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Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of

the human lysosomal enzyme, α-galactosidase A (αGal), leading to strokes, myocardial in-

farctions, and terminal renal failure, often leading to death in the fourth or fifth decade of life.

The enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various

glycolipids. Enzyme replacement therapy (ERT) has been approved for the treatment of

Fabry disease, but adverse reactions, including immune reactions, make it desirable to gen-

erate improved methods for ERT. One approach to circumvent these adverse reactions is

the development of derivatives of the enzyme with more activity per mg. It was previously

reported that carboxyl-terminal deletions of 2 to 10 amino acids led to increased activity of

about 2 to 6-fold. However, this data was qualitative or semi-quantitative and relied on com-

parison of the amounts of mRNA present in Northern blots with αGal enzyme activity using

a transient expression system in COS-1 cells. Here we follow up on this report by construct-

ing and purifying mutant enzymes with deletions of 2, 4, 6, 8, and 10 C-terminal amino acids

(Δ2, Δ4, Δ6, Δ8, Δ10) for unambiguous quantitative enzyme assays. The results reported

here show that the kcat/Km approximately doubles with deletions of 2, 4, 6 and 10 amino

acids (0.8 to 1.7-fold effect) while a deletion of 8 amino acids decreases the kcat/Km (7.2-fold

effect). These results indicate that the mutated enzymes with increased activity constructed

here would be expected to have a greater therapeutic effect on a per mg basis, and could

therefore reduce the likelihood of adverse infusion related reactions in Fabry patients re-

ceiving ERT treatment. These results also illustrate the principle that in vitromutagenesis

can be used to generate αGal derivatives with improved enzyme activity.

Introduction
Mutations in the αGal gene result in the sphingolipidosis named Fabry disease [1]. The enzy-
matic defect is inherited as an X-linked disorder and is associated with a progressive deposition
of the glycosphingolipids, including globotriaosylceramide, galabioasylceramide, and blood
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group B substance. In affected males this leads to early death due to occlusive disease of the
heart, kidney, and brain.

De Duve [2] first suggested that ERT might be a successful approach to the treatment of ly-
sosomal storage defects such as Gaucher’s and Fabry disease. For Gaucher’s disease, ERT pro-
duced unequivocal clinical responses [3, 4] that were subsequently confirmed by others [5–7].
Classical Fabry disease patients lack detectable levels of αGal [1] so it should not be surprising
that more than 80% of Fabry patients treated with agalsidase-beta [8] and more than 50% treat-
ed with agalsidase-alfa [9] developed an immune response. The antibodies produced are pri-
marily of the IgG class and a fraction of the antibodies appear to exhibit neutralizing
properties. These antibodies have been associated with an increase in urinary globotriaosylcer-
amide levels due to the uptake of immune-enzyme complexes by granulocytes in the blood-
stream and macrophages in the tissues [10–12].

ERT for Fabry disease patients was initially undertaken for males with the classic form of
the disease (no detectable αGal activity) in a variety of clinical trials [8, 9, 13–16], but therapy
is now also underway for heterozygous females with Fabry disease [17–19] and is under consid-
eration for children [20–22] and adults with atypical (low levels of enzyme) Fabry disease [23].
The two products used for ERT in Fabry disease patients have been compared [24]. The pattern
of glycosylation on αGal has been analyzed [25] and its importance for activity [26] and uptake
by cells has been established [27, 28]. The limitations of current approaches for ERT for Fabry
disease and the need for improved techniques have been discussed [10, 29, 30]. Efforts for gene
therapy for Fabry disease are underway [31–38] and molecular chaperones are under investiga-
tion for specific alleles [39–41]. Substrate reduction therapy as an augmentation to ERT has
been evaluated [42]. There are several reviews on the general topic of ERT for lysosomal stor-
age diseases [43–47].

Expression of the human αGal has been reported in Escherichia coli [48], baculovirus [49,
50] Chinese hamster ovary cells [51] and human foreskin fibroblasts [52]. The highest levels of
heterologous αGal expression was observed in Pichia pastoris [53]. Recombinant αGal has also
been produced in a modified strain of Saccharomyces cerevisiae that synthesized glycoprotein
lacking the outer chain of N-glycan, a structure that is specific to yeast but not humans [28,
54]. When this αGal was introduced into Fabry patient fibroblasts or a Fabry mouse model,
there was hydrolysis of accumulated substrates [28, 54].

The methylotrophic yeast P. pastoris is the most highly developed of a small group of alter-
native yeast species chosen for their advantages over S. cerevisiae as expression hosts [55, 56].
Two attributes critical in its selection are the existence of well-established fermentation meth-
ods and the presence of the tightly regulated methanol-inducible promoter. AOX expression is
undetectable by enzyme assay or mRNA production in cells cultured on carbon sources such
as glycerol, but constitutes up to 30% of total soluble protein in methanol-grown cells. Heterol-
ogous genes under the control of the PAOX1 promoter can be maintained in an expression-off
mode on a non-methanolic carbon source in order to minimize expression of potentially toxic
heterologous proteins during cell growth. The P. pastoris expression system has now been suc-
cessfully used to produce a number of heterologous proteins at commercially useful concentra-
tions [57].

Lysosomal enzymes such as αGal are glycoproteins that are modified in the Golgi to contain
N- or O-linked carbohydrate structures [58]. The human αGal is glycosylated at Asp residues
139, 193, and 215 [26] with branched carbohydrate structures that vary in composition and se-
quence depending upon the host species and tissue type [25]. For example, the enzyme purified
from humans contains variable amounts (5–15%) of asparagine linked complex and high man-
nose oligosaccharide chains [1]. Consequently, multiple forms are present in SDS gels and in
isoelectric focusing experiments that correspond to the plasma and various tissue forms. The
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recombinant human αGal preparations used therapeutically are produced in human and CHO
cells and these have distinct glycosylation patterns and differ in levels of sialic acid and man-
nose-6-phosphate [24]. The recombinant αGal produced in insect cells [49, 50] and in P. pas-
toris [53] contain variable levels of mostly complex and high mannose side chains, respectively.
Glycoproteins produced in P. pastoris typically contain from 6 to 14 mannose units (Man6-
GlcNac2 to Man14GlcNac2) that sometimes produces a Gaussian-like distribution of oligoman-
nosides that may center near Man12GlcNac2 to Man13GlcNac2 [59].

