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Abstract

Neutron contamination as a source of out-of-field dose in radiotherapy is still of concern. High-

energy treatment photons have the potential to overcome the binding energy of neutrons

inside the nuclei. Fast neutrons emitting from the accelerator head can directly reach the

patient’s bed. Considering that modern radiotherapy techniques can increase patient survival,

concerns about unwanted doses and the lifetime risk of fatal cancer remain strong or even

more prominent, especially in young adult patients. The current study addressed these con-

cerns by quantifying the dose and risk of fatal cancer due to photo-neutrons for glioma patients

undergoing 18-MV radiotherapy. In this study, an NRD model rem-meter detector was used to

measure neutron ambient dose equivalent, H*(10), at the patient table. Then, the neutron

equivalent dose received by each organ was estimated concerning the depth of each organ

and by applying depth dose corrections to the measured H*(10). Finally, the effective dose

and risk of secondary cancer were determined using NCRP 116 coefficients. Evidence

revealed that among all organs, the breast (0.62 mSv/Gy) and gonads (0.58 mSv/Gy) are at

risk of photoneutrons more than the other organs in such treatments. The neutron effective

dose in the 18-MV conventional radiotherapy of the brain was 13.36 mSv. Among all organs,

gonads (6.96 mSv), thyroid (1.86 mSv), and breasts (1.86 mSv) had more contribution to the

effective dose, respectively. The total secondary cancer risk was estimated as 281.4 cases

(per 1 million persons). The highest risk was related to the breast and gonads with 74.4 and,

34.8 cases per 1 million persons, respectively. Therefore, it is recommended that to prevent

late complications (secondary cancer and genetic effects), these organs should be shielded

from photoneutrons. This procedure not only improves the quality of the patient’s personal life

but also the healthy childbearing in the community.
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1. Introduction

Central nervous system (CNS) neoplasms account for 2.71% of cancer deaths. Among them,

meningioma, originating from the meningeal layers around the brain, constitutes a large frac-

tion (approximately 36.8%) of CNS neoplasms. Gliomas, initiating from glial cells, with an

annual global prevalence rate of 6 per 1 million persons with a frequency of 75%, are consid-

ered the most common malignancies in the CNS [1]. Surgery as the main step of brain tumor

treatment, followed by radiation therapy (RT) as an adjuvant therapy with significant progress

can satisfactorily increase the average survival in people with malignancies [2].

Nowadays, the introduction of new techniques to radiotherapy has led to acceptable local

tumor control and sparing of healthy tissues. In other words, factors such as conformity index

(CI), homogeneity index (HI), and target coverage have been improved for such treatments

[3–5]. Accordingly, modern RT techniques can increase RT patient survival by increasing

treatment efficiency. Nevertheless, concerns about unwanted doses and the lifetime risk of

fatal cancer remain critical for such patients [6, 7]. Recently, several studies have been designed

for evaluating the out-of-field dose and lifetime risk of secondary cancer in radiotherapy [8–

11]. Scientific evidence highlights the importance of these concerns.

Out-of-field doses in radiotherapy generally consist of scattered photons and neutron con-

tamination at energies higher than 8 MV [12–14]. Briefly, scattered photons originate from

three main sources, including the patient, leaking photons from the accelerator head, and the

collimator [15, 16]. The linac head is the main source of neutron contamination. High-energy

photons (> 8 MeV) have enough energy to overcome the binding energy of neutrons inside

the nuclei [17]. Fast neutrons emitting from the accelerator head can directly reach the

patient’s bed or slow down by interaction with the components of the treatment room, includ-

ing walls, tables, and the like, and eventually, be converted into thermal neutrons [18]. There-

fore, a spectrum of neutron energy is expected anywhere on the patient’s bed [19, 20].

Evidence suggests that the incidence of secondary malignancies may be associated with sec-

ondary radiation [21, 22]. Patients have a long life enough to experience secondary cancers by

increasing their survival using modern radiotherapy techniques. Thus, determining the

unwanted dose due to secondary radiation can help improve the quality of RT patients’ life,

especially young adult patients. On the other hand, due to the inability of the treatment plan-

ning system (TPS) to calculate the dose of secondary radiation (scattered photons + neutron

contamination) [6, 23, 24], it is impossible to determine the dose received by all critical organs

of the body in routine clinic practices. This issue has attracted the attention of many research-

ers to reduce the out-of-field dose of the patient using experimental dosimetry methods or

Monte Carlo codes. In addition, estimating the risk of secondary cancers can help physicians

manage the prevalence of secondary malignancies.

