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Peroxisomes are remarkably dynamic organelles that participate in a diverse array of
cellular processes, including the metabolism of lipids and reactive oxygen species. In order
to regulate peroxisome function in response to changing nutritional and environmental
stimuli, new organelles need to be formed and superfluous and dysfunctional organelles
have to be selectively removed. Disturbances in any of these processes have been
associated with the etiology and progression of various congenital neurodegenerative and
age-related human disorders. The aim of this review is to critically explore our current
knowledge of how peroxisomes are degraded in mammalian cells and how defects in
this process may contribute to human disease. Some of the key issues highlighted
include the current concepts of peroxisome removal, the peroxisome quality control
mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional
peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect
the functional and mechanistic relationship between different forms of selective organelle
degradation and consider how lysosomal dysfunction may lead to defects in peroxisome
turnover. In addition, we draw lessons from studies on other organisms and extrapolate
this knowledge to mammals. Finally, we discuss the potential pathological implications of
dysfunctional peroxisome degradation for human health.
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INTRODUCTION
Peroxisomes were first observed in electron microscopy stud-
ies by the Swedish doctoral student Johannes Rhodin in 1954
(Rhodin, 1954) and, approximately a decade later, for the first
time isolated from rat liver and biochemically characterized by
the Belgian Nobel Laureate Christian de Duve and his colleague
Pierre Baudhuin (de Duve and Baudhuin, 1966). The name “per-
oxisome” derives from the early observation that the organelle is
involved in processes that both generate and decompose hydro-
gen peroxide (H2O2). Over the last half century, our knowledge
about this highly dynamic and plastic organelle has virtually
exploded. For example, it is now known that mammalian per-
oxisomes are involved in multiple metabolic pathways, including
the breakdown of various carboxylates via α- and β-oxidation,
and the synthesis of bile acids, docosahexaenoic acid (DHA) and
ether-phospholipids (Van Veldhoven, 2010). Importantly, many
of the enzymes involved in these processes produce reactive oxy-
gen or nitrogen species (ROS or RNS) as part of their normal
catalytic cycle (Fransen et al., 2012). To combat the destruc-
tive effects of these molecules, peroxisomes also contain various
antioxidant enzymes of which catalase is perhaps the best known
(Antonenkov et al., 2010). The necessity of peroxisomes for nor-
mal development and physiology is illustrated by the existence
of a group of genetic disorders associated with peroxisomal defi-
ciencies. These diseases are generally subdivided into two groups:
the peroxisome biogenesis disorders (PBDs) (Nagotu et al., 2012)

and the single peroxisomal enzyme deficiencies (PEDs) (Wanders
and Waterham, 2006). In recent years, peroxisome (dys)function
has also been associated with a wide variety of age-related mal-
adies, including cancer, type 2 diabetes, and neurodegeneration
(Fransen et al., 2013).

PHYSIOLOGICAL IMPORTANCE OF PEROXISOME
HOMEOSTASIS
Currently, it is generally accepted that the localization and activ-
ity of many proteins (e.g., kinases, phosphatases, transcription
factors, etc.) are reversibly controlled by the cellular compo-
sition and concentration of specific lipids and (redox-derived)
signaling mediators (Hekimi et al., 2011; Schug et al., 2012). As
peroxisomes are actively involved in the metabolism of many
of these compounds, it is not surprising that these organelles
are increasingly recognized as potential signaling platforms in
diverse biological processes such as inflammation (Zmijewski
et al., 2009), apoptosis (Li et al., 2002; Hasegawa et al., 2010),
innate immunity (Dixit et al., 2010; Horner et al., 2011), cel-
lular aging (Beach et al., 2012; Giordano and Terlecky, 2012),
diabetes (Elsner et al., 2011; Hwang et al., 2012), and cancer
development (Reddy et al., 1980; Frederiks et al., 2010). This is
perhaps best illustrated by the observation that peroxisomes play
a central role in the cellular metabolism of H2O2, a key molecule
in cellular redox signaling (Fransen et al., 2012). For example,
peroxisomes seem to be responsible for as much as 35% of the
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total H2O2 production in rat liver (Boveris et al., 1972), and
fibroblasts derived from hypocatalasemic patients accumulate
H2O2 and are oxidatively damaged (Wood et al., 2006). In addi-
tion, overexpression of acyl-CoA oxidase 1, a H2O2-producing
enzyme of the peroxisomal fatty acid β-oxidation pathway, has
been shown to activate the redox-sensitive transcription factor
NF-κB in a substrate concentration-dependent manner (Li et al.,
2000); and overexpression of catalase, a peroxisomal enzyme that
decomposes H2O2, sensitizes cells (and animals) to certain types
of stressors by dampening H2O2-mediated signaling pathways
(Carter et al., 2004; Chen et al., 2004). Finally, as high ROS lev-
els are also known to cause significant damage to cell structures
(Nathan and Ding, 2010), excessive production of peroxisomal
ROS may overwhelm the cellular antioxidant defenses and medi-
ate cellular injury or even cell death (Elsner et al., 2011; our
unpublished observations). In this context, it is also interest-
ing to mention that, to carry out their functions, peroxisomes
physically and functionally interact with other cell organelles
(Horner et al., 2011; Beach et al., 2012; Kohlwein et al., 2013),
and that disturbances in peroxisome function have been reported
to trigger signaling events that ultimately activate mitochondrial
and endoplasmic reticulum stress pathways (Koepke et al., 2007;
Ivashchenko et al., 2011; Kovacs et al., 2012). In summary, these
observations (among others) clearly illustrate that changes in
peroxisomal metabolism have a tremendous impact on many cel-
lular processes, and as such it is of vital importance for humans
(and organisms in general) to adjust peroxisome function and
abundance to cellular needs.

