling-ball methods are consistent. This fact
also confirms that the shape of the single phase domain is always
close to be ellipsoidal at early time.

Theoretically, the evolution laws of surface area and volume of a
single phase domain approximately follow A , tm and V , tn,

Figure 2 | Evolution snapshots of the single phase domain atoms and the corresponding phase interface shapes. Panels (a)–(c) are the atomic evolution

of the single phase domain, while panels (d)–(f) are the corresponding phase interface shapes. Numbers in panels (a)–(c) denote layers of phase plane.
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respectively. If the principal-axis growth speed of the phase domain
is constant, then m 5 2 and n 5 3. Otherwise, if the growth speed
decreases with time, then m , 2 and n , 3. The black curves in Fig. 4
show our fitting results. We find that on average, the time evolution
of the surface area and volume of a single phase domain can be
respectively approximated as A , t0.930 and V , t1.395. The growth
coefficients are almost invariant in the growth process of the single
phase domain. But they are dependent of the nucleation times and
positions of phase domains where the surrounding pressure are
different.

As a complementary clarification, now we propose a phase trans-
ition model to illustrate the shocked kinetic process in iron based on
the order parameter theory of Ginzburg-Landau. For this purpose we
choose the slippage (j) of the lattice as the order parameter, which
varies from j 5 0 in bcc structure to j 5 1 in hcp structure, as
schematically shown in Fig. 5(a), where the horizontal axis represents
the distance away from the phase interface. In general, for the uni-
form (bulk) phase transition of iron, the system that undergoes
transformation from bcc to hcp structure through the lattice slippage
needs to overcome a potential barrier16, as schematically shown in
Fig. 5(b). However, for the shocked iron, a solely uniform description
is insufficient and the phase domain effects should be reasonably
included in a phase transition model. In the nucleation stage of the
phase domains, the atoms in the local region of stress concentration
overcome the potential barrier by collective thermal fluctuations.

From above numerical results, we have obtained that in the growth
stage of a phase domain, the growth speed is supersonic and the stress
wave has no time to propagate in the hcp phase domain. Therefore,
the growth of a phase domain is mainly driven by the interface
energy. Figure 5(e) shows the potential energy distribution of a slice
in the simulated system, where the regions of red, blue, and other
colors represent the bcc, hcp, and interface structures, respectively. It
is obvious that the potential energy in the interfacial region lies in
amplitude between those in bcc and hcp regions. Thus, it is now clear
that the interface energy is negative and prominently reduces the
potential barrier between two phases, as schematically shown in
Figs. 5(c) and 5(d). As a result, the transition process becomes easier.

With keeping this physical picture in mind, the energy of the
system expressed with order parameters reads approximately

F~

ð
f jð Þ{ D

2
+jð Þ2

� �
d3r, ð5Þ

where f(j) and {
D
2

+jð Þ2 are the bulk free energy and interface

energy of the system, respectively. f jð Þ~ a
2

j2{
az1

3
j3z

1
4

j4 is a

bi-stable function with two stable points, j 5 0 and j 5 1. Here, the
parameter a is a system parameter related to temperature and pres-
sure. Under low pressure, a . 1/2, the bcc structure is stable, while
under high pressure, a , 1/2, the hcp structure is stable. The possible

Figure 3 | Principal-axis lengths and growth speeds of two hcp phase domains which form at different times under the same shock velocity. Panels (a) and

(b) are the principal-axis lengths, while panels (c) and (d) are the growth speeds. The symbols are the MD simulated results and the lines are the fitting results.
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Figure 4 | Time evolutions of surface areas, volumes, and the corresponding atom numbers of the same two phase domains as those used in Fig. 3. The

symbols are the MD simulated results and the lines are the fitting results.

Figure 5 | The potential energy distribution and schematic diagram of phase transition. Panels (a)–(d) are the schematic diagram of phase transition,

where the horizontal axis represents the distance away from the phase interface. Panel (e) shows the potential energy distribution of a slice in shocked iron.
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anisotropy in the interface energy has been ignored for simplicity.
The evolution equation of the order parameter can be expressed as

Ltj~
dF
dj

~f 0 jð Þ{D+2j: ð6Þ

For the steady growth of one-dimensional phase domain, j 5 j(g) ;
j(x 2 c0t), and it satisfies the following eigenvalue equation

f 0 jð Þ{DL2
gjzc0Lgj~0,

j g?{?~0
�� ,

j g?z?
�� ~1,

8><
>: ð7Þ

where c0 is the growth speed of the hcp phase domain. To describe the
growth of a three-dimensional phase domain, we adopt the local
coordinate system instead of the Cartesian coordinate, r 5 r0 1 ln
1 mt1 1 nt2, where r0 represents a point at the interface, and n, t1, t2

represent the normal and two principal tangential unit vectors of the
interface at the position r0, respectively. The evolution equation of
order parameter can be rewritten as