The out-of-field dose and consequently secondary cancer risk received by the patient due to

scattered photons in brain radiotherapy have been fully reported in the literature [7, 25, 26].

However, due to the average energy of neutrons emitting from the accelerator (1 MeV), the

weight factor of radiation for such neutrons is approximately 20 times higher than that of X-

rays or gamma photons [27]. Hence, it is expected to have more destructive biological effects.

Considering that concerns about the neutron dose to the patient during this kind of treatment

has increased, quantifying neutron doses can help raise public awareness in this regard.

Unfortunately, most of the neutron detectors used in dosimetry for the mixed fields (Pho-

ton + Neutron) are inevitably saturated by photons [28] which are challenging for the in-vivo

dosimetry of neutron contamination in radiotherapy. Although neutron rem-meter detectors

can separate neutrons from photons, they cannot be applied for in-vivo dosimetry due to their

large size. The alternative method is the measurement of neutron ambient dose equivalent by
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these detectors and conversion of the measured dose to the clinical situation by dose conver-

sion factors. Nevertheless, the confident usage of neutron rem-meter detectors for this purpose

needs a validation process. In this regard, Elmtalab et al. [13] benchmarked the measured

ambient dose equivalent by data calculated via Monte Carlo simulation. Additionally, Elmtalab

et al. [13] reported the neutron equivalent dose only for a few superficial organs (lens and thy-

roid) without any secondary cancer risk assessment. Accordingly, a comprehensive report on

neutron dose and secondary cancer risk should be provided for all out-of-field organs. The

current study scientifically focused on this gap by quantifying the above-mentioned parame-

ters for patients undergoing brain tumor radiotherapy using experimental dosimetry.

2. Material and methods

2.1 Ethics statement

The authors declare that this study does not involve human participants and only reports data

obtained via in-vitro dosimetry. Therefore, participant consent was not requested in the

research.

2.2 Treatment planning

Despite significant enhancements in treatment efficiency, new radiotherapy techniques are

associated with more radiation exposure time for patients compared to conventional tech-

niques [29]. In radiotherapy centers with high patient referral rates, conventional methods are

inevitably preferred in treating some patients to save time. Due to the high penetration depth

and skin-sparing properties, high-energy beams (>10 MV) can be effective in achieving the

appropriate dose distribution in the conventional radiotherapy of brain tumors. Skin sparing

is valuable in preserving patients’ hair, especially in women. High penetration depth is also

important in the irradiation of deep tumors (usually gliomas). Even in the radiotherapy of

superficial tumors (usual meningioma) located on one side of the brain (left or right), using a

field with an 18-MV beam from the opposite side of the tumor is appropriate for creating a

uniform dose distribution (Fig 1). In this study, treatment planning was performed for a large

hypothetical tumor (~7 cm) located in the midline of a standard patient’s brain (70 kg) [30,

31] using TPS (PROWESS, version 5.5). The treatment plan consisted of two lateral fields with

18-MV beams that created a suitable dose distribution so that 95% of the planning target vol-

ume (PTV) received at least 95% of the prescribed dose. The dose to the organs at risk (OARs)

was not more than the tolerated radiation dose (Table 1) [32]. The prescribed dose approved

by an oncologist was 60 Gy (2 Gy/ per fraction).

2.3 Detector and collaboration process

Ambient dose equivalent, H�(10), is defined by the International Commission on Radiation

Units and Measurements (ICRU) as the equivalent dose that would be produced by the corre-

sponding expanded and aligned field in the ICRU sphere at a depth of 10 mm on the radius

opposing the direction of the aligned field [33].

In this study, an NRD rem-meter detector (Thermo Electron Corporation, USA) was used

to measure neutron equivalent dose. The detector includes a thermal neutron-sensitive pro-

portional counter (BF3) centered on a standard 9-inch polyethylene moderator with a thin

layer of cadmium (Fig 2). It can measure neutron equivalent dose in energies ranging from

0.025 eV (thermal) up to 10 MeV (epithermal and fast) with a sensitivity of 3000 counts/mrem

independently of the energy and direction of radiation (within 10%). In addition, the detector

is equipped with an Eberline’s ASP-2e electronic system that can calculate H�(10) using the
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flux-to-dose conversion coefficients provided by the International Commission on Radiologi-

cal Protection’s system, as well as the gamma rejection capability with 500 R/h, which is suit-

able for use in neutron fields that are saturated with photons [34].