These carbohydrate moieties serve a structural and functional role. For example, it has been
demonstrated that glycosylation, particularly at Asn-215, is required for enzyme solubility
[26]. Also, uptake of the enzyme by cells in vivo is affected by terminal mannose-6-phosphate
residues on the enzyme [27], and the 10–12 sialic acid residues on the plasma form of the en-
zyme accounts for the prolonged circulatory half-life of the enzyme compared to the tissue
form with only one or two sialic acid residues [60]. The identification of these multiple forms
as derivatives of the same protein in purified enzyme preparations can conveniently be moni-
tored by treatment with specific N-glycosidases or by Western blots.

Fabry disease patients with adverse reactions to the infusions are currently treated with anti-
histamines and antipyretics and the initial immune response has been manageable to date [61,
62], but it can be anticipated that life-long treatment required for these patients will lead to un-
acceptable levels of neutralizing antibodies. In this context it is reasonable to devise approaches
to circumvent these adverse reactions and the development of derivatives of the enzyme with
more activity per mg is a logical approach. Miyamura and coworkers [63] reported that carbox-
yl-terminal deletions of 2 to 10 amino acids of αGal led to an increase in activity of about 4 to
6-fold as compared to wild type (WT). However, this data was qualitative or semi-quantitative
and relied on comparison of the amounts of mRNA present in Northern blots to αGal enzyme
activity during transient infection of COS-1 cells. Here we use a P. pastoris expression system
for the construction and purification of mutant enzymes with C-terminal deletions. The quan-
titative results reported here with purified enzymes reveal that C-terminal deletions results in
an increase (Δ2, Δ4, Δ6, and Δ10) or decrease (Δ8) in enzyme activity.

Materials and Methods

Cell strains and plasmids
The P. pastoris host strain X-33 (No. K1740-01), E. coli strains TOP10 (No. C4040-50) and
TOP10F0 (No. C665-11), plasmid pPICZαA (No. K1740-01), and TOPO1 XL PCR cloning kit
(No. K4700-10) were purchased from Invitrogen.

Bioreactor expression of recombinant αGal in P. pastoris
High-cell-density fermentation was carried out as previously described [53] with a modified
growth medium utilizing non-precipitating sodium hexametaphosphate as a phosphate source
[64] and modified for a 7 L Applikon bioreactor. Fermentation medium of 3.5 L (0.93 g/l
CaSO4, 18.2 g/l K2SO4, 14.9 g/l MgSO4.7 H2O, 9 g/l (NH4)2SO4, 40.0 g/l glycerol) was auto-
claved at 121°C for 20 min in the vessel. After cooling to room temperature, filter sterilized so-
dium hexametaphosphate (25 g/l of fermentation basal salt medium dissolved in 500 ml of
deionized water) and 0.435% PTM1 trace elements (CuSO4.5 H2O 6.0 g, NaI 0.08 g, MgSO4.
H2O 3.0 g, Na2MoO4.2 H2O 0.2 g, H3BO3 0.02 g, CoCl2 0.5 g, ZnCl2 20.0 g, FeSO4.7 H2O 65.0
g, biotin 0.2 g, 5.0 ml H2SO4 per liter) were added to complete the fermentation medium. The
pH was adjusted to 6.0 using ammonium hydroxide (28%).

Four frozen MGY cultures of 4 ml each were used to inoculate four 100 ml MGY cultures in
1-liter baffled flasks and grown at 250 rpm and 30°C until the OD600 reached 2 to 6. The
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cultivation was divided into three phases, the glycerol batch, glycerol-fed batch, and methanol-
fed batch. The glycerol batch phase was initiated with 400 ml of inoculum shake-flask culture
added to 4 L of the fermentation medium containing 4% glycerol and an initial value of 100%
dissolved oxygen until a spike was observed indicating complete consumption of glycerol.
Next, the glycerol-fed batch phase was initiated and a 50% w/v glycerol feed rate of 18.15 ml/h/
liter initial fermentation volume and maintained until a cell yield of 180 to 220 g/liter wet cells
was achieved. At this point the glycerol feed was terminated manually and a methanol-fed
batch phase was initiated by starting a 100% methanol feed containing 12 ml PTM1 trace salts
per liter. Methanol was initially fed at 3.6 ml/h/liter of initial fermentation volume, then in-
creased to 7.3 ml/h/liter and finally increased to 10.9 ml/h/liter of initial fermentation volume
for the remainder of the fermentation. Dissolved oxygen spikes were used during the glycerol-
fed batch phase and methanol-fed batch phase and to monitor substrate levels. A dissolved ox-
ygen level of 40%, pH of 6, and temperature of 25°C were maintained by an ADI 1030 regula-
tor. Sampling was performed at the end of each phase and at lease twice daily and analyzed for
cell wet weight and increased αGal activity over time. Cultivation was terminated once a pla-
teau in αGal activity was observed.

Construction of strains
Plasmid pMS118 [48] contains the αGal cDNA cloned as an EcoRI fragment to the EcoRI site
of plasmid pUC9. PCR primers (Fig. 1, 2) were used with plasmid pMS118 DNA and the PCR
system (Roche, No. 11732641001) according to the vendor’s instructions. This generated
cDNAs with a 50 extension containing an XhoI site, Kex2 and Ste13 yeast signal cleavage sites,
a 30 end with an XbaI site, and a deletion of C-terminal amino acids to generate Δ2to Δ10 mu-
tants (Fig. 1, 2). The PCR products were ligated to pCR-XL-TOPO to generate Δ2to Δ10 plas-
mids (Table 1). These plasmids were used for electroporation [53] into E. coli strain TOP10 or
TOP10F0 (Table 1).

