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The NLRP3 (nucleotide-binding and oligomerization domain-like receptor family pyrin
domain-containing 3) inflammasome is a protein complex expressed in cells. It detects
danger signals and induces the production of active caspase-1 and the maturation
and release of IL (interleukin)-33, IL-18, IL-1β and other cytokines. T1DM (type 1
diabetes mellitus) is defined as a chronic autoimmune disorder characterized by
the autoreactive T cell-mediated elimination of insulin-positive pancreatic beta-cells.
Although the exact underlying mechanisms are obscure, researchers have proposed
that both environmental and genetic factors are involved in the pathogenesis of T1DM.
Furthermore, immune responses, including innate and adaptive immunity, play an
important role in this process. Recently, the NLRP3 inflammasome, a critical component
of innate immunity, was reported to be associated with T1DM. Here, we review the
assembly and function of the NLRP3 inflammasome. In addition, the activation and
regulatory mechanisms that enhance or attenuate NLRP3 inflammasome activation are
discussed. Finally, we focus on the relationship between the NLRP3 inflammasome and
T1DM, as well as its potential value for clinical use.
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INTRODUCTION

The inflammatory response is a common mechanism of many diseases. However, the clinical
manifestations caused by the combination of a certain microenvironment and a variety of stimuli
from common or specific pathways are different. Currently, many chronic diseases, particularly
diabetes, are serious threats to human health. Many researchers have recognized that inflammatory
immune factors induce many chronic diseases. Innate immune cells induce a series of inflammatory
responses by detecting various PAMPs (pathogen-associated molecular patterns) or DAMPs
(damage-associated molecular patterns) through innate sensors (1). With a relative molecular mass
of approximately 700,000 Da, the NLRP3 inflammasome is a polyprotein complex that plays a
critical role in the course of inflammatory responses (2). The NLRP3 inflammasome is comprised of
NLRP3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain),
and procaspase-1 (3, 4). It is the most well-studied inflammasome and functions as a site for
the activation of caspase-1 (3, 5). Based on emerging evidence, activated caspase-1 causes the
maturation of IL-1 (6, 7). Because the NLRP3 inflammasome may trigger the release of IL-1β after
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stimulation with various danger signals, it represents a potentially
effective target to regulate the onset and development of various
autoimmune diseases, such as T1DM.

T1DM is defined as an organ-specific autoimmune disorder
characterized by the autoreactive T cell-mediated elimination
of insulin-producing pancreatic beta-cells (8). Although the
exact underlying mechanisms are still unknown, a combination
of environmental and genetic elements are involved in the
pathophysiological process of T1DM (9–11). Both innate
immunity and adaptive immunity are involved in the progression
of T1DM (12–14). Innate immunity, which serves as the first line
of defense against an exogenous attack by bacteria, viruses, and
fungi, is a relatively conserved immune response compared with
adaptive immunity (15, 16). Previous studies have confirmed
that the innate immune system exerts its effect via highly
conserved PRRs (pattern-recognition receptors) to initiate innate
inflammatory responses to both exogenous and endogenous
trigger factors and further activate adaptive immunity (16–
18). Upon the recognition of DAMPs and PAMPs, which
are associated with cellular stress and microbial pathogens,
PRRs promote the secretion of proinflammatory cytokines
by inducing either non-transcriptional or transcriptional
innate immune responses (19, 20). NLRP3 is a PRR, and
the NLRP3 inflammasome is a component of the innate
immune system that plays a key role in the inflammatory
response. In this review, we discuss the components and
functions of the NLRP3 inflammasome and the activation
mechanisms and regulatory mechanisms that potentiate or limit
NLRP3 inflammasome activation. In addition, we describe the
function of the NLRP3 inflammasome in T1DM to provide a
potential treatment target for the prevention and improvement
of this disorder.