In our previous study [13], detector calibration in a neutron field (nearly equal to the irradi-

ation field) generated by a miniature neutron source reactor (MNSR) was described in detail.

In summary, the MNSR is a 30-kW tank-in-pool research reactor. The calibration was per-

formed using an external neutron beam with the flux of 2.7 E+5 n/ (cm2.s) in the outlet (at full

power of the reactor) [35].

2.4 Depth and horizontal distance corrections

Due to its large size, the detector is incapable of measuring neutron equivalent dose directly

inside an anthropomorphic phantom. Therefore, the measurements were performed at differ-

ent horizontal distances along the central axis of the beam. Then, distance and depth correc-

tions were applied by knowing the horizontal distance of the target organ from the central axis

of the beam and its depth from the surface (Table 2) [36]. This correction is applied because

Fig 1. Dose distribution with a conformity index of 0.95 (a) for a deeply-seated tumor located in the midline via two lateral 18-MV

beams and (b) for a superficial tumor located in the left temporal lobe via a lateral 6-MV beam (from the left) and an 18-MV beam

(from the right). Planning Target Volume (PTV) = Clinical Target Volume (CTV) + 1 cm and CTV = Grass Target Volume + 0.6 cm.

https://doi.org/10.1371/journal.pone.0271028.g001

Table 1. Tolerated dose of organs at risk in radiotherapy of head and neck area [32].

Organ Dose limitation (Gy)

Hippocampus 6

Optic nerves 55

Chiasm 56

Brainstem 60

Retina 50

https://doi.org/10.1371/journal.pone.0271028.t001
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the neutron dose decreases with distance from the central axis of the photon beam and

increases with the depth in the tissue.

Neutron spectrum out-of-field does not change significantly (less than 10%) in bin dis-

tance [20–40] and [40–60] cm from the central axis of the beam [36]. Accordingly, it is

assumed that the measured H�(10) at 20 and 60 cm far away from the isocenter are appro-

priate for estimating the dose received by organs in the distance bins of [5–40] and [40–

80] cm, respectively. To decrease statistical uncertainties, measurements were repeated

three times at each point.

The neutron equivalent dose received by each organ can be estimated concerning the depth

of each organ from the surface (Table 2), the average neutron energy at the patient bed (about

0.5 MeV) [13, 28, 37], and by applying depth dose corrections to the measured H�(10) pro-

vided by d’Errico et al (Table 3) [38].

2.5 Irradiation set-up

Irradiation (2 Gy) in a static field of 10 × 10 cm2 was performed at 0˚ gantry angle by an 18-

MV Siemens Oncor linear accelerator located at a bunker with dimensions 12 × 14 × 5.5 m3

and walls made of ordinary concretes (with a density of 2.35 g/cm3) in Milad Hospital, Isfahan

(Fig 3).

The neutron spectrum is independent of the radiation angle (Gantry angle) and the

direction of the dosimeter (within 10%). The symmetric geometry of the treatment room

keeps the neutron spectra at the patient table nearly independent of the gantry angle.

Accordingly, to simplify the calculations, instead of using two lateral fields with equally

weighted monitor units (Fig 1), only one treatment field was employed for the irradiation

of the detector.

Fig 2. Neutron rem detector including (a) thermal neutron counter BF3, (b) polyethylene modulator and cadmium

layer with suitable thickness, and (c) equipped with Eberline’s ASP-2e rate-meter with pulse height analysis capability

(2000 V to create an appropriate differential pulse height distribution was adopted).

https://doi.org/10.1371/journal.pone.0271028.g002
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2.6 Effective dose and risk of secondary cancer

By determining the neutron equivalent dose (HT) received by each organ and applying the tis-

sue weighting factors (WT) proposed by NCRP 116 [39], the effective dose (E) was calculated

Table 2. Position of the center of the organs: Horizontal distance of the organs from the central axis of the beam

and the depth of the organs from the phantom surface. This information is extracted from Howell et al’s study [36]

using an Eclipse measuring instrument for an Alderson Radiation Therapy Phantom Female. In this table, the organs

are classified into three levels of depth (superficial, middle, and deep).