DNA sequence analysis using the universal M13 primers (Table 2) confirmed the expected
insert for these pCR-XL-TOPO derivatives. The modified cDNAs were excised from pCR-XL-
TOPO plasmids using XhoI and XbaI endonucleases and ligated into expression plasmid pPIC-
ZαA treated with the same two restriction enzymes to generate expression plasmids (Table 1)
that were subsequently used for electroporation [53] into strain TOP10 or TOP10F0 (Table 1).
The nucleotide sequence of mutant cDNAs in pPICZαA derivatives was analyzed (Genewiz)
using 50 AOX, 30 AOX and α-factor sequencing primers (Table 2). These pPICZαA derivatives
were used for electroporation of P. pastoris strain X-33 to generate yeast expression strains
(Table 1).

Purification of αGal using double affinity chromatography
Purification was as described [53, 65] with minor modifications (below). Bioreactor superna-
tant was passed through a 0.2 μm hollow fiber filter (Spectrum Labs, No. M22M-300-01N) and
subjected to diafiltration using a 50 kDa pore size hollow fiber filter (Spectrum Labs, No.
M25S-300-01N) against wash buffer (0.1 M sodium acetate buffer, pH 6.0, 0.1 M NaCl, 1 mM
MgCl2, 1 mM CaCl2, 1 mMMnCl2). The resulting supernatant was applied to a Con A Sephar-
ose 4B (GE Healthcare No. 17-0440-01) column, pre-equilibrated with wash buffer, and
washed with 5 column volumes of wash buffer. It was observed that near-saturating sugar elu-
ent concentrations do not improve glycoprotein recovery as compared to lower concentrations
and that elution phase pauses improve recovery [66]. In accordance with these findings, elution
of αGal was carried out using modified elution buffer I (0.5 M methyl-α-D-mannopyranoside,
0.25 Mmethyl-α-D-glucopyranoside in wash buffer) over 1.5 column volume blocks separated
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by 12-hour interval soaks. Elution was discontinued when the absorbance at 280 nm and en-
zyme assays showed negligible presence of protein and αGal activity. No substantial difference
in recovered enzyme was observed between purifications carried out with modified elution
buffer I versus sugar saturated elution buffer I (data not shown). The Con A pool was subjected
to diafiltration using a 50 kDa pore size hollow fiber filter (Spectrum Labs, No. M25S-300-
01N) against binding buffer (25 mM citrate-phosphate buffer, pH 4.8 containing 0.1 M NaCl).

The Con A pool was applied to an immobilized-D-galactose gel column (Thio-Gal, Pierce
No. 20372) pre-equilibrated with binding buffer. The column was washed with 5 column vol-
umes of binding buffer and αGal was eluted with elution buffer II (25 mM citrate-phosphate
buffer, pH 5.5, 0.1 M NaCl, 0.1 M D-galactose) over 1.5 column volume blocks separated by 12

Fig 1. Introduction of a C-terminal deletion of 2 amino acids into αGal. The strategy shown here for the Δ2 mutant was used to generate all five deletion
mutations (Fig. 2). Plasmid pMS118 [48] contains the αGal cDNA cloned as an EcoRI fragment to the EcoRI site of plasmid pUC9. Primers AAF and AARD2
(Fig. 2) were used as PCR primers for plasmid pMS118 DNA to generate cDNAs with a 50 extension containing an XhoI site, Kex2 and Ste13 yeast signal
cleavage sites, a 30 end with an introduced XbaI site, and a deletion of C-terminal amino acids to generate the Δ2 mutant. Primer AAF anneals to the cDNA at
the sequences encoding the N-terminal sequences of αGal and primer AARD2 anneals to the C-terminal sequences of αGal. Primer AARD2 anneals 12
nucleotides from the 30 end of the cDNA and introduces a stop codon (UAA) after the aspartate codon three amino acids from the C-terminal end of the
coding sequences of αGal resulting in a deletion of the two C-terminal amino acids (Leu-Leu) of the human enzyme (right panel). Cloning to the XhoI and XbaI
sites of plasmid pPICZαA generates a protein fusion with the yeast signal peptide coding sequences in the vector. This signal peptide is removed by the Kex2
and Ste13 yeast signal peptidases through cleavage immediately upstream of the leucine corresponding the first amino acid of the mature form of αGal (left
panel). This strategy was generalized to create the other deletion mutants using the primers in Fig. 2. In the left panel, the N-terminal peptide LDNGLARwas
identified in mass spectrometric analysis while EALDNGLARwas not (Fig. 5).

doi:10.1371/journal.pone.0118341.g001
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Fig 2. Primers and αGal cDNA used to generateΔ 2,Δ 4, Δ 6, Δ 8 and Δ 10mutant cDNAs.DNA primers AAF, AARD2, AARD4, AARD6, AARD8 and
AARD10 corresponding to the Δ2, Δ4, Δ6, Δ8 and Δ10 mutants were annealed to the cDNA of mature αGal contained within pMS118 to generate 30 end
truncated PCR products for carboxy-terminal deleted enzymes. Primer AAF and primers AARD2 to AARD10 (indicated above) were annealed to the 50 and 30

ends of the cDNA, respectively. Primer AAF contains an XhoI site (indicated above) and partially encodes for a yeast signal peptide (see Fig. 1) to produce a
fusion protein targeted for secretion from P. pastoris. Primers AARD2 to AARD10 were used to introduce an XbaI site (indicated above) and a premature UAA
stop codon via an antisense ATT triplet immediately downstream of nucleotides complementary to αGal (bold font) to produce cDNAs encoding for Δ2, Δ4,
Δ6, Δ8, Δ10 mutants. The boxed LDNGLAR and SHINPTGTVLLQLENTMQM protein sequences (indicated above) are peptide fragments that were
identified through mass spectrometry of the Δ6 mutant (Fig. 5).

doi:10.1371/journal.pone.0118341.g002

Table 1. Strains and Plasmids.