COMPONENTS AND FUNCTION OF THE
NLRP3 INFLAMMASOME

The NLRP3 inflammasome is a protein complex that includes
procaspase-1, ASC and NLRP3 (21). NLRP3 is a member
of the NLR (Nod like-receptor) protein family, which is
widely expressed in macrophages, monocytes, and dendritic
cells and has the function of recognizing pathogens. NLRP3
has a characteristic NLR protein family LRR (leucine-rich
repeat) domain at the C-terminus (22). The middle region of
NLRP3 is called the NBD (nucleotide-binding domain), also
known as NOD or NACHT. The NBD belongs to the NTPase
superfamily and hydrolyzes ATP into GTP. The N-terminus
contains a PYD (pyrin domain), which is also called the CARD
(caspase recruitment domain) or BIR (baculovirus IAP repeat)
domain; this domain participates in multiple inflammatory
responses by binding molecules with the same domain. For
example, ASC is bound via the PYD-PYD interaction. ASC
is the adapter protein of the NLRP3 inflammasome. The
N-terminus of ASC contains a PYD domain that is the
same as the PYD domain in NLRP3, whereas the C-terminus
contains a CARD recruitment domain that is the same as
the CARD domain in procaspase-1. Therefore, ACS functions

as a dual adapter protein molecule that binds to both
NLRP3 and procaspase-1 through PYD-PYD and CARD-CARD
domain interactions. Caspase-1, also called IL-1β-converting
enzyme, is an effector protein of the inflammasome that
cleaves inactive proinflammatory cytokines, including pro-IL-
1β and pro-IL-18, to produce activated IL-1β and IL-18
(Figure 1) (23, 24).

NLRP3 activation results in the oligomerization and
recruitment of ASC and procaspase-1, which increase the
autocleavage and maturation of procaspase-1. Active caspase-
1 cleaves pro-IL-1β to produce mature IL-1β, which, when
released, recruits other inflammatory cells and exerts direct
cytotoxic effects. In addition, the NLRP3 inflammasome
mediates a special type of programmed cell death named
pyroptosis, which is inherently inflammatory and is triggered by
pathological stimuli through the activation of caspase-1 (25, 26).
The process of pyroptosis is mediated by Gasdermin (GSDMD),
consisting of an amino-terminal cell death region, a carboxy-
terminal autoinhibitory region, and a central linker domain (27).
GSDMD is activated by caspase-1 through the removal of its
carboxyl inhibitory terminus, and activated GSDMD induces
cell death characterized by plasma membrane rupture, DNA
cleavage and cell lysis by binding to the inner leaflet of the cell
membrane, oligomerizing and forming a pore containing 16
symmetrical promoters (28). Based on the results of in vitro
studies, activated GSDMD possesses a bactericidal property,
but the exact mechanisms remain obscure (29). In addition,
GSDMD-dependent pyroptosis promotes IL-1β and IL-18
release via a non-conventional pathway (30, 31). In conclusion,
caspase-1 activation will result in the production of activated
proinflammatory cytokines and lead to rapid cell death (32, 33).

NLRP3 is activated by a number of pathogens, as well as
many PAMPs and DAMPs, which are structurally diverse, and
environmental irritants. NLRP3 oligomerizes via homotypic
interactions between NACHT domains to form a high-
molecular-weight complex that triggers procaspase-1 activation
when it is stimulated (22). The pathogenic agents that activate
the NLRP3 inflammasome include (1) the fungi Saccharomyces
cerevisiae and Candida albicans that function via the Syk
signaling pathway (34); (2) a pore-forming toxin-producing
bacteria (35); and (3) viruses, including the influenza virus,
adenovirus, and the Sendai virus (36, 37).

MECHANISMS UNDERLYING THE
ACTIVATION AND REGULATION OF THE
NLRP3 INFLAMMASOME

Mechanisms Underlying the Activation of
the NLRP3 Inflammasome
The NLRP3 inflammasome is activated by a wide range of stimuli.
For example, the NLRP3 inflammasome detects signals produced
by metabolism, such as increased extracellular glucose levels,
which is an essential manifestation of diabetes (38). However,
given their structural and chemical dissimilarity, NLRP3 is
not likely to be activated through a direct interaction with its
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FIGURE 1 | Structure and function of the NLRP3 inflammasome. The NLRP3 inflammasome comprises NLRP3, ASC and procaspase-1. The formation of the
NLRP3 inflammasome results in the activation of caspase-1 through the self-cleavage of procaspase-1. Activated caspase-1 causes the maturation of IL-1β and
IL-18 and triggers inflammatory cell death mediated by GSDMD, also termed pyroptosis.

stimuli (39). Researchers have speculated that different agonists
will lead to a common cellular event that ultimately activates the
NLRP3 inflammasome.

