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Introduction
Mitochondria are engaged in a plethora of cellular processes and 
are therefore of utmost importance for cell viability. Mitochon-
dria are not static entities but are highly dynamic and require that 
supplies of proteins and membrane lipids be coordinated and 
adjusted to meet physiological and functional demands. Although 
an increasingly detailed structural and mechanistic picture is 
emerging for the biogenesis, sorting, and compartmentation of 
mitochondrial proteins (Schmidt et al., 2010), much less is known 
about mechanisms regulating the supply of phospholipids and 
the maintenance of mitochondrial membrane integrity. The mito-
chondrial phospholipid composition varies little among different 
cells, suggesting that major changes cannot be tolerated. Indeed, 
both altered phospholipid levels and phospholipid damage  
have been linked to a variety of human disease states (Chicco 
and Sparagna, 2007; Joshi et al., 2009). Phospholipids like  

cardiolipin (CL) have long been known to affect the stability and 
catalytic activity of mitochondrial membrane proteins (Schlame 
and Ren, 2009). However, considering phospholipids merely  
as the fabric that keeps mitochondria together vastly under-
estimates their contribution toward the functional integrity of 
these organelles.

In this article, we summarize recent findings that highlight 
distinct functions of mitochondrial phospholipids in diverse 
mitochondria-associated processes such as mitochondrial fusion, 
protein import into mitochondria, and apoptosis. We will focus 
on phosphatidylethanolamine (PE) and the mitochondria-specific 
dimeric glycerophospholipid CL. Both PE and CL are non– 
bilayer-forming phospholipids, a feature best explained by their 
shape (Fig. 1; van den Brink-van der Laan et al., 2004). Bilayer-
forming phospholipids like phosphatidylcholine (PC) are  
cylindrically shaped with the fatty acid portions defining  
extended hydrophobic domains and the polar head groups  
defining the short hydrophilic domains along the length of the 
cylinder. The nearly equivalent diameters of the cylinder in both 
domains allow molecular packing that favors bilayers. The non–
bilayer-forming lipids PE and CL are more conical shaped with 
a smaller hydrophilic head group diameter and a relatively larger 
hydrophobic domain diameter. This shape allows the formation 
of hexagonal phases that can be observed for isolated lipids de-
pending on the pH and ionic strength (Ortiz et al., 1999). PE  
and CL are thought to be present mainly in bilayer structures 
in vivo, but their tendency to form hexagonal phases can cre-
ate tension in membranes that is likely of functional impor-
tance to various mitochondrial processes like membrane fusion 
or the movement of proteins or solutes across membranes  
(van den Brink-van der Laan et al., 2004). The functional im-
portance of non–bilayer-forming lipids is highlighted by the 
fact that yeast and bacteria cannot tolerate simultaneous reduc-
tion of PE and CL (Rietveld et al., 1993; Gohil et al., 2005). The 
biosynthesis of PE and CL occurs, at least in part, within  
mitochondria and relies on an intricate exchange of precursor 
forms between the membrane of the ER and the mitochondrial 
outer membrane at distinct contact sites, whose structural 
basis we are just beginning to understand. We will highlight 
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The diversity of mitochondrial membrane lipids is also a 
consequence of the variation in chain length and degree of un-
saturation of fatty acids present within each class of phospho-
lipid. Acyl chains are important determinants for the biophysical 
properties of cellular membranes. With the exception of the acyl 
chain remodeling of CL, which has been studied in some detail 
(Houtkooper et al., 2009; see Mitochondrial synthesis of CL), 
the regulation of the acyl chain composition of mitochondrial 
lipids and their functional importance for mitochondrial pro-
cesses are poorly understood.

Perhaps the most significant difference in the relative 
abundance of phospholipids between the outer and the inner mito-
chondrial membrane is observed for CL. It has long remained 
controversial whether CL is even present at all in the outer mito-
chondrial membrane. However, a recent study in yeast has now 
convincingly demonstrated that a purified mitochondrial outer 
membrane fraction from yeast indeed contains 25% of the CL 
of total mitochondrial membranes (Gebert et al., 2009).

Little is currently known about the lateral distribution of 
phospholipids in mitochondrial membranes. The non–bilayer-
forming lipids PE and CL laterally segregate into distinct do-
mains in bacterial membranes, which, similar to mitochondria, 
contain CL but lack sterols and sphingolipids (Mileykovskaya 
and Dowhan, 2000; Kawai et al., 2004; Nishibori et al., 2005). 
A spatially defined lipid distribution may also affect mitochon-
drial processes, such as fusion or fission, as well as the insertion 
or extraction of membrane proteins. The high membrane curva-
ture at cristae tips may impose geometric constraints that could 
lead to an enrichment of non–bilayer-forming lipids. Membrane 
domains may self-assemble to some extent, but it is conceivable 
that scaffolding proteins assist in their formation and maintenance. 
This might be of particular relevance in the mitochondrial inner 
membrane, which is considered to be the most protein-rich cel-
lular membrane. Prohibitins, which are evolutionarily conserved 
proteins forming ring complexes in the mitochondrial inner mem-
brane (Tatsuta et al., 2005), were proposed to act as membrane 

recent advances and unresolved questions regarding this inter-
organellar communication and the intramitochondrial traffick-
ing of phospholipids.