REGULATION OF PEROXISOME ABUNDANCE
Peroxisome abundance is strictly regulated by the rates of
organelle formation, division and turnover. Peroxisomes can be
formed either de novo from the ER or by growth and asym-
metric division of pre-existing organelles (Figure 1A) (Fransen,
2012). The latter process is, to a great extent, regulated by the
Pex11p family of proteins. Indeed, the expression levels of mem-
bers of this protein family have been shown to correlate with the
number of peroxisomes in a cell (Schrader et al., 1998; Thoms
and Erdmann, 2005), and overexpression of human Pex11pβ

promotes peroxisome proliferation independent of peroxisomal
metabolic activity (Li and Gould, 2002). For more detailed infor-
mation regarding these processes, we refer the reader to other
recent reviews (Ma et al., 2011; Schrader et al., 2012).

As mentioned above, peroxisomes can rapidly modulate their
number, size, and function in response to cellular needs. Nowhere
else is this better illustrated than in the methylotrophic yeasts
Hansenula polymorpha and Pichia pastoris, where peroxisome
number and size are massively increased when the cells are grown
in media containing methanol as the sole carbon source (van der
Klei and Veenhuis, 2006). This finding may not be surprising
given that these organelles harbor the key enzymes of methanol
metabolism (van der Klei and Veenhuis, 2006). As the enhanced
peroxisomal activity is no longer needed when the cells are recul-
tivated in media containing ethanol or glucose as carbon source,
these methanol-induced peroxisomes are rapidly degraded by
a process called “pexophagy” (see below) (Manjithaya et al.,
2010). A similar phenomenon, albeit less pronounced, can also

be observed in rodents upon the administration (and subse-
quent removal) of a variety of xenobiotics, collectively known
as peroxisome proliferators (Reddy et al., 1980; Yokota, 1993).
Agents that are frequently used to induce peroxisome prolifer-
ation in this class of animals include hypolipidemic drugs (e.g.,
fibrates), industrial phthalate ester plasticizers, and several types
of fatty acids (Cho et al., 2008). These compounds act by bind-
ing to the nuclear receptor Peroxisome Proliferator-Activated
Receptor α (PPARα) (Issemann and Green, 1990), which het-
erodimerizes with the Retinoid X Receptor (RXR) to regulate gene
expression through PPAR-responsive elements in target DNA
(Chandra et al., 2008). Interestingly, human cells do not respond
similarly to PPARα agonists (Lawrence et al., 2001). However,
some drugs such as 4-phenylbutyrate and niclosamide can act
as potent PPARα-independent peroxisome proliferators in these
cells (Sexton et al., 2010).

It is well-known that peroxisome number is significantly
reduced in fibroblasts from patients with PBDs or peroxiso-
mal fatty acid β-oxidation deficiencies (Chang et al., 1999).
Intriguingly, in fibroblasts from the latter class of patients, this
decrease in number coincides with an increase in peroxisome
diameter but has apparently no effect on the expression lev-
els of peroxisomal membrane proteins (PMPs) (Chang et al.,
1999; and references therein). Together with the observations
that (1) the reduced abundance of peroxisomes in cells with
peroxisomal β-oxidation deficiency correlates with a loss of the
corresponding enzyme activity and not with peroxisomal import
defects (Chang et al., 1999), and (2) overexpression of ACOT8,
one of the peroxisomal acyl-CoA thioesterases that inhibit fatty
acid oxidation by depleting acyl-CoA substrates, reduces perox-
isome abundance in normal human fibroblasts (Chang et al.,
1999), these data suggest that this dysmorphogenesis is caused
by alterations in peroxisomal β-oxidation metabolite levels. This
hypothesis is in line with the findings of a recent study (Itoyama
et al., 2012) showing that treating cells with DHA, a major prod-
uct of peroxisomal β-oxidation, restores peroxisome number in
cells deficient in peroxisomal β-oxidation, but not in PBD cells.
Importantly, this process is time-, dose-, and Pex11p-dependent,
but PPARα-independent. As peroxisomes in control fibroblasts
fail to proliferate in response to DHA treatment, these findings
also underscore the complexity of the regulation of peroxisome
abundance under normal conditions.

PEROXISOME QUALITY CONTROL MECHANISMS
To maintain their health, cells need to keep organelles in a func-
tional state. Over the years, multiple quality control mechanisms
have been described, including (1) organellar chaperones and
proteases that, respectively, promote proper protein folding and
proteolytic removal of terminally damaged proteins (Haynes and
Ron, 2010; Walter and Ron, 2011), (2) retrotranslocation of mis-
folded proteins from the organelle to the cytosol for proteasomal
degradation (Taylor and Rutter, 2011; Brodsky, 2012), and (3)
autophagic degradation of dysfunctional organelles (Farré et al.,
2009). A similar situation most likely exists for peroxisomes. In
the following paragraphs, we discuss the components and mech-
anisms involved in peroxisomal proteostasis. For the mechanisms
of how dysfunctional peroxisomes are degraded by the autophagic
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FIGURE 1 | Peroxisome biogenesis, quality control, and turnover in

mammalian cells. (A) Peroxisomes can be formed de novo from the ER or by
growth and asymmetric fission of pre-existing organelles. Peroxisomal matrix
(matrix) and membrane (PMP) proteins are translated on free polyribosomes
(Poly-R) in the cytosol, where they are recognized by their cognate import
receptors Pex5p, Pex7p, or Pex19p (these and other peroxins are represented
by numbers). Importantly, Pex5p and Pex19p possess chaperone-like
activities. In addition, matrix protein folding is facilitated by the cytosolic
chaperones Hsp70 and VCP, whereas PMP folding is assisted by the
chaperonin TRiC (all non-peroxin-related quality control mechanisms are
indicated by lower-case letters and listed in panel C). At the peroxisomal
membrane, Pex5p is either mono- or poly-ubiquitinated (Ub). In the case of
mono-ubiquitination, Pex5p is extracted from the membrane into the cytosol
for a new round of matrix protein import. However, upon poly-ubiquitination,
Pex5p is degraded by the proteasome in a process known as RADAR.
Superfluous or dysfunctional PMPs are also targets for proteasomal
degradation. The peroxisomal matrix harbors several proteases (e.g., LONP2,
IDE, and Tysnd1) that function as regulators of intra-peroxisomal proteostasis.
In addition, excessive peroxisomal matrix proteins may be exported to the
cytosol where they are degraded by cytosolic proteases or the proteasome.