Strain Species Plasmid Description

CC878 E. coli pCC248 pCR-XL-TOPO derivative plasmid a modified cDNA using primers AAF and AARD4 to generate C-terminal deletion of 4 amino
acids (Δ4)

CC892 E. coli pCC262 pPICZαA derivative plasmid with Δ4 cDNA insert

CC970 E. coli pCC278 pCR-XL-TOPO derivative plasmid a modified cDNA using primers AAF and AARD6 to generate C-terminal deletion of 6 amino
acids (Δ6)

CC973 E. coli pCC281 pCR-XL-TOPO derivative plasmid a modified cDNA using primers AAF and AARD10 to generate C-terminal deletion of 10
amino acids (Δ10)

CC983 E. coli pCC291 pPICZαA derivative plasmid with Δ6 cDNA insert

CC990 E. coli pCC298 pPICZαA derivative plasmid with Δ10 cDNA insert

CC993 E. coli pCC301 pCR-XL-TOPO derivative plasmid a modified cDNA using primers AAF and AARD2 to generate C-terminal deletion of 2 amino
acids (Δ2)

CC994 E. coli pCC302 pCR-XL-TOPO derivative plasmid a modified cDNA using primers AAF and AARD8 to generate C-terminal deletion of 8 amino
acids (Δ8)

CC995 E. coli pCC303 pPICZαA derivative plasmid with Δ2 cDNA insert

CC997 E. coli pCC305 pPICZαA derivative plasmid with Δ8 cDNA insert

PC626 P.
pastoris

pCC106 Integrated pPICZαA derivative with WT cDNA insert [53]

PC897 P.
pastoris

pCC262 Integrated pPICZαA derivative with Δ4 cDNA insert

PC958 P.
pastoris

pCC291 Integrated pPICZαA derivative with Δ6 cDNA insert

PC960 P.
pastoris

pCC298 Integrated pPICZαA derivative with Δ10 cDNA insert

PC971 P.
pastoris

pCC303 Integrated pPICZαA derivative with Δ2 cDNA insert

PC973 P.
pastoris

pCC305 Integrated pPICZαA derivative with Δ8 cDNA insert

TOP10 E. coli None E. coli host for modified Δ2, Δ6, Δ8, Δ10 cDNA plasmids

TOP10F0 E. coli None E. coli host for pCC106 and modified Δ4 cDNA plasmid

X-33 P.
pastoris

None Expression host for αGal expression

doi:10.1371/journal.pone.0118341.t001
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hour soaks. Fractions were assayed for enzyme activity and protein concentration and a peak
tube with high specific activity was chosen as the sample to be used in a substrate
saturation curve.

Electrophoresis analysis
Samples (8 μg) were mixed with an equal volume of reducing sample buffer (Bio-Rad Laemmli
sample buffer with 5% β-mercaptoethanol) and heated for 5 minutes at 95°C before loading on
a Mini-Protean TGX Precast Gel 4–20% (w/v) (Bio-Rad No. 456-1094). Bands were visualized
by Coomassie blue staining via the modified Fairbanks protocol [67].

Western blot analysis
Western blot analysis was performed using an anti-αGal polyclonal antibody produced in
chicken (Pierce/ThermoSci #PA1-9528) and horseradish peroxidase-conjugated anti-Chicken
IgY antibody (Sigma #A9046). After SDS-PAGE (2 μg of samples loaded), the gel was incubat-
ed with a nitrocellulose membrane (Whatman, No. 10402594) for 15 minutes at room temper-
ature in Transfer Buffer (48 mM Tris, 39 mM glycine, 20% MeOH, pH 9.2) and the proteins
were then transferred to the nitrocellulose membrane using a Bio-Rad Trans Blot SD Semi-Dry
Transfer Cell. The membrane was blocked with 8% (w/v) non-fat dried milk in PBST [10 mM
Na2HPO4, 1.8 mM KH2PO4, 137 mMNaCl, 2.7 mM KCl and 0.2% Tween 20 (pH 7.4)] at
room temperature for 20 minutes. The membrane was then treated with primary antibody di-
luted in a milk/blot solution [1% (w/v) non-fat dried PBST] for 2 h at room temperature with
mild shaking. After rinsing with PBST solution, the membrane was treated for 1 h at room
temperature with secondary antibody diluted in the milk/blot solution. Protein bands were vi-
sualized on Kodak BioMax XAR film (VWR #lB1651454) with a Konica SRX-101A processor.

Enzyme and protein assays
Activity of αGal was assayed using the synthetic substrate, 4-methylumbelliferyl-α-D-galacto-
pyranoside (MUG) as described [53] with modifications to a microtiter plate format (below).
Enzyme activity is measured in units/ml where one unit is defined as the amount of enzyme re-
quired to convert 1 nmole of MUG to 4-methylumbelliferone in one hour at 37°C. An aliquot
of 3 μl was added to 27 μl of enzyme assay buffer (5 mMMUG in 40 mM sodium acetate buffer,
pH 4.5). This mixture was incubated at 37°C and 10 μl aliquots were taken at two time points
and added to 290 μl of 0.1 M diethylamine in a microtiter plate to stop the reaction. Typically
time points were chosen as 1–4 minutes and values that were proportional to time were consid-
ered valid. The fluorescence of each sample was measured at an excitation wavelength of 365
nm and an emission wavelength of 450 nm using a Tecan Infinite F200 microtiter plate reader.
A standard curve of 10 μl of 0 – 0.5 nmol 4-methylumbelliferone dissolved in MeOH in 290 μl

Table 2. Primers Used for DNA Sequence Analysis.