Mitochondrial phospholipids and  
membrane domains
The phospholipid composition of mitochondrial membranes 
has been determined in yeast and mammalian cells. Although 
the exact composition determined in different studies varies, 
most likely because of differences in the growth conditions or 
the purity of the analyzed fraction, the relative abundance of 
different phospholipids remains within a relatively narrow range. 
PC and PE are the most abundant phospholipids and comprise 
40% and 30% of total mitochondrial phospholipids, respec-
tively. CL and phosphatidylinositol (PI) account for 10–15% of  
phospholipids, whereas phosphatidic acid (PA) and phosphatidyl
serine (PS) comprise 5% of the total mitochondrial phospho-
lipids (Colbeau et al., 1971; Zinser and Daum, 1995). The lipids 
CDP-DAG, phosphatidylglycerol (PG) phosphate (PGP), and 
PG are important intermediates for the synthesis of the abun-
dant phospholipid species but do not accumulate in mitochon-
dria under normal conditions. However, it has to be noted that 
PG, which accumulates in mitochondria in the absence of the CL 
synthase, can partially compensate for several cellular functions 
of CL (Jiang et al., 2000). In mammalian cells, mutations in 
PGP synthase eliminate PG and CL pools, resulting in altered 
mitochondrial structure and function (Ohtsuka et al., 1993a,b). 
Other membrane lipids, like sphingolipids and sterols, which 
are important structural lipids that significantly contribute  
to the composition of the plasma membrane, the membrane 
of the Golgi apparatus, and the lysosomal compartments,  
are only found in trace amounts in mitochondrial membranes  
(van Meer et al., 2008). Notable exceptions are mitochondria 
of steroidogenic cells that are involved in the biosynthesis of 
hormones and consequently have a higher content of sterols 
(Strauss et al., 2003).

Figure 1.  Phospholipids in mitochondrial membranes. (A) The central structural element of phospholipids is a glycerol backbone. Acyl chains that can vary 
in length and saturation are attached to the sn-1 and sn-2 hydroxyl groups. Distinct hydrophilic head groups can be attached to the sn-3 position of the 
glycerol backbone via a phosphodiester bond and confer unique biophysical properties that distinguish the different phospholipid classes: PA, PS, PE, PC, 
PG, PI, and CDP-DAG. CDP-DAG is an intermediate that does not accumulate in significant amounts in mitochondrial membranes under normal conditions. 
(B) CL is a lipid unique to mitochondria, which consists of two PA moieties covalently linked to each other by a glycerol bridge, with the phosphodiester 
bonds at the sn-1 and sn-3 positions of the bridging glycerol. (C) Bilayer and non-bilayer phospholipids have different shapes. The conical shape of non- 
bilayer lipids induces membrane curvature or creates a unique biochemical microenvironment in a planar bilayer, where the hydrophobic parts are ex-
posed between neighboring phospholipids (marked with arrows).
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chain composition of nascent CL species is remodeled by the 
sequential action of a phospholipase A (Cld1 in yeast) and a 
transacylation reaction catalyzed by Taz1 (Xu et al., 2006; 
Beranek et al., 2009). In humans, mutations in Taz1 cause cardio-
myopathy and Barth syndrome, underscoring the physiological 
importance of CL and its remodeling for mitochondrial homeo-
stasis and function (Bione et al., 1996; Houtkooper et al., 2009).

Although enzymes involved in CL biosynthesis from CDP-
DAG are localized at the mitochondrial inner membrane, it is 

scaffolds that recruit proteins to lipid domains enriched in PE 
and CL in the mitochondrial inner membrane (Fig. 2 A; Osman 
et al., 2009a,b). Bacterial flotillins, scaffolding proteins of  
the SPFH family distantly related to prohibitins, have recently 
been found to associate with negatively charged phospholipids 
(Donovan and Bramkamp, 2009). Similarly, prohibitins may 
enrich PE and CL within the ring complexes. This could explain 
genetic evidence in yeast demonstrating that prohibitins are 
essential for the survival of yeast cells containing reduced levels 
of mitochondrial PE or CL (Osman et al., 2009a). Accordingly, 
a perturbed membrane organization could cause the pleiotropic 
mitochondrial deficiencies observed in prohibitin-deficient 
cells, but direct experimental evidence in support of a lipid 
scaffolding function of prohibitin complexes remains elusive.