During their life cycle, peroxisomes are constantly exposed to quality control
(QC) mechanisms, and in case of failure, it is likely that the organelle is
targeted for degradation. (B) Mammalian peroxisomes can be degraded by
distinct pathways, pexophagy and 15-LOX mediated membrane autolysis.
Three mechanisms have been proposed for how dysfunctional peroxisomes
can be removed by the autophagic machinery. (1A) The first one involves the
recognition of a ubiquitinated PMP (X) by an autophagic adaptor protein p62
which, in turn, bridges the peroxisome with the developing autophagosome
via LC3-II. (1B) The second mechanism involves another adaptor protein,
NBR1, which, similarly to p62, recognizes dysfunctional peroxisomes via
ubiquitinated PMPs and links the organelles with the autophagic machinery
through LC3-II. NBR1 is also capable of binding directly to the peroxisomal
lipid bilayer. (1C) A third mechanism describes the competitive nature of the
Pex14p binding partners Pex5p and LC3-II. Under nutrient-rich conditions,
Pex5p is the preferred binding partner, whereas in nutrient-starved conditions,
interaction with LC3-II is favored. Importantly, peroxisomes are only degraded
upon re-supplementation of nutrients. (2) Finally, the peroxisomal membrane
can undergo 15-lipoxygenase (15-LOX)-mediated autolysis, which
subsequently leads to proteasome- or protease-dependent degradation of
peroxisomal proteins. (C) Peroxisomal protein quality control mechanisms.
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machinery, please see section Peroxisome Degradation of this
chapter below.

The involvement of chaperones and proteases is central to
many organellar quality control systems (Chen et al., 2011).
Indeed, newly imported proteins often need to be proteolyti-
cally processed, properly folded, and assembled into functional
units to acquire their activity. In this context, it is important to
note that peroxisomes have the capacity to import fully folded
and oligomeric matrix proteins (Lanyon-Hogg et al., 2010).
This finding suggests that the quality control of proteins des-
tined for the peroxisomal matrix may occur, at least partially,
in the cytosol. Such control mechanisms may be mediated by
cytosolic heat shock proteins (Hsps) or cytosolically located per-
oxins (proteins involved in peroxisome biogenesis) displaying
chaperone-like activity. Potential candidates include members
of the Hsp70 family of proteins (Walton et al., 1994; Harano
et al., 2001), valosin-containing protein (Murakami et al., 2013),
and Pex5p, the import receptor for peroxisomal matrix pro-
teins containing a C-terminal peroxisomal targeting signal (PTS1)
(Figure 1) (Freitas et al., 2011). Importantly, as the peroxisomal
matrix protein translocation machinery can also accommodate
the import of unfolded proteins (Brocard et al., 2003), one
would expect peroxisomes to contain classical Hsps (e.g., mem-
bers of the Hsp70 superfamily). Here it should be mentioned
that Hsc70 molecules can be co-imported into peroxisomes by
interacting with unfolded PTS1-bearing albumin (Brocard et al.,
2003). In addition, one cannot exclude the possibility that the
peroxisomal matrix harbors other proteins having a chaperone-
like activity. One such protein may be the peroxisomal Lon
protease (see below), of which the Penicillium chrysogenum ortho-
logue has been shown to possess chaperone activity in vitro
(Bartoszewska et al., 2012). Finally, peroxisome formation and
maintenance also require the proper assembly of membrane pro-
teins. In this context, it should be emphasized that Pex19p, the
cycling import receptor for newly synthesized PMPs, also exhibits
chaperone-like activity (Figure 1) (Jones et al., 2004). In addi-
tion, it has been reported that in vitro translated PMP22 forms
a complex with TRiC (Figure 1) (Pause et al., 1997), a cytosolic
chaperonin known to fold a large number of protein substrates
(Spiess et al., 2006).

Several proteins in the peroxisomal matrix are post-
translationally processed by specific proteases (Okumoto et al.,
2011). In addition, as peroxisomes constantly produce ROS
(Fransen et al., 2012), the presence of sophisticated intra-
peroxisomal quality control mechanisms is essential. Damaged,
oxidized and misfolded proteins need to be degraded in order
to maintain peroxisome proteostasis and function. To date,
three proteases have been identified in mammalian peroxi-
somes, including insulin degrading enzyme (IDE) (Authier et al.,
1994), peroxisomal Lon protease (LONP2) (Kikuchi et al., 2004),
and trypsin domain-containing protein 1 (Tysnd1) (Figure 1)
(Kurochkin et al., 2007). IDE has been shown to degrade the
cleaved leader peptide of the peroxisomal enzyme thiolase as well
as oxidized lysozyme, a model substrate for oxidized proteins
(Authier et al., 1994; Morita et al., 2000). LONP2 is a multi-
functional protein that has chaperone-like functions (see above)
and displays proteolytic activity toward (superfluous) β-oxidation

enzymes (Yokota et al., 2008; Okumoto et al., 2011). The P. chryso-
genum orthologue of this protein can degrade oxidized proteins
in vitro, and an inactivation of its function has been shown to
be associated with the formation of protein aggregates in the
peroxisomal matrix and enhanced oxidative stress (Bartoszewska
et al., 2012). In this context, it is important to note that LONP1,
the mitochondrial Lon protease, is the most important quality
control protease in the mitochondrial matrix, where it selec-
tively degrades damaged, unassembled and misfolded proteins
(Venkatesh et al., 2012). Finally, Tysnd1 has been shown to be
responsible for the specific processing of β-oxidation enzymes in
the peroxisomal matrix (e.g., the removal of leader peptide of 3-
ketoacyl-CoA thiolase A) (Kurochkin et al., 2007; Mizuno et al.,
2013). Interestingly, a recent study has shown that the proteolytic
activities of Tysnd1 and LONP2 cooperatively regulate peroxiso-
mal fatty acid β-oxidation (Okumoto et al., 2011). Taken together,
these findings clearly show that mammalian peroxisomes contain
a highly sophisticated protease-dependent house-keeping system
to ensure protein quality within the organellar matrix.