Primer Sequence Function

50 AOX 50 GACTGGTTCCAATTGACAAGC 30 DNA sequencing primer for pPICZαA

30 AOX 50 GCAAATGGCATTCTGACATCC 30 DNA sequencing primer for pPICZαA

α-factor 50 TACTATTGCCAGCATTGCTGC 30 DNA sequencing primer for pPICZαA

M13: forward 50 GTAAAACGACGGCCAG 30 DNA sequencing primer for pCR-XL-TOPO

M13: reverse 50 CAGGAAACAGCTATGAC 30 DNA sequencing primer for pCR-XL-TOPO

Note. Primers were HPLC purified, 50 nmoles from Invitrogen

doi:10.1371/journal.pone.0118341.t002
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of 0.1 M diethylamine was used to quantitate MUG cleavage at specific time intervals. Analysis
of the effects of MeOH indicated no effect on the 4-methylumbelliferone standard curve.

For samples containing higher protein concentrations, the BioRad DC Protein Assay (No.
500-0116) with a standard curve of (0.2 – 1.5) mg/ml was used according to the manufacturer’s
specifications. For dilute samples of purified αGal, a more sensitive fluorescence-based fluores-
camine assay [68] with a standard curve containing lower protein concentrations of (4.0–160)
μg/ml was used. Briefly, 150 μl of 0.05 M sodium phosphate buffer and 50 μl of 1.08 mM fluor-
escamine dissolved in acetone were added to an aliquot of 50 μl of the sample and standards,
mixed and incubated for 12 minutes. The fluorescence of each sample was measured at an exci-
tation wavelength of 400 nm and an emission wavelength of 460 nm. Bovine serum albumin
(Bio-Rad No. 500-0112) was used as the standard in both assays. Absorbance and fluorescence
measurements were conducted on a Tecan Infinite F200 microplate reader using 96-
well plates.

Mass spectrometry of a purified mutant enzyme
The Δ6 mutant was selected for mass spectrometry analysis conducted at the Rockefeller Uni-
versity Proteomics Resource Center in collaboration with M.T. Mark. SDS-PAGE gel slices
were washed, de-stained, reduced using 10 mM dithiothreitol, alkylated using 100 mM iodoa-
cetamide, and digested using trypsin. Peptides were then extracted from the gel two times,
dried, and re-suspended in a 5% acetonitrile and 2% formic acid mixture. One third of each
sample was loaded onto a C18 PepMap1000 micro-precolumn (300 μm I.D., 5 mm length, 5
μm beads, Thermo Scientific) at a flow-rate of 5 μl/min, and subsequently onto an analytical
C18 column (75 μm I.D., 3 μm beads, Nikkyo Technos Co.) at a flow rate of 300 nl/min. The
gradient was 40 min long in the range 5 to 45% B (buffer A was 0.1% formic acid in water, and
buffer B was 0.1% formic acid in acetonitrile). Eluted peptides were applied by electrospray di-
rectly into the LTQ-Orbitrap XL mass spectrometer from Thermo Scientific, operating in a 300
to 1800 m/z mass range. Tandemmass spectrometry was performed by collision induced disso-
ciation using nitrogen as a collision gas. The resulting spectra were analyzed using Mascot and
Proteome Discoverer 1.3 (Thermo Scientific) to identify the peptides in the sample.

Thermostability and pH optimum of WT and mutant αGal
Purified enzyme samples were diluted in 25 mM citrate-phosphate buffer, pH 5.5, 0.1 M NaCl,
0.01 M D-galactose. Samples of 50 μl were incubated in triplicate at 50°C, 30°C and 40°C. Ali-
quots of 3 μl were removed for enzyme assays every 15 minutes for two hours. Samples were as-
sayed in 0.02 M citrate buffer, pH 3.0—pH 6.5, containing 2 mMMUG.

Characterization of kinetic properties
Substrate saturation curves for αGal have been reported using MUG at concentrations up to 2
mM, 5 mM, and 10 mM (in the presence of 0.1% BSA and 0.67% EtOH [24]). We noted that
under our experimental conditions MUG is fully soluble at 2 mM, partially soluble at 5 mM,
and chemically oversaturated at higher concentrations. Other investigators reported the use of
sonication or detergent treatment to increase the solubility of MUG (e.g., [69]) but we avoided
this approach in order to avoid potential artifacts due to the use of these techniques. Substrate
saturation curves using 2 mM and 5 mMMUG as the highest concentrations were carried out
and the kinetic parameters for αGal were calculated separately obtaining similar values. The
values reported here (Table 3a) were obtained using a substrate saturation curve of 0.3 to 2
mMMUG since this is the highest concentration that is fully soluble under our experimental
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conditions. The Km and Vmax values were calculated using Lineweaver-Burk and non-linear re-
gression through the program Sigma-Plot (Systat Software, San Jose, CA).

Kinetic parameters were also determined using the colorimetric substrate, para-nitrophe-
nyl-α-D-galactopyranoside (PNPαGal) [70]. Purified enzymes were diluted to approximately
20,000 units/mL as determined by fluorescent MUG assay. These diluted samples were then
added at a proportion of 1:9 citrate-phosphate buffer (0.1 M) containing 7 – 50 mM PNPαGal.
Aliquots of 20 μl of the enzymatic reaction were removed at 15 minute intervals to terminate
the reaction over the course of an hour and added to 320 μl of borate buffer (pH 9.8) in a
microplate [71]. Product formation was monitored by absorbance at 400 nm. Linear reaction
velocities were observed for all measurements. A standard curve of 0–150 μM p-nitrophenylate
in borate buffer (pH 9.8) [71] was used to quantitate product formation. Km and Vmax parame-
ters were determined through non-linear regression using Sigma-Plot (Systat Software, San
Jose, CA).