Mitochondrial phospholipid biosynthesis
The maintenance of a defined lipid composition within mito-
chondria depends on their capacity to synthesize phospholipids 
such as CL, PE, PG, and PA, whereas PI, PC, and PS are pri-
marily synthesized in the ER and must be imported into the 
organelle for use as a finished end product or precursors for 
other lipids (Fig. 2). The biochemical steps in the synthesis of 
all phospholipids commence with the acylation of the sn-1 posi-
tion of glycerol-3-phosphate (G3P) or dihydroxyacetone phosphate 
by acyltransferases (G3P acyltransferases [GPATs]) producing 
lyso-PA (Fig. 2 A). The yeast GPATs are associated with the ER 
and lipid particles, whereas the mammalian GPATs are local-
ized to multiple organelles, including mitochondria (Wendel et al., 
2009). Several lyso-PA acyltransferases (LPAATs) then convert 
lyso-PA to PA, which serves as a crucial intermediate supplying 
two independent cellular pathways for the synthesis of phos-
pholipids (Fig. 2 A). One branch of the pathway converts PA to 
DAG catalyzed by the phosphatase Pah1 (Han et al., 2006) and 
eventually produces the zwitterionic lipids PE and PC in an en-
zymatic cascade known as the Kennedy pathway (Daum et al., 
1998). The other branch of the pathway leads to the synthesis of 
CDP-DAG catalyzed by Cds1 (Shen et al., 1996) and produces 
the acidic phospholipids PS, PI, PG, and CL as its principal 
products (Fig. 2 A).

Mitochondrial synthesis of CL. A multienzyme 
cascade in the mitochondrial inner membrane synthesizes CL 
from CDP-DAG (Fig. 2 B; Joshi et al., 2009; Schlame and Ren, 
2009) by the stepwise formation of PGP catalyzed by Pgs1 
(Chang et al., 1998; Dzugasová et al., 1998) and its subsequent 
dephosphorylation catalyzed by the recently identified yeast 
PGP phosphatase Gep4 (Osman et al., 2010). Gep4 localizes to 
the matrix side of the inner membrane (Osman et al., 2010), 
which is also the predicted location for Pgs1. The localization 
of both enzymes in yeast mitochondria is in agreement with 
the proposed initiation of CL synthesis on the matrix-exposed 
leaflet of the inner membrane (Joshi et al., 2009; Schlame and 
Ren, 2009). How newly synthesized CL molecules are then 
redistributed within mitochondria remains to be examined. 
Although CL synthase generates CL from PG and CDP-DAG 
on the matrix side of the membrane (Schlame and Haldar, 1993), 
later acyl chain remodeling steps appear to occur on the outer 
leaflet of the inner membrane (Claypool et al., 2006). The acyl 

Figure 2.  Mitochondria and the synthesis of phospholipids. (A) Sche-
matic summary of phospholipid biosynthesis. Cleavage of the pyro-
phosphate bond in CDP-DAG provides the energetic driving force to 
catalytically replace CMP with inositol, G3P, or serine to form PI, PGP, or 
PS, respectively, using specific synthetic enzymes. PGP is dephosphory-
lated to produce PG. CL is synthesized from PG and CDP-DAG substrates 
with the catalytic cleavage of the pyrophosphate bond in the latter sub-
strate providing the chemical energy to transfer the PA moiety to the 
vacant primary hydroxyl of PG. PS can be decarboxylated to PE, which 
in turn can be methylated to yield PC. Alternatively, PE and PC can be 
synthesized via an enzymatic cascade known as the Kennedy pathway. 
See Mitochondrial phospholipid biosynthesis for further details. Cho, 
choline; Etn, ethanolamine; MLCL, monolyso-CL; P-Cho, phosphocholine; 
P-Etn, phosphoethanolamine. (B and C) Membrane topology and lipid 
transport events in the synthesis of CL (B) and aminoglycerophospho
lipids (PE and PC; C). Yeast biosynthetic enzymes are indicated. PA synthe-
sized in the ER or mitochondria drive biosynthetic reactions. CDP-DAG 
may derive from the ER/MAM or be generated at the mitochondrial 
inner membrane by the action of CDP-DAG synthase (Cds1; Kuchler  
et al., 1986). IM, mitochondrial inner membrane; OM, mitochondrial 
outer membrane.
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vesicular pathways. A close apposition of two membranes may 
facilitate direct lipid flipping between bilayers at regions of posi-
tive membrane curvature or may allow lipid trafficking by yet to 
be identified soluble lipid carriers or by protein complexes that 
bridge both membranes (Voelker, 2009). Intermembrane lipid 
exchange might also be mediated via a stabilized hemifusion 
state, which would result in continuity between leaflets of both 
membranes, but evidence for such a mechanism is still lacking.