Some time ago, it was demonstrated that the turnover rates of
some PMPs (e.g., Pex3p and Pex16p) are much faster than that
of matrix proteins (Matsuzaki and Fujiki, 2008; Huybrechts et al.,
2009), and that the half-life of these PMPs can be extended by
inhibiting the ubiquitin-proteasome system (UPS) (Huybrechts
et al., 2009). These observations indicate that the peroxisomal
membrane continuously undergoes quality control mechanisms
in order to remove unnecessary or dysfunctional membrane pro-
teins (Figure 1). Unfortunately, the mechanisms underlying this
process remain unclear. However, in this context, it is necessary
to mention that—as part of a quality control mechanism—
membrane-associated PTS (co-)receptors (e.g., Pex5p, Pex7p,
and Pex20p) also can be degraded by the UPS, at least in sev-
eral organisms (Figure 1) (Léon et al., 2006; Cui et al., 2013).
Under normal conditions, Pex5p and Pex20p become mono-
ubiquitinated at a conserved cysteine residue. This triggers the
subsequent ATP-dependent dislocation of these receptors from
the peroxisomal membrane back to the cytosol where they
become available for a new import cycle (Grou et al., 2009).
However, under conditions where export of these receptors is
impaired, these peroxins are polyubiquitinated on one or more
lysines in their N-terminal tails and extracted from the per-
oxisomal membrane for degradation by the UPS by a process
called RADAR (for Receptor Accumulation and Degradation in
the Absence of Recycling) (Léon et al., 2006). As RADAR closely
resembles ERAD (for Endoplasmic Reticulum-Associated protein
Degradation) (Gabaldón et al., 2006; Schlüter et al., 2006), a path-
way in which defective proteins in the ER are exported back to the
cytosol for proteasomal degradation (Brodsky, 2012), it is tempt-
ing to speculate that peroxisomal matrix proteins also may exit the
organelle for cytosolic degradation (Figure 1). This hypothesis is
in line with the recent observation that, in plants, the efficient
degradation of peroxisomal matrix proteins involves Pex6p, an
AAA (ATPase Associated with various cellular Activities)-ATPase
that is part of the Pex5p export machinery (Burkhart et al., 2013).
Finally, it has been reported that in plant cells the degradation of
peroxisome-associated Pex7p is triggered by binding to RabE1c,
a small Ras-related GTPase (Cui et al., 2013). Note that, as Pex5p
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levels are drastically reduced in skin fibroblasts from PBD patients
that are blocked in normal receptor recycling (e.g., cells lacking
Pex1p or Pex6p activity) (Dodt and Gould, 1996), the RADAR
quality control pathway is most likely also conserved in mam-
mals (Figure 1). So far, there is no evidence for a UPS-mediated
degradation mechanism of mammalian Pex7p.

PEROXISOME DEGRADATION
To maintain a healthy cellular peroxisome population, dysfunc-
tional and superfluous organelles need to be selectively removed.
Throughout the years, several half-life studies on peroxisomal
proteins have been performed, and—if one assumes that peroxi-
somes are degraded as a whole—most data indicate a peroxisomal
half-life of around 1.5–2 days (Price et al., 1962; Poole et al.,
1969; Huybrechts et al., 2009). This turnover process may occur
randomly (e.g., as part of bulk sequestration of the cytoplasm)
or selectively. However, one must assume that a cell—in order
to assure a functional peroxisome population—preferably and
specifically degrades non-functional organelles. Below we discuss
the concepts of peroxisome removal, the initial triggers for perox-
isomal degradation, and the factors for dysfunctional peroxisome
recognition.

CONCEPTS OF PEROXISOME REMOVAL
Until now, ample evidence has been provided that peroxisomes
are mainly degraded by the autophagy-lysosome pathway, in a
process known as pexophagy (see below). In addition, it has been
suggested that these organelles can be targets for 15-lipoxygenase
(15-LOX)-mediated autolysis. Both degradation pathways are
discussed in the following paragraphs.

Autophagy is a highly conserved intracellular pathway that
delivers cytoplasmic substrates to lysosomes for subsequent
degradation (Choi et al., 2013). Under basal conditions, this
process provides a mechanism for the removal of long-lived pro-
teins and the turnover of superfluous and damaged organelles
(Mizushima et al., 2011). However, this degradation pathway can
also be upregulated in response to different stress conditions such
as hypoxia, heat, and starvation. Yeast genetics has been cru-
cial for the elucidation of the molecular machinery responsible
for autophagy, and, to date, 36 AuTophaGy-related (ATG) genes
have been identified (Motley et al., 2012). Of these, many are
part of the core autophagy machinery essential for the formation
of canonical autophagosomes (see below), whereas others func-
tion only in different selective autophagy pathways (Mizushima
et al., 2011). For more details regarding the molecular mecha-
nisms of autophagy, we refer the reader to other excellent reviews
(Klionsky et al., 2011; Mizushima et al., 2011).

Until now, three major types of autophagy have been char-
acterized in eukaryotic cells: macroautophagy, microautophagy,
and chaperone-mediated autophagy (CMA). During macroau-
tophagy, parts of the cytoplasm are engulfed within double- or
multi-membrane delimited structures known as autophago-
somes, which subsequently fuse with lysosomes where cargo is
released (Mizushima et al., 2011). In contrast, microautophagy
involves the direct engulfment of cytoplasmic portions at the
lysosome by invagination, protrusion or septation of the lyso-
somal membrane (Chen and Klionsky, 2011). Finally, CMA is

dependent on chaperones which selectively target cytosolic pro-
teins containing a pentapeptide motif (KFERQ) to the lysosomal
surface, where the protein is unfolded and transported across
the membrane (Kaushik and Cuervo, 2012). Since CMA only
degrades cytosolic proteins (Kaushik and Cuervo, 2012) and
selective organellar microautophagy has not been unambigu-
ously proven to take place in mammals (Mijaljica et al., 2011),
macroautophagy is widely believed to be the major, if not only,
pathway for organelle degradation in mammalian cells.