When NLRP3 is not activated, the LRR domain interacts
with HSP90 (heat-shock protein 90) and the ubiquitin ligase-
associated protein SGT1HSP90, which are likely to maintain
NLRP3 in an inactive but signaling-competent state (40). Two
types of signals are needed to activate the NLRP3 inflammasome
(41). First, a ligand binds to TLR4 on the membrane to
provide the first signal that induces the expression of NLRP3,
IL-1β, and IL-18 by triggering the NF-kB signaling pathway
(42). In addition, TLR4 may provide the first signal via an
unknown mechanism through the proteins myD88 and IRAK1.
A low level of TLR4 stimulation is sufficient for the ATP
activation pathway, and this pathway does not require the
synthesis of new proteins (43–45). Because the expression of
endogenous NLRP3 in immune cells is not sufficient to activate
the NLRP3 inflammasome, the activation of NF-kB is necessary
for the sufficient production of NLPR3. The second signal is
the appearance of the activator of the NLRP3 inflammasome.
The NLRP3 inflammasome begins to assemble when it is
stimulated (46).

The mechanisms underlying the activation of the NLRP3
inflammasome are still not completely understood and may
be associated with ROS (reactive oxygen species) production,
lysosomal damage, P2X7R (purinergic ligand-gated ion channel
7 receptor) activation, and K+ efflux. To date, three models
explaining the activation of the NLRP3 inflammasome have been
acknowledged by most researchers.

K+ Efflux
The first model concerns the efflux of K+, which is the
most common mechanism of NLRP3 inflammasome activation.
A decreasing cytosolic level of K+ induced by NLRP3 stimuli,
ATP, or nigericin mediates IL-1β activation and release in
mouse macrophages and human monocytes (47, 48). Moreover,
the efflux of K+ alone results in the activation of NLRP3,
and a high extracellular K+ concentration inhibits NLRP3
activation (49). Therefore, the intracellular hypokalemia that
induces mitochondrial damage and the subsequent release of
ROS and mtDNA (mitochondrial DNA) is sufficient to activate
the NLRP3 inflammasome (49, 50). In addition, K+ efflux
is necessary to activate NLRP3 in caspase-11-mediated non-
canonical inflammasome signaling (6, 51).

Three explanations for K+ efflux have been proposed. First,
bacterial toxins destroy the integrity of the cell membrane, and
thus K+ flows out along the ion concentration gradient (52).
Second, the combination of extracellular ATP and the pyrogenic
P2X7 ATP-gated ion channel (53) triggers K+ efflux. Another
type of channel, pannexin-1, also participates in the activation
of NLRP3 via other ATP-dependent pathways (54–56). Third,
microbial molecules are delivered to the cytosol in a pannexin
1-independent manner (54). The generation of pores disrupts the
intracellular K+ concentration gradient and transports bacterial
molecules to the cytosol, which may help clarify how bacteria that
do not exist in the cytosol activate cytosolic sensors.

Although K+ efflux has been considered the most common
mechanism to activate the NLRP3 inflammasome, recent
reports have indicated that some small molecules, including
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CL097 and GB111-NH2, activate NLRP3 independently of K+
efflux (57). Moreover, an NLRP3 mutant leads to inflammasome
activation induced by lipopolysaccharides in the absence
of K+ efflux in mouse macrophages (58). In conclusion,
K+ efflux is sufficient, but not unique, in activating this
inflammasome. Further investigations are needed to elucidate the
underlying mechanisms by which NLRP3 senses alterations in the
intracellular K+ concentration.