Protein structure analysis
The crystal structure of αGal (PDB 1R47) was viewed and analyzed in PyMOL (Delano Scien-
tific). The MSLDKLL and QMSLKDLL peptides corresponding to the last 7 or 8 C-terminal
amino acids of αGal were built in PyRosetta [72] and visualized in PyMOL [73]. Interatomic
distances were measured using the PyMOL wizard distance command.

A homology model of the coffee bean α-galactosidase was generated on the Phyre2 server
[74]. The primary sequence of coffee bean α-galactosidase (GenBank No. AAA33022.1) was

Table 3. Values of Km, Vmax, kcat and and the specificity constant (kcat/Km) for WT and C-Terminal Deletion Mutants of αGal.

A) MUG

Comments Km (mM) Vmax (mmole/hr/mg) kcat (s−1) kcat/Km (mM−1 s−1)

WT 2.44 ± 0.44 3.36 ± 0.29 84.0 34.4

Δ2 4.52 ± 0.62 5.56 ± 0.73 139 30.8

Δ4 3.51 ± 0.29 7.29 ± 0.74 182 51.9

Δ6 4.21 ± 0.52 4.89 ± 0.32 122 29.0

Δ8 3.89 ± 0.27 0.742 ± 0.21 18.6 4.78

Δ10 2.96 ± 0.29 6.90 ± 0.71 173 58.3

B) PNPαGal

Comments Km (mM) Vmax (mmole/hr/mg) kcat (s−1) kcat/Km (mM−1 s−1)

WT 15.0 ± 2.0 2.51 ± 0.17 62.8 4.18

Δ2 13.3 ± 1.2 5.14 ± 0.82 128 9.65

Δ4 15.7 ± 1.0 5.74 ± 0.39 143 9.13

Δ6 13.4 ± 1.1 1.89 ± 0.23 47.3 3.53

Δ8 13.0 ± 1.5 0.68 ± 0.08 17.0 1.31

Δ10 17.0 ± 3.0 6.24 ± 0.12 156 9.18

Note. The values given are for the human enzyme purified from P. pastoris and assayed in triplicate followed by Lineweaver-Burk and non-linear

regression analysis. Comparison of both Lineweaver-Burk and non-linear regression kinetic parameters show good general agreement (data not shown).

Non-linear regression results are displayed above. The kcat was calculated using 90 kDa as the MW of αGal. A) MUG was used as the substrate for

enzyme assay. Mean and standard deviation measurements are from multiple assays of three independent enzyme preparations for the Δ8 enzyme, two

independent enzyme preparations for the WT enzyme, and single enzyme preparations for the other mutant enzymes. B) PNPαGal was used as the

substrate for enzyme assay.

doi:10.1371/journal.pone.0118341.t003
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set as the query. The crystal structure of rice α-galactosidase (73% sequence identity to coffee
α-galactosidase, PDB# 1UAS) was set as the template. Superposition of the coffee homolog and
human crystal structure of αGal (PDB# 1R47) was conducted in PyMOL [73]. Primary se-
quence alignments were carried out in ClustalOmega (EMBL-EBI).

Results

Purification of WT and mutant αGal
TheWT and mutant enzymes were obtained from a 7 L bioreactor and purified (Table 4,
Fig. 3) using Con A and Thio-Gal tandem affinity chromatography. This two column purifica-
tion is simpler and faster than our previous purification methods that used three [50] or four
[49, 53] columns and the yield, degree of purity, and final specific activities were similar for all
three methods.

The non-glycosylated form of αGal (41.8 kDa) is isolated from cells as multiple glycosylated
species with a predominant band of about 50 kDa and multiple higher molecular weight forms
that differ in extent of glycosylation (Fig. 3; See Introduction). We have previously demonstrat-
ed that high molecular weight glycoforms produced in insect cells and P. pastoris can be identi-
fied as derivatives of αGal rather than contaminants and these glycoforms are converted to a
single band on SDS gels of about 41.8 kDa with endoglycosidase treatment [49, 50, 53]. In this
report we also use a Western blot (Fig. 4) to confirm that the high molecular weight forms seen
on SDS gels for the WT and deletion mutants are all glycoforms of αGal. In some cases lower
molecular weight species present in purified enzyme preparations can be identified as αGal
fragments in Western blots (e.g., Fig. 4, lane 2). We quantitated the distribution of glycoforms
in (Fig. 3, S1 Fig, online supplement) and there is no obvious correlation between the glycosyla-
tion pattern and catalytic activity. It is well established that glycosylation affects enzyme stabili-
ty and enzyme uptake (above) but to our knowledge there is no evidence that the glycosylation
pattern affects the catalytic properties of this enzyme.

Mass spectrometry of a purified mutant enzyme
Two possible amino terminal amino acids, glutamate or leucine, could be produced in P. pas-
toris depending upon the selection of the signal peptidase, Kex2 or Ste13 (Fig. 1). Due to the
fact that potential improper amino terminal processing may have an effect on kinetics, we se-
lected one of the purified mutant enzymes (Δ6) for mass spectrometry analysis in order to
identify the amino terminal sequence of this enzyme. This analysis also made it possible to pro-
vide independent verification of the expected changes in the C-terminal amino acid sequence
predicted by in vitromutagenesis (Fig. 1, 2).

The mature form of the enzyme (signal peptide removed; [75]) produced in humans begins
with a leucine codon (Fig. 1, 2). Therefore, tandem mass spectrometry following tryptic diges-
tion of the Δ6 αGal purified from P. pastoris could produce tryptic peptides EALDNGLAR or
LDNGLAR, depending upon the use of the Kex2 or Ste13 protease sites (Fig. 1, 2). A putative

Table 4. Purification Table for WT αGal Expressed in P. pastoris.