In 1966, de Duve and Baudhuin were the first scientists to dis-
cuss the occasional appearance of peroxisomes within autophago-
somes, but thought that lysosomal degradation by itself was
insufficient to account for the high cellular turnover of catalase
(de Duve and Baudhuin, 1966). Since then, several studies on cul-
tured cells have shown that in the presence of 3-methyladenine
(3-MA), a macroautophagic inhibitor, peroxisome degradation
is strongly inhibited (Luiken et al., 1992; Kondo and Makita,
1997; Huybrechts et al., 2009). After the discovery of peroxi-
some proliferators (Reddy et al., 1980), a new method became
available to study the degradation of superfluous peroxisomes
in rodents. As already mentioned above (see section Regulation
of Peroxisome Abundance), treatment of these animals with
hypolipidemic drugs massively increases the number of perox-
isomes, which—after removal of stimulus—rapidly returns to
basal levels. However, the mechanism by which peroxisomes
disappear remained enigmatic until 1993, when excess peroxi-
somes were detected within autophagosomes and lysosomes upon
addition of the lysosomal protease inhibitor leupeptin (Yokota,
1993). More recently, these observations were confirmed and
extended to be macroautophagy-dependent (Iwata et al., 2006).
This conclusion was based on the observation that degradation
of proliferated peroxisomes was impaired in autophagy-deficient
(Atg7−/−) mouse hepatocytes (Iwata et al., 2006). Nevertheless,
as peroxisome abundance still slightly decreased upon withdrawal
of the proliferation stimulus, peroxisomes can most likely also be
degraded by other mechanisms.

Another mechanism proposed to play a role in peroxi-
some degradation is 15-LOX-dependent membrane autolysis
(Figure 1B). Lipoxygenases are a family of monomeric non-
heme, non-sulfur iron dioxygenases, which catalyze the conver-
sion of poly-unsaturated fatty acids (PUFAs) into conjugated
hydroperoxides (Maccarrone et al., 2001). The actions of 15-
LOX are thought to be important for organellar degradation in
reticulocytes, central fiber cells of the eye lens, and keratinocytes
(van Leyen et al., 1998). In these cells, the expression of 15-LOX
peaks just before organellar degradation occurs (van Leyen et al.,
1998). The potential role of 15-LOX has been strengthened by
the observation that organellar degradation in these cells occurs
independently of autophagy (Matsui et al., 2006), although this is
an issue under debate (Betin et al., 2013). About a decade ago,
it was shown that—in rat liver—peroxisomal membranes were
disrupted when cells were fixed in medium conserving 15-LOX
activity (Yokota et al., 2001). This process was effectively blocked
upon addition of the 15-LOX inhibitors esculetin and propyl gal-
late (Yokota et al., 2001). In addition, it is important to note that
15-LOX was shown to colocalize with some, albeit not all peroxi-
somes (Yokota et al., 2001). Taken together, these finding suggest
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that peroxisomes, depending on the cell type and/or their mem-
brane lipid composition, may be targets for 15-LOX-mediated
autolysis.

Finally, one cannot rule out that in certain cell types and/or
under specific environmental conditions, peroxisome degrada-
tion may occur through other mechanisms. In this context, it is
interesting to note that (1) there is some experimental evidence
that cell organelles may also be degraded by non-conventional
Atg5/Atg7-independent autophagy pathways (Nishida et al., 2009;
Juenemann and Reits, 2012), and (2) inhibition of cellular respi-
ration and uncoupling of oxidative phosphorylation in HeLa cells
resulted in the selective elimination of dysfunctional mitochon-
dria by a novel mechanism involving the formation of “mitop-
totic bodies,” which are subsequently extruded from the cells
(Lyamzaev et al., 2008).

RECOGNITION FACTORS AND ADAPTOR PROTEINS FOR PEROXISOME
REMOVAL
Mounting evidence suggests that autophagy is a more selec-
tive process than originally anticipated. Most of the pioneering
studies on pexophagy have been done using methylotrophic
yeasts as the model organism. Working with these yeasts has
several advantages, including the relative ease by which peroxi-
some number, volume and content can be modulated by shifts
in growth medium, and the fact that it is rather straightfor-
ward to genetically modify these organisms (Manjithaya et al.,
2010). Below, we therefore include data from different organ-
isms in order to get a clearer picture of mammalian pex-
ophagy. Until now, every selective autophagy pathway requires
the involvement of specific cargo receptors (Till et al., 2012).
These receptors, which act independently or together with spe-
cific adaptor proteins, recognize their substrates and connect
them with one or more components of the core autophagic
machinery to allow their specific sequestration (Johansen and
Lamark, 2011). To date, at least five autophagic receptors have
been identified in mammals: p62, NDP52, optineurin, NIX, and
NBR1 (Behrends and Fulda, 2012). These receptors work alone
or co-operatively in targeting their substrates for selective degra-
dation (Johansen and Lamark, 2011). The modular composition
of binding domains and motifs in these receptors ensures effi-
cient tethering of cargo to the site of developing and engulfing
autophagosomes (Behrends and Fulda, 2012). Common for most
of these receptors is that they contain both an LC3-Interacting
Region (LIR) and a Ubiquitin-Binding Domain (UBD) (Behrends
and Fulda, 2012). LC3 and its homologues GABARAP and GATE-
16 are ubiquitin-like proteins that are synthesized as precursors
and—upon autophagy induction—processed and localized to
the autophagosomal membranes (Mizushima et al., 2011). The
LIR and UBD domains render the adaptors capable of bridg-
ing a ubiquitinated substrate (e.g., organelles, protein aggregates,
and bacteria) with the autophagic machinery, thereby selectively
triggering degradation of the cargo.