Lysosomal Damage
The second model concerns lysosomal damage. Particulate
matter, such as MSU, and adjuvants including alum (59,
60) activate the NLRP3 inflammasome in macrophages. The
phagocytosis of specific particulate structures and crystalline
structures results in lysosomal membrane disintegration and
damage and the cytosolic release of lysosomal contents, which are
sensed by the NLRP3 inflammasome to some extent.

Lysosomal disruption triggered by Leu-Leu-OMe activates the
NLRP3 inflammasome (61). However, the exact mechanisms by
which lysosomal damage contributes to the activation of NLRP3
remain obscure. Currently, two factors, lysosomal acidification
and cathepsins, have been identified to be associated with
the activation mechanisms. An H+ ATPase inhibitor blocks
NLRP3 inflammasome activation induced by particulate matter
in macrophages (61). Additionally, both in vitro and in vivo
experiments suggest that inhibitors of lysosomal acidification
suppress IL-1β production (62). In fact, the acidic conditions
tend to cause Na+ release and increase cellular osmolarity and
subsequent water influx, resulting in intracellular hypokalemia
(62). Moreover, lysosomal rupture leads to enzyme release and
the activation of the NLRP3 inflammasome. These proteases
suppress the activation of negative regulators and increase
the activation of NLRP3 through proteolytic reactions, which
lead to inflammasome assembly (63). Lysosomal protease
CTSB (cathepsin B) plays an important role in the model.
CTSB inhibitors attenuate NLRP3 activation in macrophages
treated with particulate matter (6). Furthermore, lysosomal
CTSB release is required for IL-1β secretion, indicating the
participation of CTSH in NLRP3 activation (64). Therefore, the
cytosolic release of lysosomal contents is another mechanism
of NLRP3 inflammasome activation. However, CTSB-deficient
mouse macrophages show normal caspase-1 activation and IL-
1β maturation induced by particulate NLRP3 agonists, suggesting
that some undefined mechanisms exist (65). Further research is
required to solve the existing conflicts and clarify the actual role
of lysosomal damage in NLRP3 inflammasome activation.

Reactive Oxygen Species and Mitochondrial
Dysfunction
The third model concerns the generation of ROS. In this
model, all agonists of NLRP3 induce ROS production, and
this collective pathway involves the NLRP3 inflammasome
(66–68). All NLRP3 agonists that have been confirmed,
including particulate activators and ATP, induce ROS production,
and chemical scavengers that block ROS generation inhibit
inflammasome activation (34, 66–69). Consistent with the role
of ROS production, the activation of caspase-1 by asbestos is

suppressed in NAC (N-acetyl cysteine)-treated cells, in which
NAC inhibits ROS generation (67). The source of ROS is
currently unknown, but NADPH oxidases may be associated with
their production, as in vitro studies indicate that inhibition of
the common p22 subunit, which plays a critical role in ROS
formation, suppresses inflammasome activation (67). However,
the genetic or pharmacological blockade of NADPH oxidase
does not affect NLRP3 activation in both mouse and human
cells. The tissue-specific role of ROS may explain the differences
in the activation of NLRP3 inflammasome. NOX2 (NADPH
oxidase 2) knockout mice were recently shown to display
decreased production, assembly and activation of the NLRP3
inflammasome in the injured cerebral cortex, but not in the
umbilical vein endothelium.