Organ Distance (cm) Depth (cm)
a Brain��� 5 13.0

Salivary glands�� 8.38 6.0

Thyroid� 15.28 2.0

Esophagus��� 29.88 13.5

Breast� 29.88 2.0

Lung��� 30.88 12.5

Cord��� 32.28 16.0

Heart�� 34.88 9.5

Stomach��� 43.88 10.5

Spleen�� 43.88 9.0

Liver�� 44.38 8.0

Pancreas��� 45.88 11.0

Kidney��� 48.88 12.5

Colon�� 57.88 9.5

Bladder�� 78.18 8.5

Gonads� 79.88 1.0

Rectum��� 79.38 14.0

Femoral head��� 83.88 11.5

a Healthy brain tissue, whose horizontal distance from the central axis of the beam, was considered after the edge of

the field.

� Surface depth organs (0 cm� x� 5 cm).

�� Medium depth organs (5 cm < x� 10 cm).

���Deep organs (10 cm < x� 15 cm).

https://doi.org/10.1371/journal.pone.0271028.t002

Table 3. Neutron absorbed dose reported by d’Errico et al. As a function of the initial neutron energy (0.5 MeV)

and the depth in a phantom 30 × 30 × 20 cm3 [38].

Depth (cm) Dn (pGy/cm2)

1 18.39

2 16.11

3 12.50

4 9.31

5 7.16

6 5.75

8 2.79

10 1.40

12 0.69

14 0.43

16 0.15

https://doi.org/10.1371/journal.pone.0271028.t003
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as follows:

E ¼
X

WT �HT

NCRP 116 assigns a WT to the bladder, bone marrow, bone surface, breast, esophagus,

colon, liver, lung, gonads, skin, stomach, and thyroid. Its value for other remainder organs is

reported to be 0.05. According to NCRP 116, organs such as the adrenals, brain, small intes-

tine, large intestine, kidney, muscle, pancreas, spleen, thymus, and uterus are defined as

remainder organs. However, not all these organs can be identified in the phantom. Therefore,

among the contoured organs in Table 2, the organs with undetermined WT factors were con-

sidered as the remainder organ. It should be noted that determining the neutron equivalent

dose is more complex for bone marrow, bone surface, and skin. For this purpose, Howell et al.

[36] suggested a suitable method through which the neutron equivalent dose received by

organs such as the brain, breast, heart, spinal cord, and the femoral head is used to estimate

the neutron equivalent dose of the head, upper limb-girdle, sternum/ribs, vertebrae, and

sacrum/ lower girdle, respectively. The estimated doses are then weighted based on the active

red bone marrow distribution of a 40-year-old male [30]. Accordingly, the percentage of the

active bone marrow in the head, upper limb-girdle, sternum, ribs, vertebrae, sacrum, and

lower girdle are 13.1, 6.2, 3.4, 14.1, 10.9, 13.9, and 26.1%, respectively. Bone surface neutron

equivalent dose was estimated using the average equivalent dose of upper limb-girdle, ster-

num, ribs, vertebrae, sacrum, and lower girdle. Given that the skin is a superficial organ

(extends up to a depth of 4 mm), the neutron equivalent dose of the skin was measured via

average H�(10) at distances of 20 and 60 cm far from the isocenter. Considering that the area

of the skin inside the treatment field is extremely small, we ignored the intra-field area in dose

calculations.

Finally, the risk of secondary cancer in critical out-of-field organs was assessed by employ-

ing the secondary cancer risk coefficients proposed by NCRP 116 to the obtained neutron

equivalent doses and considering the assumptions in determining the neutron equivalent dose

of remainder organs, bone marrow, bone surface, and skin.

2.7 Photoneutrons vs. scattered photons

As mentioned earlier, scattered photons are a part of secondary radiation that causes unwanted

doses to the healthy organs/tissues outside the treatment field. Recently, in a similar treatment

plan (18-MV radiotherapy of the brain area under two lateral fields), out-of-field dose and

consequently the risk of secondary cancer due to scattered photons in the Medical Internal

Radiation Dose Phantom have been calculated using Monte-Carlo simulation [26]. To provide

a practical radiation protection viewpoint, the results of this study were qualitatively compared

with those of the present study in terms of dose distribution in the body and high-risk organs

of secondary cancers.

3. Results

The measured H�(10) at the patient table in 20 cm (corresponding to the organs close to the

treatment field 5 cm� x� 40 cm) and 60 cm (corresponding to the more distant organs) far

away from the isocenter is reported in Table 4. The results were also compared with those

Fig 3. Detector set-up for measurement of neutron ambient dose equivalent at the isocenter under a Source to Surface Distance (SSD)

of 95 cm. A similar procedure was employed also for measurements at the 20 and 60 cm far away from the isocenter.

https://doi.org/10.1371/journal.pone.0271028.g003
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obtained in a similar condition by Zanini et al [40]. The H�(10) at the isocenter found in our

previous measurement [13] was also reported to make the comparisons more meaningful.