Step Total Protein (mg) Total Activity Units × 106) Specific Activity Units/mg × 103) Purification (Fold) Yield (%)

Supernatant 10,928 134 610 1.0 100

Con A Pool 138 30.4 221 18.1 22.8

Thio-Gal Pool 4.18 15.7 3,771 309 11.8

Note. 5 mM MUG was used as the substrate for enzyme assay.

doi:10.1371/journal.pone.0118341.t004
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LDNGLAR peak was identified in the MS spectra with an m/z of 379.71, consistent with the
(M+2H)2+ state of this peptide, while no peaks consistent with an EALDNGLAR peptide were
found. We cannot eliminate what we consider to be the less likely possibility that the failure to
detect the EALDNGLAR peptide may be due to the failure of the peptide to ionize in this MS
experiment. Further fragmentation of the m/z = 379.71 associated peptide peak produced an
MS/MS spectrum containing 4 of 7 possible y-ions and 4 of 7 possible b-ions from the expected
fragmentation pattern of a hypothetical LDNGLAR peptide (Fig. 5a). This result indicates that
the Ste13 signal peptidase of P. pastoris generates an enzyme with an amino terminus identical
to the enzyme produced in humans.

A search for a Δ6 C-terminal tryptic peptide of SHINPTGTVLLQLENTMQM (Fig. 2)
yielded a matching MS m/z = 1064.03 peak consistent with its (M+2H)2+ state. Further frag-
mentation also produced an MS/MS spectrum containing 4 of 19 possible y-ions and 9 of 19
possible b-ions consistent with the anticipated sequence (Fig. 5b). This result confirms the pre-
dicted C-terminal deletion of 6 amino acids and confirms the efficacy of the mutagenesis pro-
tocol used to produce this mutant enzymes.

Thus, the purified Δ6 αGal mutant possesses an N-terminal sequence corresponding to the
mature form of αGal and a C-terminal sequence truncated by six amino acids.

Fig 3. SDS-PAGE for purification of αGal. Purified samples were run on a 4–20% polyacrylamide gel, under reducing conditions, and stained with
Coomassie Brilliant Blue. The contents of the lanes are as follows: molecular weight marker (lane 1 and 8), WT(PC626) (lane 2), Δ2 (PC995) (lane 3), Δ4
(PC897) (lane 4), Δ6 (PC958) (lane 5), Δ8 (PC973) (lane 6), Δ10 (PC960) (lane 7). The minor bands present in the purified fraction are consistent with high
molecular weight glycoforms seen previously whenWT enzyme was purified from the same P. pastoris expression system [53].

doi:10.1371/journal.pone.0118341.g003
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Fig 4. Western Blot of purifiedWT andmutant αGal. Purified WT and mutant enzymes were subjected to Western blotting using a polyclonal antibody
raised against residues 55–64 and 396–407 of αGal. (a) Blot at shorter and (b) longer exposure.

doi:10.1371/journal.pone.0118341.g004
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Thermostability and pH optima of WT and deletion mutants of αGal
Preparations of purified WT and mutant αGal show similar thermostability profiles at 30°C,
40°C, and 50°C, with activity half-lives of 30, 25 and 17 minutes, respectively (Fig. 6). The gen-
eral trend of these profiles agree with previous results [76]. All enzymes show optimal activity
near pH 4.5 (Fig. 7) in accord with previous reports for WT αGal [70, 77–79], and there is no
significant difference in the activity optima of purified WT and mutant αGal.

Kinetic analysis of WT and C-terminal deletion mutants
The values for Km and Vmax for WT enzyme (Table 3a) are in accord with published values
(Table 5). The range of Km and Vmax values for the enzymes purified from several sources in
various laboratories over a period of more than 30 years (Table 5) are in good agreement and
the observed subtle variations are in the range expected. However, more precision is expected
for measurements recorded for enzymes purified from the same source in a single laboratory at
one given time (Table 3a). Substrate saturation curves (Fig. 8a) and the calculated values for
Km, Vmax, kcat, and kcat/Km using the MUG substrate (Table 3a) reveal differences in the en-
zyme activity of the mutants compared to WT. Deletions of 2, 4, 6 and 10 amino acids approxi-
mately double the kcat/Km (0.8 to 1.7-fold effect; 29/34.4 = 0.8 and 58.3/34.4 = 1.7) while a
deletion of 8 amino acids decreases the kcat/Km (7.2-fold effect; 34.4/4.78 = 7.2). There are cor-
responding changes in the Vmax values and deletions of 2, 4, 6 and 10 amino acids approxi-
mately double the Vmax (1.5 to 2.2-fold effect; 4.89/3.36 = 1.5 and 7.29/3.36 = 2.2) while a
deletion of 8 amino acids decreases the Vmax (4.5-fold effect; 3.36/0.742 = 4.5). There are also

Fig 5. Mass spectrometry of purified Δ6 αGal.MS/MS spectra obtained from parental MS ions (a) m/z = 379.71 and (b) m/z = 1064.03 corresponding to a
C-terminal and N-terminal peptide, respectively. Product ion peaks are annotated according to their predicted [M+H]+ forms. Annotations in red and blue
correspond to b-series and y-series ion fragments, respectively.

doi:10.1371/journal.pone.0118341.g005
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Fig 6. Thermostability profiles of WT andmutant αGal. Stability of recombinant WT and Δ2 to Δ10 mutant
αGal at 30°C (a), 40°C (b), and 50°C (c) at pH 5.5 as monitored by fluorescent enzyme assay. Initial activities
ranged from approximately 300 to 1,900 units/mL for all enzymes assayed. % Activity is normalized against
activity at t = 0 mins. Data points for (a) and (c) are the mean of a triplicate measurement with error bars
equivalent to ± 1 standard deviation. Data points for (b) are the results of a single measurement. MUGwas
used as the substrate for enzyme assay.

doi:10.1371/journal.pone.0118341.g006

Carboxyl-Terminal Truncations of the Human α-Galactosidase A

PLOSONE | DOI:10.1371/journal.pone.0118341 February 26, 2015 14 / 26



Fig 7. pH activity curves of WT andmutant αGal. pH activity curves for WT and Δ2 to Δ10 mutant αGal. % Activity is normalized against each enzyme’s
peak activity. Data points are the mean of a triplicate measurement and error bars are ± 1 standard deviation. MUGwas used as the substrate for
enzyme assay.

doi:10.1371/journal.pone.0118341.g007

Table 5. Literature Values for Km and Vmax for the WT Human αGal.