The mechanisms underlying ROS-dependent NLRP3
inflammasome activation remain to be revealed in more detail.
Recently, a ROS-sensitive NLRP3 ligand, TXNIP/VDUP1
(thioredoxin-interacting protein), was shown to be involved
in NLRP3 activation (38, 70). When cellular phagocytosis is
dysfunctional, activators such as uric acid crystals increase
ROS production and simultaneously trigger the dissociation of
TXNIP from TRX (thioredoxin). TXNIP has been identified
as a common binding partner of TRX (71). TXNIP decreases
the reductase activity of TRX by directly interacting with the
redox-active part of TRX. A yeast two-hybrid screen using the
LRRs of NLRP3 as bait revealed that TXNIP is also a potential
binding partner of NLRP3 (72, 73). Overexpressed TXNIP and
endogenous TXNIP interact with the LRR region of NLRP3,
and the nucleotide-binding NACHT domain of NLRP3 also
interacts with TXNIP. NLRP3 detects the presence of ROS, the
production of which in cells is directly or indirectly induced by
activators of the NLRP3 inflammasome. The complex formed
by TXNIP and TRX senses increasing amounts of ROS and
causes the dissociation of the complex. Subsequently, the
interaction of TXNIP and NLRP3 activates NLRP3, recruits
ASC and procaspase-1, and leads to the assembly of the active
NLRP3 inflammasome. Intriguingly, accumulating evidence
indicates that TXNIP is associated with glucose metabolism and
diabetes (74). In pancreatic beta-cells, the expression of TXNIP
is downregulated by insulin and is consistently increased in
patients diagnosed with T2DM (type 2 diabetes mellitus) (74).
Additionally, mutations in TXNIP are associated with reduced
plasma glucose levels and hypertriglyceridemia (75). Published
data that have been confirmed suggest that the expression of
TXNIP is substantially upregulated by exposure to high glucose
concentrations in pancreatic islet cells (76, 77). Although the
ROS model is supported by many studies, many questions
still remain and need to be resolved. For example, researchers
have not clarified whether the mechanism by which superoxide
directly inhibits caspase-1 activity by regulating redox-sensitive
cysteines (78) provides dose- or temporal-dependent negative
feedback to limit the function of caspase-1 triggered by a
ROS-dependent NLRP3 pathway.

In recent years, mitochondria have been shown to play an
essential role in the activation of the NLRP3 inflammasome (79,
80). Mitochondria are an ideal platform to assemble the NLRP3
inflammasome. On the other hand, NLRP3 is directly affected
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by molecules from mitochondria, such as mitochondrial ROS
(mtROS), mtDNA, and cardiolipin.

Negative Regulatory Mechanisms of the
NLRP3 Inflammasome
NLRP3 promotes the secretion of IL-33, IL-18, and IL-1β,
which are very important molecules that control pathological
infections. However, the excessive production of cytokines exerts
a deleterious effect on the body. For instance, the excessive
activation of proinflammatory cytokines, including TNF-α, IL-
1β, and IFNs, is associated with autoimmune diseases, such as
T1DM. Therefore, the activation of the NLRP3 inflammasome
must be strictly regulated to maintain the balance of the
internal environment and homeostasis. Four negative regulatory
mechanisms of the NLRP3 inflammasome have been identified.

Negative Regulatory Molecules
The first mechanism is associated with negative regulatory
molecules. A group of small proteins that consist of either a
PYD or a CARD domain have emerged as key regulators of the
inflammasome. As two types of endogenous dominant-negative
proteins, both COPs (CARD-only proteins) and POPs (PYD-only
proteins) decrease the activity of the NLRP3 inflammasome in
response to tissue injury and pathogen infection (81).

POPs, such as POP1 and POP2, which display 64 and 37%
homology with the PYD subunit of ASC, respectively, prevent
ASC recruitment to NLRP3 by interacting with ASC in a PYD-
dependent manner and replacing other proteins that interact
with ASC (82). In vitro overexpression models confirm that
POP1 and POP2 bind to ASC and block the interaction between
NLRP3 and ASC (83). Moreover, in vivo studies using transgenic
mice expressing POP2 have revealed decreased inflammatory
cytokine levels in response to LPS, and the animals tend to resist
bacterial infections compared with wild-type mice (84). To date,
five proteins belonging to the COP family have been identified,
including Iceberg, Nod2-S, caspase-12s, COP1/pseudo-ICE and
INCA (27). COPs, which are extremely similar to the CARD
subunit of procaspase-1, function as decoy proteins by isolating
caspase-1 through CARD domain interactions and preventing
its binding to activating adaptors (83). Because the expression
of Iceberg is increased in the inflammatory environment, this
protein appears to function as a negative feedback regulator that
inhibits systemic inflammation. Notably, our understanding of
the regulatory effects of POPs and COPs on NLRP3 activation
is limited because these molecules are not expressed in mice.
However, the development of transgenic mice provides a great
opportunity to further analyze these proteins.