Table 5 provides comprehensive information on the neutron equivalent dose received by

different organs during high-energy conventional brain tumor radiation therapy.

Fig 4 illustrates a qualitative comparison between the out-of-field dose of scattered photons

and photoneutrons as a function of the horizontal distance of the organ from the isocenter.

Table 4. Neutron ambient dose equivalent, H�(10), in different distances at the patient table under a 10 × 10 cm2 treatment field when 1 Gy photon dose was deliv-

ered to the isocenter. The results also were compared with Zanini et al’s study [40].

H�(10) (mSv/Gy)

Study LINAC Dosimeter Distance from isocenter (cm)

0 15 20 50 60

This study Siemens Oncor (18-MV) NRD model neutron rem-meter 1.30 ± 0.14 - 0.71 ± 0.12 - 0.58 ± 0.10

Zanini et al. Elekta (18-MV) Bubble Detector 1.7 0.9 - 0.4 -

https://doi.org/10.1371/journal.pone.0271028.t004

Table 5. Neutron equivalent dose (HT), effective dose, and risk of secondary cancer & genetic effects for a glioma patient undergoing 18-MV radiotherapy when

60-Gy photon dose is delivered to the brain with two lateral 10 × 10 cm2 treatment fields. Tissue weighting factor (WT) and risk coefficients were employed based on

NCRP 116 recommendation [39].

Organ HT (mSv) WT Risk coefficients (10−2 Sv-1) Secondary cancer risk (per 1 million persons)

Bladder 4.20 ± 0.42 0.05 0.30 12.60 ± 1.30

Bone marrow 6.00 ± 0.80 0.12 0.50 30.00 ±4.00

Bone surface 9.00 ± 1.20 0.01 0.05 4.50 ±0.60

Breasta 37.20 ± 1.16 0.05 0.20 74.40 ± 2.32

Esophagus 1.20 ± 0.15 0.05 0.30 3.60 ± 0.45

Colon 3.00 ± 0.30 0.12 0.85 25.50 ±2.60

Liver 5.40 ± 0.54 0.05 0.15 8.10 ±0.81

Lung 1.20 ± 0.15 0.12 0.85 10.20 ±1.28

Gonads 34.80 ± 3.50 0.20 0.10 34.80 ±3.50

Skinb 38.70 ± 0.22 0.01 0.02 7.74± 0.04

Stomach 2.40 ± 0.24 0.12 1.10 26.40 ± 2.70

Thyroid 37.20 ± 4.00 0.05 0.08 29.76 ±3.20

Remainder Rectum 0.60 ± 0.10 0.05 0.05 13.80 ± 0.18

Femoral heada 1.20 ± 0.20

Salivary Glands 13.20 ± 1.70

Spleen 3.60 ± 0.40

Hearta 4.20 ± 0.54

Pancreas 2.40 ± 0.30

Kidney 0.60 ± 0.10

Braina 1.20 ± 0.15

Corda 0.60 ± 0.08

Effective dose (mSv) 13.36 ± 1.29

Total secondary cancer risk (per 1

million persons)

281.40 ± 23.00

Genetic effects (per 1 million persons) 384.00 ±35.00

a These organs were used to predict the dose received by the Head, Upper limb-girdle, Sternum/Ribs, Vertebrae, and Sacrum/Lower girdle and finally to estimate the

dose reached to the bone marrow (taking into account the weight distribution of bone marrow in a forty-year male body) and Bone surface.
b The dose received by the skin is considered as the average ambient dose equivalent at intervals of 20 cm and 60 cm far from the isocenter.
c Genetic effects (per million persons) were calculated using the neutron equivalent dose of gonads (34.80 ± 0.00 mSv) and the genetic effects coefficient (1.00 10−2 Sv-1)

extracted from NCRP 116 [39].

https://doi.org/10.1371/journal.pone.0271028.t005
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4. Discussion

Based on data in Table 4, the H�(10) rapidly decreases from 1.3 to 0.71 mSv/Gy by increasing

the distance from the isocenter. Then, an extremely smoother reduction from 0.71 to 0.58

mSv/Gy can be observed in H�(10). Accordingly, the assumption that the fluctuation of H�

(10) at 20-cm intervals outside the treatment field is less than 10% seems reasonable. Table 4

also presents that the measured values for H�(10) are in good agreement with those reported

by Zanini et al. Nevertheless, in the study of Zanini et al., H�(10) at the isocenter is nearly 23%

more than the value of 1.3 mSv/Gy measured using the NRD rem-meter in this study; this dif-

ference is because the bubble detector is potentially saturated by photons. Additionally, evi-

dence represents that Siemens linear accelerators generate less neutron contamination than

Elekta machines [41]. It was also reported that the measurement method can cause a difference

of 20% in neutron dosimetry [28, 36]. Nonetheless, the mean H�(10) outside the treatment

field is almost the same between the two studies (a difference of less than 0.01 mSv/Gy).