Ltj~f 0 jð Þ{D L2
lzL2

mzL2
nz k1zk2ð ÞLl{k1Lm{k2Ln

� �
j, ð8Þ

where k1 and k2 are the curvatures along the two principal tangential
directions, respectively. According to the relation j 5 j(g) ; j(l 2

vt), the above expression can be reduced to

f 0 jð Þ{DL2
gjz {Dkzvð ÞLgj~0 ð9Þ

with the boundary conditions j jgR2‘ 5 0, j jgR1‘ 5 1, and k 5 k1

1 k2. Comparing Eqs. (7) and (9), the growth speed of phase domain
can be evaluated as

v~c0zDk: ð10Þ

For shock-induced phase transition, the interface energy is related to
the pressure surrounding the phase domain, and D is a function of
pressure. From above simulated results and theoretical analysis, we
have obtained that the growth speed is supersonic and the D is almost
invariant in the phase domain growth process. Therefore, from Eq.
(10) we get that the growth speed of the phase domain is a function of
the local curvature. When the volume of phase domain is initially
small, the local curvature is large and the energy that induces phase
transition is relatively more concentrated. Thus, the growth speed is
relatively high. With the growth of the phase domain, the interfacial
area becomes much larger and the local curvature decreases, Therefore,
the energy for phase transition becomes more dispersed and the
growth speed decreases. This is consistent with our MD results.

For an ellipsoidal phase domain, the local curvature is non-
uniform on the surface of the phase domain, and the larger the
curvature, the higher the growth speed. Therefore, the phase domain

becomes more and more flat or prolate with time. Actually, it has
been shown in Fig. 1(g) that various phase domains have evolved to
be disc-like, spherical, columnar, elongated, etc., in the later stage of
shock loading. For the moment it is helpful to give a very simple but
illustrative estimate on growth dynamics of the phase domain. For
this purpose, if the phase domain is regarded as a sphere with radius
R, the growth speed Eq. (10) reduces to R? 5 c0 1 2D/R. When
hypothesizing c0 R 0, one obtains that the linear length of phase
domain is R tð Þ~

ffiffiffiffiffiffiffiffi
4Dt
p

. Interestingly, our MD simulation results,
which show that the linear length of an ellipsoidal phase domain is
L , t0.465, close to this analytical expression. The difference in the
exponents (0.465 versus 0.5) is caused by the difference in the cur-
vatures between a sphere and an ellipsoid.

The material properties, such as the constitutive relation and
equation of state, are significantly influenced by the transition frac-
tion of the new phase17. In the non-equilibrium phase transition
process under shock, the mechanical behaviors are coupled with
the phase transition process. The phase transition fraction is relevant
not only to the evolution of a single domain but also to the interac-
tions among neighboring domains. Therefore, the phase transition
fraction is a highly concerned quantity in the studies of material
phase transition. Figure 6 (filled circles) shows the MD results of
the time evolution of phase transition fraction under two different
shock velocities. For every shock velocity, remarkably, there are three
obvious stages, which accordingly represent different evolution char-
acteristics of phase transition fraction. By comparing with atomic
evolution images of phase transition process, we find that in the stage
between points A and B (the first stage), new phase domains succes-
sively form and each phase domain independently grow up. In the
stage between points B and C (the second stage), nearly no new phase
domains form and the existing phase domains further grow up to
interact with each other. In the stage after the point C (the third
stage), the phase domains get saturated in the perpendicular direc-
tions and grow up only along the shocking direction.

Theoretically, the phase transition fraction is a function of nuc-
leation and growth rates of the phase domains. The nucleation num-
ber I follows approximately I , tm, while the atomic number N of a
single phase domain follows approximately N , tn. In the case that
both the nucleation of new phase domains and the growth of the
existing phase domains simultaneously happen in the system, then
the phase transition fraction f follows approximately f , tm1n. We
have fitted our MD results, see Fig. 6. On average, we find that the
evolution of phase transition fraction scales approximately f , t1.89 in
the first stage, f , t1.23 in the second stage, and f , t0.80 in the third
stage.

Discussion
Shock-induced phase transition process of iron from bcc to hcp
structure has been investigated via systematic molecular dynamic

Figure 6 | Phase transition fraction under two different shock velocities. Solid dots denote the MD results, while the red, green and blue lines represent

the fitting results of three different evolution stages. The shock velocity is set at 380 m/s in panel (a) and 400 m/s in panel (b).
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simulations and theoretical analysis. Based on the shape character-
istics of the hcp phase domains, we have proposed a central-moment
method to calculate and analyze the morphology and growth speed
of a single phase domain. It has been manifested that in the initial
independent growth stage, the domain morphology is ellipsoid-like
with three principal axes approximately along [100], [011], and [01�1]
directions. The growth speed of a single phase domain is prominently
supersonic within a range 4 3 104 to 5 3 103 m/s. We have shown
that on average the size, surface area, and volume of the single hcp
domain have their time evolutions L , t0.465, A , t0.930, V , t1.395,
respectively. Based on the order parameter theory of Ginzburg-
Landau, we have presented a phase transition model to explain our
found growth law of the single phase domain. Finally, we have
demonstrated a three-stage evolution law for the phase transition
fraction in shocked iron.

Methods
Three methods have been employed in our numerical simulations and data analysis:
(i) The numerical MD simulations are performed using the well-known LAMMPS
software package. The interatomic interactions used in the simulations are described
by embedded atom method potentials. The shock wave compression is generated
using the momentum mirror method; (ii) The atoms are distinguished by the com-
mon neighbor analysis (CNA) method. In this method the signature of the local
crystal structure around a selected atom is identified by computing three character-
istic numbers for each of the N neighbor bonds of the central atom. The single phase
domain atoms are extracted using the cluster identification method; (iii) The phase
interface shape is visualized by the rolling-ball algorithm. The growth speed of the
phase domain is calculated using the central-moment method and rolling-ball
algorithm.
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