Cells and Cytokines
The second mechanism involves certain cells and cytokines.
Various immunocytes and proinflammatory cytokines participate
in the downregulation of inflammasome activation. For example,
human-derived activated memory T cells negatively regulate
the P2X7R signaling pathway, leading to the inhibition of the
NLRP3 inflammasome (85). C5aR2 (C5a receptor 2), which is
expressed on the T cell surface, inhibit NLRP3 inflammasome
assembly by inversely modulating C5 activation and stimulating

C5aR1 (C5a receptor 1) (85, 86). IL-1β signaling promotes
the recruitment of neutrophils; in turn, increased neutrophil
apoptosis results in the resolution of the inflammatory response
(87). The type I interferon signaling pathway represses the
activity of the NLRP3 inflammasome and inhibits the maturation
of IL-1β through the STAT1 transcription factor (88).

Autophagy
The third mechanism is associated with autophagy. Autophagy,
also referred to as macroautophagy, is a conserved process
involving the transport of the cytoplasmic content to lysosomes
via autophagosomes, and the substrates degraded by this process
mainly include long-lived proteins, intracellular pathogens and
organelles. Autophagy is involved in the pathogenesis of many
inflammatory disorders and modulates many aspects of the
immune response, including inflammation (89, 90).

Autophagy inhibits the formation of the NLRP3
inflammasome by degrading impaired mitochondria, decreasing
mtROS production and disaggregating the ASC complex (91).
In vitro experiments using macrophages from mouse models
indicate that the depletion of beclin 1 and LC3B, proteins that are
associated with autophagy, increases the activation of caspase-1
and release of IL-18 and IL-1β by impairing mitochondrial
homeostasis (50, 92, 93). Additionally, autophagy dysfunction,
whether it is caused by autophagy deficiency or mitochondrial
inhibitors, increases the activation of the NLRP3 inflammasome
via the production of mtROS (92). Consistent with the result
obtained from cell-based experiments, in vivo studies suggest
that LC3B-dificient mice produce caspase-1-depedent cytokines
at higher levels and exhibit a greater susceptibility to LPS (92).
Therefore, autophagy is closely associated with the well-being of
mitochondria, and autophagy and the mitochondria modulate
the NLRP3-dependent inflammatory response together.

NO and CO
Finally, the other mechanisms, including the production of NO
(nitric oxide) and CO (carbon monoxide), negatively regulate the
NLRP3 inflammasome. NO regulates multiple physiological
responses and defends against pathogens. Endogenous
NO downregulates NLRP3 inflammasome activation and
stabilizes mitochondria. According to the results of in vitro
experiments, NO blocks NLRP3-mediated caspase-1 and IL-1β

activation in mice and human myeloid cells (94). Additionally,
decreased production of NO caused by iNOS (inducible NO
synthase) elimination or pharmacological blockade leads
to increased cytokine production induced by the activated
NLRP3 inflammasome and the accumulation of dysfunctional
mitochondria in vivo (94). CO is toxic and damages the
respiratory system. However, endogenous CO possesses anti-
inflammatory properties. CO inhibits the production of IL-1β

induced by inflammasomes and suppresses the activation of the
NLRP3 inflammasome in bone marrow-derived macrophages;
furthermore, CO inhibits mtROS generation, preserves the
integrity of mitochondrial membrane, and prevents mtDNA
translocation into cytosol (95, 96). Therefore, we conclude that
NO and CO negatively modulate the activation of the NLRP3
inflammasome mainly by stabilizing mitochondria.
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THE NLPR3 INFLAMMASOME AND
T1DM

The NLRP3 inflammasome has consistently been shown
to participate in the pathogenesis of many autoimmune
disorders, including MS (multiple sclerosis), EAE (experimental
autoimmune encephalomyelitis), IBD (inflammatory bowel
disease) and T1DM (97–100). T1DM is a metabolic disease
characterized by an absolute deficiency in insulin and
subsequent hyperglycemia resulting from an autoimmune
assault. Autoreactive T cells infiltrate pancreatic islets and
induce insulitis, causing beta-cell death (101). In addition to
adaptive immunity, innate immunity plays an important role
in the pathogenesis of T1DM. Based on accumulating evidence,
among all components of the innate immune system, the NLRP3
inflammasome and its downstream cytokines, particularly IL-1β,
are involved in the development of T1DM (Figure 2) (102, 103).