Tethering of ER and mitochondrial mem-

branes. Transport of phospholipids between membranes of 
the ER and mitochondria occurs at specialized fractions of the 
ER that are tightly associated with mitochondria (Voelker, 1990) 
and were therefore termed mitochondria-associated membranes 
(MAMs; Vance, 1990; Ardail et al., 1993; Gaigg et al., 1995; 
Shiao et al., 1995). MAMs are enriched in certain lipids and vari-
ous phospholipid biosynthetic enzymes, including PSS-1 (PS 
synthase-1), FACL4 (long-chain fatty acid-CoA ligase type 4; 
Vance, 1990; Rusiñol et al., 1994; Gaigg et al., 1995), and Ale1 
acyltransferase (Riekhof et al., 2007). Direct evidence that phospho
lipid transport involves MAMs came from in vitro assays that 
showed that transport of PS from MAMs to mitochondria occurs 
more efficiently when MAMs, rather than bulk ER membranes, 
are mixed with mitochondria (Gaigg et al., 1995). Although in
dependent of ATP, transport appears to be regulated by ubiqui-
tination. A genetic screen in yeast for mutants affecting PS 
transport into mitochondria led to the identification of the F-box 
protein Met30, an E3 ubiquitin ligase (Schumacher et al., 2002). 
Met30 ubiquitinates and thereby inactivates the transcription 
factor Met4, leading to an increased transport of PS from MAMs  
to mitochondria (Schumacher et al., 2002; Voelker, 2009). How-
ever, the downstream targets of Met4 remain elusive.

Phospholipid transport from MAM-derived vesicles to 
mitochondria proved to be partially protease sensitive, indicat-
ing that membrane proteins of the ER or mitochondria exposed 
to the cytosol mediate the interaction between both organelles 
(Vance, 1991; Achleitner et al., 1999). Electron tomography of 
intact cells revealed close appositions of ER membranes and 
mitochondria with a relatively defined, separating distance 
of 10–25 nm (Csordás et al., 2006). Several proteins were 
proposed to be involved in ER–mitochondria membrane tether-
ing in mammalian cells (Szabadkai et al., 2006; de Brito and 
Scorrano, 2008), but evidence for a direct role in phospholipid 
trafficking has not yet been reported for any of these proteins. 
In contrast, direct evidence supporting the role of a macro
molecular protein bridge for interorganellar phospholipid trans-
port was recently obtained in yeast (Fig. 3). A synthetic biology 
approach using an artificial membrane tethering protein led to 
the identification of Mdm12 as an essential component for the 
interaction of ER and mitochondria (Kornmann et al., 2009). 
Mdm12 is associated with the outer membrane of mitochondria 
(Berger et al., 1997; Kornmann et al., 2009) and assembles with 
Mmm1, a glycosylated ER membrane protein, and the mitochon-
drial outer membrane proteins Mdm10 and Mdm34 into a com-
plex (Boldogh et al., 2003; Youngman et al., 2004; Kornmann  
et al., 2009). Strikingly, cells lacking individual subunits of this 
complex, which was termed ER–mitochondria encounter struc-
ture (ERMES) complex (Kornmann et al., 2009), show reduced 

currently not clear how much CL synthesis depends on the trans-
port of precursor lipids from extramitochondrial sources. The de 
novo synthesis of PA occurs in the ER, but PA may also be gener-
ated within mitochondria by phospholipases like MitoPLD (Choi 
et al., 2006). Thus, mitochondria may use both extrinsic and intrin-
sic sources of phospholipid precursors for CL formation.

Mitochondrial synthesis of PE. Extramitochondrial 
PS formed in the ER or specialized domains of the ER that are 
tightly associated with mitochondria serve as a precursor for 
mitochondrial PE in both yeast and mammalian cells (Fig. 2 C). 
This PS is synthesized from a CDP-DAG substrate in yeast (Letts 
et al., 1983; Nikawa and Yamashita, 1984; Kuchler et al., 1986) 
or by base exchange enzymes in mammalian cells (Kuge and 
Nishijima, 1997; Vance, 2008). The imported PS is a substrate 
for Psd1 (PS decarboxylase 1) located in the mitochondrial inner 
membrane (Clancey et al., 1993; Trotter et al., 1993). Although a 
second decarboxylase (Psd2) is present outside of mitochondria 
in yeast (but not in mammals; Trotter and Voelker, 1995), the 
majority of the catalytic activity occurs within mitochondria. PE 
produced via the Kennedy pathway or by the action of Psd2 is 
poorly assimilated into mitochondria and insufficient to meet the 
requirements for respiration. The PE produced in mitochondria 
is actively exported to other organelles (Voelker, 1984).

One major consequence of this PE export is the synthesis 
of PC in the ER by the sequential methylation of the primary 
amine of PE, catalyzed by the yeast methyltransferases Pem1 and 
Pem2 (originally named Cho2 and Opi3; Kuchler et al., 1986; 
Kodaki and Yamashita, 1987, 1989). In the majority of mam-
malian tissues, PC is produced via the Kennedy pathway (Fig. 2), 
but in the liver, PE methyltransferase activity is significant and 
can provide adequate levels of PC during periods of choline 
deficiency (Li and Vance, 2008).