Until now, at least three pexophagy receptors have been iden-
tified, including Atg30 (for P. pastoris and related yeasts) (Farré
et al., 2008), Atg36 (for Saccharomyces cerevisiae and similar
yeasts) (Motley et al., 2012) and NBR1 and/or p62 (for mam-
malian cells) (Kim et al., 2008; Deosaran et al., 2013). These

proteins bridge peroxisomes with developing autophagosomes by
simultaneously binding to protein(s) at the peroxisomal mem-
brane and the autophagic machinery via different structural
motifs (Till et al., 2012). The P. pastoris peroxisome receptor
Atg30 interacts with peroxisomes through two PMPs, Pex3p, and
Pex14p, and with the autophagic machinery via Atg11 and Atg17
(Farré et al., 2008). S. cerevisiae Atg36, another Atg11-interacting
protein, is also recruited to peroxisomes in a Pex3p-dependent
manner (Motley et al., 2012). Interestingly, both Atg30 and Atg36
are regulated by phosphorylation (Farré et al., 2013), trigger pex-
ophagy upon overexpression (Farré et al., 2008; Motley et al.,
2012), and interact with Atg11 (Farré et al., 2008; Motley et al.,
2012). Atg11 is thought to function as a common adaptor pro-
tein for most, if not all, selective autophagy pathways in yeasts
(Manjithaya et al., 2010). Note that, despite their functional sim-
ilarities, Atg30 and Atg36 do not display any sequence homology
(van der Zand and Reggiori, 2012).

Less is known about the selective pexophagy receptors in
mammals. However, some years ago, it was discovered that per-
oxisomes can be degraded in a p62-dependent manner upon
overexpression of a PMP (in this case PMP34 and Pex3p)
fused to a cytosol-facing ubiquitin moiety (Figure 1B) (Kim
et al., 2008). This phenotype can be significantly increased by
employing a mutated ubiquitin protein incapable of being poly-
ubiquitinated, thus eliminating proteasome-dependent removal
of the proteins from the peroxisomal membrane (Kim et al.,
2008). In addition, a recent study showed that pexophagy was
triggered upon overexpression of NBR1, another adaptor protein
(Figure 1B) (Deosaran et al., 2013). However, similar overex-
pression of p62 did not yield the same results, indicating that
NBR1 most likely functions as endogenous pexophagy adap-
tor in mammals (Deosaran et al., 2013). This might stem from
the fact that, even though these proteins share LIR and UBD
domains, NBR1—but not p62—contains a membrane interacting
amphipathic α-helical JUBA domain, capable of binding to the
peroxisomal lipid bilayer (Deosaran et al., 2013). Nevertheless,
it cannot be excluded that these proteins co-operate during pex-
ophagy. Finally, it should be mentioned that, unlike Atg30 and
Atg36, both p62, and NBR1 have been implicated in the selec-
tive degradation of other cargoes (Johansen and Lamark, 2011).
Taken together, these data clearly indicate that mammalian pex-
ophagy is regulated by at least one, and perhaps even more, of the
currently identified autophagy receptors. An intriguing question
that has risen from these studies is how these receptors recognize
peroxisomes as their targets.

PEROXISOMAL COMPONENTS NECESSARY FOR PEXOPHAGY
Currently, most data point to a role of Pex3p and/or Pex14p in the
recruitment of pexophagy-specific receptor proteins. For exam-
ple, while in H. polymorpha peroxisome degradation is triggered
by the removal of Pex3p (Bellu et al., 2002; van Zutphen et al.,
2011), studies in P. pastoris and S. cerevisiae have shown that this
peroxin is essential to recruit Atg30 and Atg36, respectively, to the
peroxisome prior to degradation (Farré et al., 2008; Motley et al.,
2012). In addition, P. pastoris Atg30 has been reported to inter-
act with Pex14p (Farré et al., 2008), and the N-terminal 64 amino
acids of this peroxin are required for pexophagy in H. polymorpha
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(Bellu et al., 2001; van Zutphen et al., 2008). Interestingly, by
redirecting Pex3p to the mitochondrial outer membrane in yeast
cells lacking Atg32, the mitochondria-specific autophagy recep-
tor (Okamoto et al., 2009), it is possible to recruit Atg36 to this
organelle and trigger mitophagy (Motley et al., 2012).

In mammals, there is some evidence that Pex14p may play a
role in pexophagy by interacting with LC3-II during nutrient-
starvation (Figure 1B) (Hara-Kuge and Fujiki, 2008). In addi-
tion, a recent study by Deosaran and colleagues suggests that
(mono)-ubiquitination of endogenous PMPs can trigger pex-
ophagy (Deosaran et al., 2013). Unfortunately, no such protein
has yet been identified. One potential candidate is Pex5p, which
needs to be mono-ubiquitinated at the peroxisomal membrane in
order to be recycled back to the cytosol (Platta et al., 2013). Indeed
it has recently been observed that by inhibiting Pex5p recruitment
to peroxisomes via down-regulation of Pex14p, pexophagy is—at
least partly—prevented upon overexpression of NBR1 (Deosaran
et al., 2013). However, since (1) Pex14p is heavily implicated in
yeast pexophagy (Till et al., 2012; see above), and (2) this per-
oxin interacts with membrane-bound LC3-II during starvation
conditions (Hara-Kuge and Fujiki, 2008), one cannot assertively
claim that the lack of peroxisome turnover was due to the absence
of Pex5p, and not to Pex14p (or any other Pex14p-interacting
factor), at the peroxisomal membrane.

TRIGGERS FOR PEROXISOME DEGRADATION
Although relatively much is known about the concepts and recog-
nition factors of peroxisome degradation, less data exist regarding
the triggers for this process. As mentioned before, both superflu-
ous and dysfunctional organelles need to be removed in order
to maintain cellular homeostasis. The turnover of superfluous
peroxisomes can be induced by returning to growth conditions
in which the necessity of peroxisomes is reduced (see section
Regulation of Peroxisome Abundance). In addition, overexpres-
sion of the pexophagy receptors Atg30, Atg36, and NBR1 has
been shown to trigger peroxisome degradation by binding simul-
taneously to peroxisomes and the autophagic machinery (see
section Recognition Factors and Adaptor Proteins for Peroxisome
Removal). Accumulating evidence indicates that the initial signal
for peroxisome degradation resides at the peroxisomal mem-
brane, and that changes in its composition may be the key for
pexophagy induction. This gives rise to a burning question in the
field: how is, at a given time point, a select set of peroxisomes
recognized by the autophagic machinery whereas others are not?
A potential answer to this question could reside in the exis-
tence of peroxisomal subpopulations, where some peroxisomes
are protected from degradation. In this context, it is impor-
tant to mention that, in yeasts, at least one peroxisome is pro-
tected from degradation under pexophagy-inducing conditions
(Leao-Helder et al., 2003). In addition, even high overexpres-
sion of pexophagic receptors does not yield a total cellular lack
of peroxisomes (Farré et al., 2008; Motley et al., 2012; Deosaran
et al., 2013). Furthermore, it is likely that organelle morphology
may also play a role. For example, it has been shown that—
during starvation-induced autophagy—mitochondria elongate
and are therefore protected from mitophagy (Gomes et al.,
2011). Since (1) peroxisomal morphogenesis is a very dynamic

process (Ribeiro et al., 2012), and (2) peroxisomes are com-
monly elongated during proliferation (Schrader et al., 2012),
one could envisage a similar protective mechanism for these
organelles. In this context, it is worthwhile mentioning that stud-
ies in P. pastoris have shown that the larger the peroxisome, the
more cargo-specific Atg proteins are essential for its sequestration
(Nazarko et al., 2009).