According to Table 5, the average neutron equivalent dose intake by the body was 0.16

mSv/Gy, ranging from 0.01 to 0.64 mSv/Gy. The skin (0.64 mSv/Gy), thyroid (0.62 mSv/Gy),

breast (0.62 mSv/Gy), and gonads (0.58 mSv/Gy) received the highest neutron equivalent

dose, respectively. Given that H�(10) decreases with horizontal distance from the isocenter

(Table 4), at the first glance, it is expected that the neutron equivalent dose for organs far from

the isocenter to be less pronounced than those which are close to the treatment field. Neverthe-

less, the neutron equivalent dose received by the gonads, at a distance of 80 cm far from the

isocenter, is about 30 times more than the neutron equivalent dose received by the brain

(Table 5). The reason is that the neutron equivalent dose decreases due to increasing the hori-

zontal distance from the isocenter and attenuation through passing the body. The attenuation

of neutrons with depth is a more predominant factor compared to horizontal distance from

Fig 4. Contribution of photoneutrons and scattered photons to the total equivalent dose received by several out-

of-field organs in glioma patients undergoing 18-MV radiotherapy.

https://doi.org/10.1371/journal.pone.0271028.g004
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the isocenter, thus superficial organs such as the gonads (depth 1 cm) and breasts receive more

neutron equivalent dose in comparison to the brain as a deep organ (the depth of its geometric

center is 13 cm above the body surface). Accordingly, it seems useful to classify the neutron

equivalent dose received by organs into superficial, middle, and deep areas. The average neu-

tron equivalent dose for the surface, middle, and deep organs is 0.61, 0.09, and 0.02 mSv/Gy,

respectively. A comparison of these values shows the significant dependence of neutron equiv-

alent dose on the depth.

The obtained data (Table 5) further indicate that the neutron effective dose in the high-

energy conventional radiotherapy of the brain is 0.23 mSv/Gy. Gonads (52%), thyroid (14%),

breasts (14%), and bone marrow (5%) have more contribution to the effective dose compared

to other organs, respectively. As previously mentioned, in addition to the neutron equivalent

dose of organs, the WT of each organ plays a key role in calculating the effective dose. There-

fore, although the skin receives a similar neutron equivalent dose compared to the thyroid or

breast (0.64 ~ 0.62, both in mSv/Gy), its contribution to the effective dose is less pronounced

(~ 5 times) because of its lower WT (0.05> 0.01).

The ultimate goal of this study was to assess the risk of secondary cancer. Based on the

NCRP 116 report [39], the risk of secondary cancer is determined by the dose received by each

organ and the intrinsic susceptibility of the organ (secondary cancer risk coefficients). Consid-

ering the two above-mentioned factors, the risk of secondary cancer due to photoneutrons was

evaluated for different organs of a typical glioma patient receiving a 60 Gy treatment dose via

18-MV photons. The total secondary cancer risk was estimated to be approximately 281.4

cases (per 1 million persons). The highest risk was related to the breast (74.4 cases per 1 million

persons), gonads (34.8 cases per 1 million persons), bone marrow (30 cases per 1 million per-

sons), and thyroid (29.76 cases per 1 million persons), respectively. Recently, it has been found

that for glioma patients, scattered photons lead to the highest risk of secondary cancer of the

thyroid, lung, and stomach, respectively [26]. In fact, concerning the scattered photons, the

thyroid (as a vital organ close to the treatment field) is significantly at risk of secondary cancer.

However, as an internal organ, it cannot be shielded from the scattered photons. On the other

hand, in terms of photoneutron contamination, gonads and breasts can be protected with radi-

ation protection techniques such as shielding or patient positioning. For a glioma patient, put-

ting the patient’s hands on the chest can reduce the neutron equivalent dose reached to the

breast. The radiation protection of the gonads looks more significant since the genetic effects

on the gonads (384 cases per 1 million persons) are remarkable. Regarding the severe attenua-

tion of neutrons with depth, a gonad shield (bolus or paraffin plates) with an appropriate

thickness is suggested to be located on the body surface in the region of the gonads.