In many eukaryotes, the aminoglycerophospholipids PS, PE, 
and PC comprise 75–80% of the total glycerophospholipids found 
within the cell (van Meer et al., 2008). As mitochondria have the 
synthetic capacity to synthesize the entire PE pool required for cell 
growth (Birner et al., 2001), the flux of PS into the mitochondria, 
and its subsequent decarboxylation and export as PE, can account 
for the biosynthesis of the majority of the glycerophospholipids 
present in all cellular membranes. This dynamic role of mitochon-
dria as a major source of phospholipids is widely underappreciated. 
The role of mitochondria in exporting phospholipids is true for eu-
karyotes other than yeast. Mammalian cells can also produce the 
majority of all PE via the mitochondrial pathway (Voelker, 1984).

Mitochondrial phospholipid trafficking
The differential localization of enzymes of phospholipid bio-
synthetic pathways among different organelles and different mem-
brane compartments within one organelle implicitly defines a 
requirement for extensive intracellular lipid trafficking (Fig. 2, 
B and C). Specific mechanisms must exist to ensure the trans-
port of phospholipids from the ER to mitochondria and between 
outer and inner mitochondrial membranes. However, we are 
only beginning to understand how these transport processes 
occur and how they are regulated.

Phospholipid transport to and within mitochondria ap-
pears to proceed via close membrane contacts rather than  
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Intramitochondrial lipid trafficking. Relatively 
little is known about how newly imported phospholipids or lipid 
precursors are transported within mitochondria. As phospho
lipids are either imported from the ER or synthesized at the outer 
or inner surface of the inner membrane, mechanisms must exist 
allowing trans-bilayer movements from one leaflet to the other. 
These movements, which are energetically disfavored because 
of the presence of polar head groups, are generally facilitated by 
dedicated enzymes commonly referred to as flippases. How-
ever, the only known mitochondrial flippase is PLS3 (phospho-
lipid scramblase 3; Liu et al., 2003), which catalyzes trans-bilayer 
flipping of CL in vitro (Liu et al., 2008). PLS3 modulates CL 
levels exposed at the mitochondrial surface and may play an im-
portant role during the apoptotic response (Fig. 4 C; Liu et al., 
2008; Ndebele et al., 2008; see CL and apoptosis).

Phospholipid transport between the outer and inner mito-
chondrial membranes has been proposed to occur, similar to 
protein transport, at contact sites between mitochondrial inner 
and outer membranes (Ardail et al., 1991; Simbeni et al., 1991). 
Experiments with CHO cell mutants have identified a variant 
with a lesion in PS transport between the outer and inner mito-
chondrial membranes, but the gene responsible for this defect 
has yet to be identified (Emoto et al., 1999). Two proteins, mito
chondrial creatine kinase (MtCK) and nucleotide diphosphate 
kinase (NDPK-D) facilitate CL transport between liposomes 
with a lipid composition resembling those of contact sites 
(Epand et al., 2007). However, the in vivo relevance of this path-
way remains to be established.

The recent identification of conserved proteins in the inter
membrane space, which regulate the accumulation of CL and 
PE in mitochondria, may provide new clues about the mecha-
nism of phospholipid transport across this compartment. Ups1 
was originally identified to affect the processing of the dynamin-
like GTPase Mgm1 in yeast (Sesaki et al., 2006) and later shown 
to regulate CL level in mitochondria (Osman et al., 2009a; 
Tamura et al., 2009). Ups1 belongs to the conserved Ups1/
PRELI protein family, which is characterized by the presence of 
a conserved MSF´ domain (originally identified in yeast Msf´) 
of unknown function (Dee and Moffat, 2005). A homologue of 
Ups1, termed Ups2 or Gep1, regulates the accumulation of PE 
within mitochondria (Osman et al., 2009a; Tamura et al., 2009). 
Although PE levels are decreased in the absence of Ups2, over-
expression of Ups2 reduces CL, pointing to a coordinated regu-
lation of PE and CL by these conserved regulatory proteins. 
Consistently, deletion of UPS2 restores normal CL levels in 
Ups1-deficient yeast cells. Two recent studies in yeast identified 
Mdm35 as a common binding partner of both Ups1 and Ups2  
in the intermembrane space, providing a molecular explanation 
for the coordinated regulation of CL and PE within mitochon-
dria (Potting et al., 2010; Tamura et al., 2010). Mdm35 binding 
ensures mitochondrial import of Ups1 and Ups2 and protects 
both proteins against proteolysis. Notably, both Ups1 and Ups2 
are intrinsically unstable proteins and are degraded by the i-AAA 
protease Yme1 and Atp23 in wild-type cells even under normal 
growth conditions (Potting et al., 2010). It is therefore conceiv-
able that the mitochondrial quality control system affects the 
accumulation of CL and PE within mitochondria by regulating 

levels of mitochondrial PE and CL, suggesting that the ERMES 
structure is required for the exchange of phospholipids at ER–
mitochondria contact sites. Consistently, the conversion of PS 
to PE and PC was slowed down in cells lacking ERMES com-
ponents (Kornmann et al., 2009). It will be of interest to deter-
mine whether the ERMES complex only functions exclusively 
as a membrane tether ensuring the close apposition of ER and 
mitochondrial membranes or whether components of this com-
plex actively contribute to the transport of phospholipids.