Other essential questions that need to be addressed include the
identity and order of events that lead to the substrate recogni-
tion signal at the peroxisomal membrane. In this context, one
can envisage that the signal for peroxisome degradation stems
from the peroxisomal matrix. Indeed, as (1) peroxisomes are
important regulators of both ROS and lipid metabolism (Van
Veldhoven, 2010; Fransen et al., 2012), and (2) it has been shown
that inhibition of autophagy with 3-MA increased the amount
of peroxisomes with a disturbed redox state (Ivashchenko et al.,
2011), it is tempting to speculate that a disrupted redox equi-
librium can lead to oxidation-specific peroxisomal membrane
modifications, such as lipid peroxidation. Here it is also impor-
tant to mention that mitochondria are depolarized and subjected
to mitophagy upon compartment-specific ROS-generation (Kim
and Lemasters, 2011; Wang et al., 2012). However, since peroxi-
somes do not contain a membrane potential, a similar mechanism
seems unlikely to occur for these organelles. Nevertheless, as (1) it
is well-known that the PTEN Induced Putative Kinase 1 (PINK1)-
dependent recruitment of the E3 ubiquitin ligase Parkin to the
mitochondrial outer membrane can trigger mitophagy (Lazarou
et al., 2012; Ashrafi and Schwarz, 2013), and (2) targeting ectopi-
cally expressed PINK1 to the peroxisomal membrane recruits
Parkin to these organelles and triggers pexophagy (Lazarou et al.,
2012), it is very likely that the peroxisome- and mitochondria-
specific turnover mechanisms converge at an early step. This
hypothesis is also in line with the observation that mitochondria-
targeted Pex3p triggers mitophagy in H. polymorpha mutants
lacking Atg32 (see section Peroxisomal Components Necessary
for Pexophagy) (Motley et al., 2012).

It is widely known that mitochondria harbor complex fusion
and fission machineries, which allow them to mix, segregate
and eliminate damaged components from the functional net-
working population (Twig et al., 2008). In addition, there is
abundant evidence that mitochondrial dynamics and mitophagy
are closely related, and that a dysfunctional mitochondrion has
to be separated from the mitochondrial network before it can
be sequestered by an autophagosome (Ashrafi and Schwarz,
2013). However, as peroxisomes cannot fuse with one another
(Huybrechts et al., 2009; Bonekamp et al., 2012), alterna-
tive mechanisms must assist in assuring a healthy organelle
population. One such mechanism may be asymmetric fission.
This would render peroxisomes capable of sequestering non-
functional proteins into the mother organelle, which—after a
limited number of fission events—is targeted for pexophagy
(Huybrechts et al., 2009; Delille et al., 2010). In this context,
it is important to mention that, in H. polymorpha, protein
aggregates within the peroxisomal lumen can be eliminated
by the concerted action of asymmetric fission and subsequent
autophagic degradation of the aggregate-containing organelle
(Manivannan et al., 2013).
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PHYSIOLOGICAL ROLE OF PEXOPHAGY
As already mentioned above (see section Physiological
Importance of Peroxisome Homeostasis), peroxisomes play
a prominent role in a variety of cellular metabolic and signaling
processes. As such, a tight regulation of peroxisome biogenesis,
dynamics, and degradation is important for human health. Over
the years, it has become increasingly clear that not only defects
in peroxisome biogenesis, but also disturbances in peroxisome
degradation can contribute to disease (see section Physiological
Importance of Peroxisome Homeostasis). This is illustrated
below by three specific examples.

First, there is accumulating evidence that defects in pexophagy
can facilitate the cellular aging process. For example, it is already
known for more than a decade that the number of peroxi-
somes profoundly increases during cellular aging, and that these
organelles display a reduced capacity to import matrix proteins,
especially catalase (Legakis et al., 2002). Since (1) these cells con-
tain peroxisomes with a disturbed H2O2 metabolism (Legakis
et al., 2002), (2) there is strong evidence that oxidative stress
plays a key role in the etiology and progression of cellular senes-
cence (Salmon et al., 2010), and (3) the latter process is causally
linked to organismal aging (Baker et al., 2011), it is very likely
that these dysfunctional peroxisomes directly contribute to the
age-related phenotype (Koepke et al., 2008). As these age-related
changes in peroxisome number, matrix protein import, and ROS
production can be mimicked in a H. polymorpha strain lacking
Atg1, a crucial member of the core autophagic machinery (Aksam
et al., 2007), these phenotypes in all probability result from an
age-related decline in lysosomal function or pexophagy-specific
factors.

Next, it has also been postulated that pexophagy is essential
to maintain functional peroxisomes during endotoxin-induced
stress (Vasko et al., 2013). In this study, it was shown that exposure
of human vascular endothelial cells or mice to lipopolysaccharides
(LPS) selectively induced pexophagy, and that inhibition of this
process (e.g., by treating the cells with chloroquine or by employ-
ing lysosome-defective Lyst-mice) resulted in the accumulation of
functionally compromised peroxisomes, an altered cellular redox
equilibrium, and aggravated renal damage.