IL-1β induces the migration of proinflammatory cells into
pancreatic islets, mediates cytokine-induced beta-cell apoptosis,
exerts direct cytotoxic effects on beta-cells, and may function
as inflammatory signal in the early stage of T1DM (102, 104,
105). IL-1β levels are increased in both patients with a new

T1DM diagnosis and patients with chronic T1DM compared
with healthy controls, and after treatment, IL-1β levels are
decreased in patients who have been newly diagnosed with
T1DM (106–108). Furthermore, the levels of IL-1 receptor
antagonist (IL-1RA), which inhibits the interaction between
IL-1β and its receptor and blocks downstream signaling, are
decreased in islets from non-diabetic donors exposed to sera
from patients with T1DM, and decreased expression of IL-
1RA not only results in insulin-producing beta-cell dysfunction
and death but also IL-1β production, thus further affecting
beta-cells (109). Additionally, NOD mice pretreated with IL-
1RA exhibit reduced chemical-induced hyperglycemia, but not
islet inflammation (110). Based on these findings, some new
treatment strategies aiming to suppress IL-1β activity, such
as synthetic IL-1RA and IL-1β traps, have been developed to
reverse or ameliorate autoimmune diseases. Indeed, patients
with T1DM have decreased requirements for insulin and
similar HbA1c (hemoglobin A1c) levels after IL-1RA treatment
(102, 111). However, some discrepancies remain to be solved.
Animal experiments with NOD caspase-1(−/−) mice revealed
reduced IL-1 levels, but an unchanged incidence of diabetes
and sensitivity to streptozotocin compared with wild type NOD

FIGURE 2 | Mechanisms of NLRP3 inflammasome activation. The activation of the NLRP3 inflammasome requires two signals. (1) TLR4 stimulation increases the
production of NLRP3 and pro-IL-1β by activating the NF-κB signaling pathway. (2) K+ efflux, cathepsin release by ruptured lysosomes and ROS generation provide a
second signal that may activate the NLRP3 inflammasome and produce activated caspase-1, leading to the maturation of IL-1β. The activation of NLRP3
inflammasome is potentially negatively regulated by small molecules, such as COPs and POPs, cells and cytokines, autophagy, NO, and CO. Finally, IL-1β induces
beta-cell dysfunction and death, which will ultimately lead to the development of T1DM.
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mouse models (112). At a minimum, caspase-1-mediated IL-
1β production is not indispensable for diabetes development
in NOD mice. Another in vivo experiment also indicates
that CD4 + T cell-induced beta-cell death and diabetes is
independent of IL-1 and IL-18 in NOD mice (113). Moreover,
the larger, multicenter preclinical studies did not observe
synergistic effects of IL-1 blockade and anti-CD3 therapy on
new-onset autoimmune diabetes in NOD mouse models (114).
In conclusion, the role of IL-1β in T1DM pathogenesis is not
completely understood and further research is required before its
clinical application.