Notably, the role of the ERMES complex for ER– 
mitochondrial juxtaposition raises questions about functions 
previously associated with subunits of this complex (Boldogh  
et al., 2003; Meeusen and Nunnari, 2003; Meisinger et al., 2004). 
All components were originally reported to be required for  
mitochondrial inheritance and the maintenance of mitochondrial 
morphology. It is conceivable that these phenotypes are caused 
by disturbances in the levels of mitochondrial phospholipids, 
which affect mitochondrial structure and transport. Similarly, 
ER–mitochondria contact sites appear to control other mitochon-
drial functions such as mitochondrial DNA (mtDNA) stability. 
The localization of the ER-localized ERMES subunit Mmm1 
overlaps with that of mtDNA nucleoids (Hobbs et al., 2001), 
and cells lacking the ERMES complex lose mtDNA (Meeusen 
and Nunnari, 2003). However, it should be noted that subunits 
of the ERMES complex can be part of other protein complexes 
and exert independent functions. Indeed, Mdm10 has also been 
found as a constituent of the sorting and assembly machinery 
(SAM) complex that mediates the insertion of -barrel proteins 
in the mitochondrial outer membrane (Meisinger et al., 2004). 
The presence of Mdm10 in both ERMES and SAM complexes 
may provide the means to balance the accumulation of phospho
lipids and protein biogenesis in mitochondria.

Figure 3.  A multiprotein complex involved in lipid movement and  
metabolism between the ER and mitochondria in yeast. A tethering complex 
composed of an integral ER glycoprotein (Mmm1) and three mitochondria-
associated proteins (Mdm34, Mdm10, and Mdm12) promotes and stabilizes 
interactions between the two membranes affecting import of PS into mito-
chondria and the export of PE from the mitochondria. Ups1/PRELI-like proteins 
(Ups1, Ups2, and Ups3) regulate the accumulation of CL and PE within mito
chondria and might be involved in intramitochondrial lipid movements. IM, 
mitochondrial inner membrane; OM, mitochondrial outer membrane.
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the stability of Ups1-like proteins. The strong conservation of 
all components of the regulatory circuit and the altered PE levels 
in i-AAA protease-deficient mitochondria (Nebauer et al., 2007) 
point in this direction.

However, the molecular function of Ups1 and Ups2 remains 
speculative. Because reduced mitochondrial PE levels in the ab-
sence of Ups2 were caused by decreased stability rather than al-
tered synthesis of PE (Osman et al., 2009a), Ups2 might regulate 
the export of PE from mitochondria. It is therefore an intriguing 
possibility that lipid trafficking between inner and outer mitochon-
drial membrane controlled by Ups1/PRELI-like proteins deter-
mines the phospholipid composition of mitochondrial membranes.

The role of CL in mitochondria
Although studies examining functional roles of phospholipids 
within mitochondria are generally hampered by their broad dis-
tribution among different cellular membranes, the predominant 
localization of CL in mitochondria has enabled the identifi-
cation of an increasing number of mitochondrial processes  
dependent on this lipid, and the assignment of pathologies 
associated with alterations in the CL metabolism to mitochon-
drial dysfunction (Chicco and Sparagna, 2007; Joshi et al., 2009). 
The unique, dimerically cross-linked phospholipid structure of 
CL affects the stability and activity of various membrane pro-
tein complexes and metabolite carriers (Fig. 4; Houtkooper and 
Vaz, 2008). CL molecules are present in crystal structures of the 
ATP/ADP carrier (AAC) and the respiratory complexes III and 
IV and have been proposed to fulfill important structural roles 
(Lange et al., 2001; Pebay-Peyroula et al., 2003; Shinzawa-Itoh 
et al., 2007). Indeed, respiratory supercomplexes consisting of 
complexes III and IV are destabilized in mitochondria lacking 
CL (Pfeiffer et al., 2003; Claypool et al., 2008b). Similarly, dimers 
of AAC and other AAC-containing complexes dissociate in 
CL-deficient mitochondria (Claypool et al., 2008b). These ex-
amples illustrate the importance of CL for bioenergetic func-
tions; but in addition, recent studies are now revealing that CL 
has a much broader impact on mitochondrial physiology.

CL and protein import into mitochondria. The 
vast majority of mitochondrial proteins are nuclear encoded and 
imported into the organelle via heterooligomeric protein translo-
cases residing in the mitochondrial inner and outer membranes 
(Schmidt et al., 2010). Several independent studies revealed that 
the assembly and function of these TIM (translocase of the inner 
mitochondrial membrane) and TOM (translocase of the outer mi-
tochondrial membrane) complexes depend on CL (Fig. 4 B).