In contrast to scattered photons, the reduction of neutron equivalent dose by increasing

horizontal distance from the isocenter is extremely slow (Fig 4). In other words, a sharp reduc-

tion in the photon dose can be expected by increasing the distance from the isocenter com-

pared to the neutron equivalent dose. Furthermore, the contribution of scattered photons to

the unwanted dose to the organs at risk is more remarkable than that of photoneutrons. Never-

theless, the diagram shows that the dose ratio (neutron to photon) increases with distance

from the edge of the treatment field until finally, the neutron equivalent dose prevails.

Neutron dosimetry is usually associated with at least 10% uncertainty, thus the estimation

of secondary cancer risk strongly depends on accurate information about dose values [28]. In

addition, neutron dose values rely on treatment plan details. The variety of models used for

risk assessment can also lead to differences in estimations. Therefore, an accurate estimation

of secondary cancer risk is still a challenge. Nevertheless, in this study, by determining the neu-

tron equivalent dose for the off-field organs, the authors attempted to provide reliable infor-

mation about the levels of secondary cancer risk for a typical glioma patient undergoing
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18-MV radiotherapy. This information can help physicians employ radiation protection con-

siderations for improving the quality of life of patients with brain tumors after treatment.

5. Conclusion

This study sought to estimate the risk of secondary malignancies due to the neutron contami-

nation of the linear accelerator head during the conventional treatment of brain tumors with

18-MV photons. After applying depth corrections to the measured H�(10), the neutron equiv-

alent dose received by the OARs was assessed, followed by estimating the risk of secondary

cancer for OARs by applying malignancy risk coefficients based on the NCRP 116 protocol.

Additionally, the effective dose received due to neutrons during such treatment was also calcu-

lated using tissue weighting factors proposed by the mentioned protocol.

Among all organs, skin, thyroid, breast, and gonads had the highest potential of receiving

the neutron equivalent dose, respectively. Moreover, organs such as gonads, thyroid, breast,

and bone marrow had the highest contribution to the effective dose, respectively. Breast, bone

marrow, gonads, and thyroid were potentially at high risk of secondary cancer induced by

photoneutrons. Therefore, gonads, thyroid, skin, breast, and bone marrow are the critical

organs that photoneutrons can contaminate in brain radiation therapy. However, it does not

mean that radiation protection considerations must be performed on all these organs to reduce

the neutron equivalent dose; because among them, the skin and thyroid receive a large fraction

of unwanted dose from the scattered photons (an inevitable internal source for unwanted

dose). The breast and gonads are the only organs that receive a predominant dose due to

photoneutrons. Therefore, it is recommended that these organs should be shielded from

photoneutrons during the high-energy radiotherapy of brain tumors to prevent late complica-

tions (secondary cancer and genetic effects). This procedure not only improves the quality of

the patient’s personal life but also increases healthy childbearing in the community.

Supporting information

S1 File. Data set corresponds to Table 5.

(XLSX)

S2 File. Photoneutrons vs. scattered photons: Unwanted dose received by several out-of-

field organs in glioma patients undergoing 18-MV radiotherapy. This file corresponds to

Fig 4 in the paper. Photon data were extracted from Reference [26] in the paper.

(XLSX)

Author Contributions

Conceptualization: Soheil Elmtalab, Iraj Abedi.

Data curation: Soheil Elmtalab, Mohammad Hossein Choopan Dastjerdi.

Formal analysis: Soheil Elmtalab, Mohammad Hossein Choopan Dastjerdi.

Investigation: Soheil Elmtalab, Iraj Abedi, Mohammad Hossein Choopan Dastjerdi.

Methodology: Soheil Elmtalab, Mohammad Hossein Choopan Dastjerdi.

Project administration: Iraj Abedi.

Software: Iraj Abedi.

Supervision: Iraj Abedi, Mohammad Hossein Choopan Dastjerdi.

Validation: Ghazale Geraily.

PLOS ONE Unwanted neutron dose to glioma patients undergoing radiotherapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0271028 July 29, 2022 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271028.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271028.s002
https://doi.org/10.1371/journal.pone.0271028


Visualization: Soheil Elmtalab, Iraj Abedi.