Finally, as it is well-known that the decreased autophagic flux
observed in various lysosomal storage diseases (LSDs) often leads
to an accumulation of dysfunctional mitochondria and cyto-
plasmic protein aggregates (Platt et al., 2012), the same is most
likely true for peroxisomes. LSDs are a family of genetic disor-
ders that perturb lysosomal homeostasis by the accumulation of
specific macromolecules or monomeric catabolic products inside
organelles of the endosomal-autophagic-lysosomal system (Platt
et al., 2012). Interestingly, some LSDs such as Niemann-Pick dis-
ease type 1 (Schedin et al., 1997) and Krabbe disease (Haq et al.,
2006) have also been associated with peroxisome dysfunction. In
addition, as (1) a-series gangliosides and their precursor are com-
mon secondary storage metabolites in many LSDs, and (2) these
compounds also increase in PBDs, it is very likely that peroxiso-
mal dysfunction underpins secondary ganglioside storage in LSDs
(Platt et al., 2012). Taken together, these data indicate that a dis-
turbance in pexophagy may have a significant negative impact on
human health and function.

CONCLUSIONS AND PERSPECTIVES
From the cumulative evidence presented in this review, it is
clear that macroautophagy plays a pivotal role in the removal
of obsolete peroxisomes in mammalian cells. However, as (1)
these organelles can also be degraded under conditions where
the conventional macroautophagy pathway is inactivated (Iwata
et al., 2006), and (2) macroautophagy does not seem to be
responsible for organelle turnover during lens and erythroid dif-
ferentiation (Matsui et al., 2006), it is very probable that other
cell- and/or condition-specific peroxisome degradation path-
ways exist. Candidate pathways may include micropexophagy,
Atg5/Atg7-independent macropexophagy, and 15-LOX-mediated
degradation. Importantly, crucial in vivo evidence for the pres-
ence of these or other peroxisome turnover routes is currently
lacking. Yet, the recent identification of NBR1 as potential pex-
ophagy receptor may shed more light on this issue (Deosaran
et al., 2013). However, given the functional similarities of mam-
malian autophagy receptors (Behrends and Fulda, 2012), it is
likely that by inactivating NBR1 (e.g., in cells or in an animal
model) other autophagic receptors may shoulder the role of this
protein. In addition, as NBR1 has been shown to be involved
in other ubiquitin-regulated autophagy pathways (Kirkin et al.,
2009), the phenotype observed upon NBR1 inactivation will not
be solely due to impaired peroxisome degradation.

Virtually all experimental data suggest that, at least in yeasts,
peroxisome degradation is a highly selective process (Manjithaya
et al., 2010; Till et al., 2012). Although not yet unambiguously
proven, several arguments support the view that this is also true
for mammals. For example, peroxisomes induced by PPARα-
agonists are selectively removed upon withdrawal of the prolif-
eration stimulus (Yokota, 1993). In addition, although Pex14p
has been shown to interact with LC3-II during nutrient star-
vation, peroxisome degradation only occurred when the cells
were re-cultured in a normal medium (Hara-Kuge and Fujiki,
2008). These data are in line with the finding that starvation-
induced autophagy of cell organelles occurs in an ordered fashion
(Kristensen et al., 2008).

The observation that, in yeasts, peroxisome biogenesis and
degradation converge on Pex3p and Pex14p offers the intriguing
possibility that these peroxins may act as peroxisome fate deci-
sion makers. Whether this is also the case in mammals remains
to be established. In this context, it is important to mention that
(1) mammalian Pex14p can directly bind to Pex5p and LC3-
II, and (2) the affinity of Pex14p for these proteins depends
on the culture conditions (with Pex5p and LC3-II being the
preferred interaction partner under nutrient-rich and starva-
tion conditions, respectively) (Figure 1B) (Hara-Kuge and Fujiki,
2008). Interestingly, Pex14p is also capable of forming distinct
oligomeric complexes at the peroxisomal membrane (Itoh and
Fujiki, 2006). As the functions of these complexes are not yet
characterized, it is tempting to speculate that some may fulfill a
specific role in peroxisome turnover.

One of the most challenging aspects within the field is the
identification of potential triggers for peroxisome degradation. As
(1) excessive ROS-generation in mitochondria has been shown
to trigger mitophagy (Kim and Lemasters, 2011; Wang et al.,
2012), and (2) peroxisomes produce large amounts of ROS as
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part of their normal metabolism (Fransen et al., 2012), it is very
likely that also disturbances in peroxisomal redox metabolism
may provoke signaling/damaging events that lead to structural
changes in the peroxisomal membrane and ultimately result in
organelle degradation. One such modification may be lipid per-
oxidation. Alternatively, the initial trigger may be generated by
changes in peroxisomal lipid metabolism, a condition likely to
affect the organellar membrane composition. In this context, it
is worthwhile mentioning that (1) DHA, a PUFA synthesized
by peroxisomal β-oxidation (Van Veldhoven, 2010), can pro-
mote negative membrane curvature (Bruno et al., 2007), and
(2) NBR1, the putative pexophagy receptor in mammalian cells,
contains a lipid binding domain that inserts into the peroxisomal
membrane bilayer in a curvature-dependent manner (Mardakheh
et al., 2010; Deosaran et al., 2013). These findings and the
observation that DHA can also mediate peroxisome elongation
(Itoyama et al., 2012) suggest that peroxisomal β-oxidation, per-
oxisome morphology, and pexophagy are closely intertwined
processes. Importantly, such a mechanism would closely resemble
that of mitochondria in that dysfunctional spherical organelles
are segregated from a tubular network prior to degradation
(Ashrafi and Schwarz, 2013).

Finally, it is very likely that the implications of dysfunc-
tional peroxisome degradation have been overlooked throughout

the years. In this context, it is essential to take into account
that an increase in peroxisome number (e.g., during cellular
aging) is not necessarily due to an augmentation of peroxisome
biogenesis, but can also result from a decrease in peroxisome
turnover rates. Unfortunately, with the current lack of animal
models that are selectively deficient in peroxisome degradation,
it is virtually impossible to predict the severity of the pheno-
type and/or the course of the disease of patients suffering from
this impairment. However, given the recent breakthroughs in
this field, we are convinced that such disease models will soon
be available, and answers to these important questions rapidly
obtained.
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