Tam41 (translocator assembly and maintenance protein 41) 
was identified as a novel mitochondrial matrix protein, which is 
required for the integrity of the TIM23 complex in the inner 
membrane and its functional interaction with the mitochondrial 
import motor PAM (presequence translocase-associated motor; 
Gallas et al., 2006; Tamura et al., 2006). A later study attributed 
these deficiencies to the loss of CL in the absence of Tam41 
(Kutik et al., 2008). Similarly, the interaction of TIM and PAM 
complexes is affected in mitochondria that lack the CL synthase 
Crd1 or Ups1 (Kutik et al., 2008; Tamura et al., 2009). Interest-
ingly, an altered electrophoretic mobility of another protein 
translocase of the inner membrane, the TIM22 complex mediating 

Figure 4.  The role of CL in mitochondrial processes. (A) CL (depicted in 
red) affects mitochondrial energy production and is required for dimer-
ization and optimal activity of the AAC and the formation of respiratory 
chain supercomplexes. (B) Assembly and activity of protein translocases 
in the outer (TOM) and inner membrane (TIM22 and TIM23 complexes), 
the SAM complex in the outer membrane, and the assembly of TIM23 
complex with the mitochondrial import motor (PAM complex) is supported 
by CL. (C) Various roles of CL during apoptosis. (1) Cytochrome c (Cyt c) 
binds to CL in the inner membrane. (2) Release of cytochrome c upon 
oxidation of CL. (3) Pro–caspase-8 (pro-8) binds to the surface of mito
chondria, oligomerizes, and undergoes autocatalytic processing in a 
CL-dependent manner. (4 and 5) Bid cleavage to truncated Bid (t-Bid) 
by pro–caspase-8 (4) and activation and oligomerization of Bax/Bak is 
stimulated by CL (5). (6) PLS3 allows export of CL from the inner to the 
outer mitochondrial membrane. (D) CL affects fusion of mitochondrial 
outer and inner membranes. The phospholipase MitoPLD converts in trans 
CL into PA (depicted in red), triggering the fusion of outer membranes.  
CL in the inner membrane stimulates oligomerization and GTP hydrolysis 
of short Mgm1/OPA1 isoforms. IM, mitochondrial inner membrane; OM, 
mitochondrial outer membrane.



13Mitochondrial phospholipids • Osman et al.

apoptosis has been proposed to be further facilitated by remod-
eling of the mitochondrial cristae that facilitates the redistribu-
tion of cytochrome c molecules from the cristae lumen (Scorrano 
et al., 2002). Cristae morphology is controlled by the dynamin-
like GTPase OPA1, a central component of the mitochondrial 
fusion machinery, whose activity is affected by CL (see next 
section). Thus, CL plays multiple roles during apoptosis in both 
mitochondrial membranes and may serve as a factor that coor-
dinates the sequence of apoptotic events in mitochondria.

CL and mitochondrial dynamics. Early studies 
with model membranes demonstrated that the formation of  
hexagonal structures induce membrane fusion and suggested a 
crucial role of non-bilayer lipids such as CL or PE for membrane 
fusion in vivo (Cullis and de Kruijff, 1979). Indeed, reductions 
of mitochondrial PE and CL levels were reported to result in 
abnormal mitochondrial morphology (Kawasaki et al., 1999; 
Steenbergen et al., 2005; Choi et al., 2006; Claypool et al., 2008a) 
and high frequency generation of respiratory deficient mito-
chondria (Birner et al., 2003; Zhong et al., 2004). Membrane 
fusion is mediated by evolutionarily conserved dynamin-like 
GTPases present in both mitochondrial membranes (Hoppins 
et al., 2007). In the inner membrane, OPA1 (or Mgm1 in yeast) 
is proteolytically processed, resulting in the balanced accumu-
lation of long and short protein isoforms within mitochondria, 
both of which are required for mitochondrial fusion and cristae 
morphogenesis (Herlan et al., 2003; Ishihara et al., 2003; Song 
et al., 2007). Processing of yeast Mgm1 was affected in the ab-
sence of Ups1 or Ups2, which regulate the accumulation of CL 
and PE within mitochondria, respectively (Sesaki et al., 2006; 
Osman et al., 2009a). Impaired processing of Mgm1 could ex-
plain the aberrant morphology of mitochondria with an altered 
membrane lipid composition, but Mgm1 cleavage has so far not 
been analyzed in other CL-deficient cells, and other scenarios 
are conceivable. The short forms of both Mgm1 and OPA1 bind 
to negatively charged phospholipids, in particular CL, that stim-
ulate its oligomerization and its GTPase activity (Fig. 4 D; DeVay 
et al., 2009; Meglei and McQuibban, 2009; Rujiviphat et al., 
2009; Ban et al., 2010). It is possible that interaction with CL re-
stricts the function of Mgm1/OPA1 to specific membrane domains, 
like contact sites between both mitochondrial membranes, which 
are known to be enriched in CL (Ardail et al., 1990).