Writing – original draft: Soheil Elmtalab, Zahra Alirezaei, Amir Hossein Karimi.

Writing – review & editing: Ghazale Geraily, Amir Hossein Karimi.

References
1. Reynoso-Noverón N, Mohar-Betancourt A, Ortiz-Rafael J. Epidemiology of brain tumors. Principles of

Neuro-Oncology: Springer; 2021. p. 15–25.

2. Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review

of three selected approaches. Pharmacology & therapeutics. 2013; 139(3):341–58.

3. Lu S-H, Cheng JC-H, Kuo S-H, Lee JJ-S, Chen L-H, Wu J-K, et al. Volumetric modulated arc therapy

for nasopharyngeal carcinoma: a dosimetric comparison with TomoTherapy and step-and-shoot IMRT.

Radiotherapy and Oncology. 2012; 104(3):324–30. https://doi.org/10.1016/j.radonc.2011.11.017

PMID: 22236614

4. Siddhesh Tryambake M, Vikram R, Dhavale A, Mali S. Clinical Outcomes and Dosimetric Analysis of

3D Conformal, Intensity-Modulated and Volumetric Arc Radiation Therapy in Post-operative Oral cavity

Cancers–A Single Institution Retrospective Audit. 2021.

5. Weidlich GA, Hacker F, Bellezza D, Maguire P, Gardner EA. Ventricular tachycardia: a treatment com-

parison study of the cyberknife with conventional linear accelerators. Cureus. 2018; 10(10). https://doi.

org/10.7759/cureus.3445 PMID: 30555760

6. Colnot J, Zefkili S, Gschwind R, Huet C. Out-of-field doses from radiotherapy using photon beams: A

comparative study for a pediatric renal treatment. Journal of Applied Clinical Medical Physics. 2021; 22

(3):94–106. https://doi.org/10.1002/acm2.13182 PMID: 33547766

7. Elmtalab S, Abedi I. Investigating the out-of-field doses and estimating the risk of secondary thyroid

cancer in high-grade gliomas radiation therapy with modulated intensity and 3D-conformal: a phantom

study. International Journal of Radiation Research. 2021; 19(3):569–74.

8. Geraily G, Elmtalab S, Mohammadi N, Alirezaei Z, Martinez-Ovalle S, Jabbari I, et al. Monte Carlo eval-

uation of out-of-field dose in 18 MV pelvic radiotherapy using a simplified female MIRD phantom. Bio-

medical Physics & Engineering Express. 2021; 8(1):015004. https://doi.org/10.1088/2057-1976/ac35a1

PMID: 34727526

9. Karimi AH, Chegeni N, Jabbari I, Hassanvand M. The effect of neutron contamination on probability of

secondary cancer in radiotherapy of pelvic region with 18-MV photons. Journal of Isfahan Medical

School. 2019; 37(519):222–7.

10. Karimi AH, Mirian SF, Mahmoudi F, Geraily G, Vega-Carrillo HR, Mohiuddin M. Feasibility of 18-MV

grid therapy from radiation protection aspects: unwanted dose and fatal cancer risk caused by photo-

neutrons and scattered photons. Computer methods and programs in biomedicine. 2022; 213:106524.

https://doi.org/10.1016/j.cmpb.2021.106524 PMID: 34818621

11. Wen L, Zhong G, Ren M. Increased risk of secondary bladder cancer after radiation therapy for endo-

metrial cancer. Scientific Reports. 2022; 12(1):1–10.

12. Banaee N, Goodarzi K, Nedaie HA. Neutron contamination in radiotherapy processes: a review study.

Journal of Radiation Research. 2021; 62(6):947–54. https://doi.org/10.1093/jrr/rrab076 PMID:

34467374

13. Elmtalab S, Shanei A, Choopan Dastjerdi MH, BrkićH, Abedi I, Amouheidari A. Determination of the

Neutron Contamination During Brain Radiotherapy Using a Moderated-Boron Trifluoride Detector and

the MCNP Monte Carlo Code. Radiation Protection Dosimetry. 2022; 198(3):129–38. https://doi.org/10.

1093/rpd/ncac001 PMID: 35137234

14. Sánchez-Nieto B, Medina-Ascanio K, Rodrı́guez-Mongua J, Doerner E, Espinoza I. Study of out-of-field

dose in photon radiotherapy: A commercial treatment planning system versus measurements and

Monte Carlo simulations. Medical physics. 2020; 47(9):4616–25. https://doi.org/10.1002/mp.14356

PMID: 32583441
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