Because IL-1β exerts a systemic effect on immunological
intolerance and plays a potential role in T1DM development, its
upstream activator, the NLRP3 inflammasome, is a functionally
plausible complex contributing to the pathogenesis of T1DM.
that the expression of the NLRP3 inflammasome in human
pancreatic islets is regulated by LPS (115). Interestingly,
recent genetic association studies have indicated a potential
association between polymorphisms in inflammasome genes and
an increased risk of developing T1DM. As shown in our previous
study, SNPs (single-nucleotide polymorphisms) in the NLRP1
gene are associated with T1DM, as well as the age of onset
in Chinese Han patients with T1DM (100). More importantly,
two SNPs within NLRP3 were found to be associated with an
increased risk of T1DM and celiac disease in a separate study. An
association between T1DM and a risk SNP (rs10754558) within
NLRP3 in the northeastern Brazilian population was identified in
a human study (116). However, the contribution of this mutation
to the genetic predisposition should be further confirmed in
other populations and its resulting function requires further
study. In addition, the diabetogenic role of NLRP3 has been
observed in animal experiments. NLRP3 was recently shown to
play an important role in the immune development of T1DM
in NOD mice (103). NLRP3 deficiency affects the activation and
maturation of T cells, and more importantly, the elimination of
NLRP3 alters the migration of T cells to pancreatic islets, which
is a critical pathogenic process that causes beta-cell damage.
Furthermore, NLRP3 knockout downregulates the expression
of the chemokines CCL5 (C-C motif ligand 5) and CXCL10
(C-X-C motif ligand 10) in pancreatic islet cells in an IRF-
1-dependent manner, suggesting that it regulates chemotaxis
(103). Moreover, mtDNA-mediated NLRP3 activation induces
caspase-1-dependent IL-1β production and contributes to STZ
(streptozotocin)-induced T1DM in a murine model, directly
indicating a diabetogenic effect of NLRP3-caspase-1-IL-1β

signaling (117). Recently, mtDNA was also shown to be
involved in the vascular dysfunction in individuals with T1DM,
highlighting the association of the NLRP3 inflammasome with
diabetic complications (118). Other studies have confirmed
that glibenclamide and metformin, both of which are typical
treatments for diabetes, have the potential to inhibit the activation
of the NLRP3 inflammasome, indirectly indicating that the
NLRP3 inflammasome is associated with T1DM. In summary, all
of the evidence mentioned above indicates a close relationship
between T1DM and the NLRP3 inflammasome.

However, some questions regarding the NLRP3
inflammasome remain to be explored and resolved. The

inflammasome exerts a protective effect on maintaining immune
homeostasis (119–121). More importantly, the expression
of the NLRP3 inflammasome is downregulated in patients
with SLE compared with healthy controls and is negatively
correlated with disease activity, indicating a protective effect
of the inflammasome on SLE (122). Consistent with these
findings, another study examining T1DM also indicated that
downregulated NLRP3 inflammasome signaling participates in
the early stage of autoimmune diabetes (123). Further studies
are required to investigate whether the downregulation of the
NLRP3 inflammasome is an outcome or cause of the progression
of autoimmune disorders. Moreover, some inflammasome-
independent pathways activate IL-1β and are potentially
involved in development of T1DM (124, 125), indicating that
the onset of T1DM is caused by complex networks rather than
a single pathway. In summary, a better understanding of the
NLRP3 inflammasome is still needed to completely ascertain
its effect on the pathogenesis of T1DM and develop new
treatment strategies.

CONCLUSION AND PERSPECTIVES

Researchers have improved their knowledge of the NLRP3
inflammasome. We have identified many different activators and
a close relationship with inflammatory diseases, including
T1DM. However, the regulatory mechanisms and their
function in the development of the disease must be further
clarified. The discovery of the NLRP3 inflammasome has
provided a new opportunity to explore the pathogenesis of
inflammation-related diseases. In-depth research into the NLRP3
inflammasome, which is a regulator of IL-18 and IL-1β, will
provide a new strategy for the treatment and prevention of
inflammatory diseases.

Currently, the pathogenesis of T1DM is not completely
understood. However, both environmental and genetic factors
are involved in the onset and development of T1DM. The
overactivation of the immune system, including innate immune
responses, resulting from predisposing genetic mutations is
the main cause of the loss and dysfunction of beta-cells. The
NLRP3 inflammasome is much more likely to predispose an
individual to the onset of T1DM. However, the mechanisms of
NLRP3 inflammasome activation and regulation remain obscure,
and the exact role of this inflammasome in the pathogenesis
of T1DM requires further investigation. We propose that
immunotherapy targeting the NLRP3 inflammasome is a
promising approach to fight T1DM.
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