These contact sites have been proposed to be the site of  
action of a phospholipase D, termed MitoPLD, which converts CL 
in the outer membrane to PA (Fig. 4 D; Choi et al., 2006). Mito-
PLD is required for mitochondrial fusion in vitro, and modula-
tion of its expression in vivo causes morphological abnormalities 
(Choi et al., 2006). The formation of PA may allow the recruit-
ment of additional fusion components or render membranes 
fusogenic. Such a role of PA would be reminiscent of SNARE-
mediated fusion (Huang et al., 2005) and could point to a crucial 
role of local membrane lipid alterations in seemingly unrelated 
membrane fusion processes.

Perspectives
Recent discoveries have brought about significant progress in  
our understanding of the metabolism of mitochondrial phospho
lipids. This development was accompanied by a drastically altered  

the membrane insertion of metabolite carrier proteins, was 
observed when crd1 and tam41 mitochondria were analyzed, 
which may point to an altered assembly of the translocase or to 
a specific association of CL molecules with this complex (Kutik 
et al., 2008). Regardless, it appears from these studies that the 
reduced protein import into CL-deficient mitochondria is not 
simply the consequence of altered bioenergetics and a reduced 
membrane potential across the inner membrane, but rather re-
flects the specific requirement of CL for the functional integrity 
of the mitochondrial import machinery.

This view is supported by the recent observation that CL 
levels also regulate protein translocases in the outer membrane 
(Gebert et al., 2009), reconciling earlier observations that pro-
tein import into mitochondria can be inhibited by drugs binding  
to acidic phospholipids (Eilers et al., 1989) and is impaired in 
CL-deficient yeast cells (Jiang et al., 2000). The assembly of the 
import receptor Tom20 with the TOM complex as well as the 
organization of the SAM complex that mediates the assembly 
of -barrel proteins in the outer membrane are altered in  
CL-deficient mitochondria (Fig. 4 B; Gebert et al., 2009). As a 
consequence, the biogenesis of -barrel proteins in the outer 
membrane as well as that of proteins located in other mito-
chondrial subcompartments is impaired.

CL and apoptosis. Further support for a functional 
role of CL in the mitochondrial outer membrane came from 
studies on the role of mitochondria during apoptosis, which re-
vealed that CL regulates multiple steps of the apoptotic program 
(Fig. 4 C). Apoptosis can be induced by activation of the death 
receptor (Fas receptor) in the plasma membrane. Ligand-bound 
Fas receptor oligomerizes and recruits pro–caspase-8, which in 
response undergoes an autocatalytic processing step resulting in 
its activation. However, activation of caspase-8 at the plasma 
membrane was found to be insufficient for triggering apoptosis 
in some cells, and thus completion of the apoptotic program re-
quired a mitochondria-dependent feedback loop (Scaffidi et al., 
1998). A recent study revealed that CL in the mitochondrial 
outer membrane provides an anchor and activating platform for 
caspase-8, which is processed and translocates to mitochondria 
upon Fas receptor activation (Gonzalvez et al., 2008).

Caspase-8–mediated cleavage of the BH3-only BID pro-
tein leads to its translocation to mitochondria. Truncated BID 
triggers activation of Bax and Bak, members of the Bcl2-family 
which induce outer membrane permeabilization and release of 
cytochrome c (Lovell et al., 2008). CL together with the major 
facilitator protein MTCH2/MIMP in the outer membrane regu-
lates truncated BID recruitment to contact sites between the inner 
and outer membranes (Lutter et al., 2000; Lucken-Ardjomande 
et al., 2008; Sani et al., 2009; Zaltsman et al., 2010). Similarly, 
membrane insertion of Bax and its oligomerization were found 
to proceed more efficiently in the presence of CL (Lutter et al., 
2000; Lucken-Ardjomande et al., 2008; Sani et al., 2009).

Finally, CL affects the release of cytochrome c from mito-
chondria during apoptosis. It binds directly to cytochrome c,  
retaining it within the cristae (Choi et al., 2007; Sinibaldi et al., 
2008). The interaction between cytochrome c and CL is weak-
ened upon peroxidation of the unsaturated acyl chains of CL 
(Nomura et al., 2000). The release of cytochrome c during 
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view of the role that specific phospholipids play in various mito-
chondrial processes and the role of mitochondria in broader as-
pects of the biogenesis of nonmitochondrial membranes. Defined 
molecular functions of specific phospholipids, like CL, have 
been recognized, and the accumulation of these lipids in specific 
membrane domains is emerging as an important property of mito
chondrial membranes. The recent identification of novel genes in 
yeast affecting the phospholipid composition of mitochondria, 
many of them conserved in mammals, now promises to provide 
insight into some of the mysteries of mitochondrial phospholipid 
metabolism and trafficking. Mitochondria may prove once again 
to be an excellent model to unravel basic cell biological pro-
cesses that will be relevant to other membrane systems. Undoubt-
edly, exciting discoveries are just around the corner.
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