Km (mM) Vmax (mmole/hr/mg) Source Reference year

1.6 NA Placenta [80] 1978

2.9 1.7 Liver [78] 1979

1.9 NA Plasma [60] 1979

2.5 NA Spleen [60] 1979

2.0 2.8 Spleen [69] 1981

2.3 2.3 Sf9 insect cells [81] 2000

2.0 4.8 Replagal [24] 2003

2.0 4.8 Fabrazyme [24] 2003

4.0 3.3 Fabrazyme [82] 2009

2.8 2.6 COS-7 cells [83] 2007

4.5 3.3 COS-7 cells [84] 2011

Note. The values given are for the human enzyme purified directly from human tissues or from the indicated recombinant sources. Replagal is produced in

human foreskin fibroblasts and Fabrazyme is produced in CHO cells. The average from these literature values are 2.6 ± 0.9mM (Km) and 3.2 ± 1.1mmole/

hr/mg (Vmax). NA: not available. MUG was used as the substrate to determine the Km and Vmax values.

doi:10.1371/journal.pone.0118341.t005
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Fig 8. Substrate saturation curves of WT andmutant αGal. Purified WT, Δ2, Δ4, Δ6, Δ8and Δ10 αGal were enzyme assayed in 0.3 to 2.0 mMMUG
(Fig. 8a) and in 7 mM to 50 mMPNPαGal (Fig. 8b) to measure initial velocities (mmol product per hr/mg enzyme). Km and Vmax parameters were extracted
and compiled in Table 3. The figure indicates fits of Michaelis-Menten hyperbolas to experimental data indicated as mean ± one standard deviation.

doi:10.1371/journal.pone.0118341.g008
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smaller differences in the Km values of the C-terminal deletion mutants compared to the WT
(Table 3a). The Vmax data presented for the Δ8 (0.742 ± 0.21) and WT (3.36 ± 0.29) are derived
from multiple assays from three and two independent enzyme samples, respectively, and this
indicates the reliability of this data and adds strength to the interpretations of the data from the
single enzyme preparations used for the other deletion mutants.

The effects of the C-terminal deletions on the kinetic properties of the enzyme using the ar-
tificial substrate MUG (Table 3a) could be due to alterations in the inherent catalytic mecha-
nism of the enzyme [85]. Alternatively, the altered kinetic properties could be due to changes
in the affinity of the enzyme for specific structural components of the artificial substrate,
MUG. In this context, it is of interest to measure these kinetic parameters with an alternative
substrate such as PNPαGal. The results (Table 3b, Fig. 8b) indicate that there are similar
changes in kinetic parameters using PNPαGal as the substrate, including increases (2.2-fold ef-
fect; 9.18/4.18 = 2.2) and decreases (3.2-fold effect; 4.18/1.31 = 3.2) in the kcat/Km for the specif-
ic C-terminal deletion mutants (Δ10 and Δ8, respectively). Taken together, these results
suggest that the C-terminal deletions likely affect some aspect of the inherent catalytic mecha-
nism of the enzyme.

Discussion
This is the first report to establish in a quantitative manner that the C-terminal residues of
αGal act as a modulator of catalytic activity. Our results confirm the general results of Miya-
mura et al. [63] that C-terminal deletions of 2, 4, 6 and 10 amino acids increase the kcat/Km

compared to WT. However, our results differ in that we find that a deletion of 8 amino acids re-
sults in a decrease of kcat/Km. It should be noted that there are numerous experimental differ-
ences between these two reports. For example, our analysis used purified enzymes expressed in
P. pastoris and their experiments measured αGal enzyme activity during transient infection of
COS-1 cells. There could be differences in αGal mRNA or protein stability between P. pastoris
and COS-1 cells, and other proteins in the cytoplasm of P. pastoris or COS-1 cells could inter-
act directly or indirectly with the αGal protein to affect its catalytic activity.

It is of interest that the two recombinant protein therapeutics, Fabrazyme (agalsidase-beta)
and Replagal (agalsidase-alfa) contain C-terminal heterogeneity with truncated species lacking
either one or two C-terminal residues [24]. Fabrazyme contains 69.7% full length protein with
7.6% Δ1 and 22.8% Δ2, while Replagal contains only 5.7% full length, with 73.2% Δ1 and 21.1%
Δ2. These authors attribute the C-terminal heterogeneity to in vivo proteolytic processing of an
undefined nature. These commercial enzymes do not differ significantly from the WT in Km

and Vmax (Table 5) in spite of this degree of protein heterogeneity [24]. The significantly in-
creased Vmax of some of the mutants with C-terminal deletions suggests the basis for an im-
proved treatment for Fabry disease.

These results also illustrate the principle that in vitro mutagenesis can be used to generate
αGal derivatives with improved enzyme activity. The potential for improved catalytic activity
for this enzyme is illustrated by the existence of closely related enzymes with 3-fold to 250-fold
higher activity (Table 6). A direct comparison of relevant amino acid residues between the
human and related enzymes suggests the basis for rational in vitro mutagenesis to improve cat-
alytic activity of the WT human enzyme. In this context it is likely that mutants which show al-
tered catalysis against the MUG substrate used here also have a correspondingly higher rate of
catalysis against the natural substrate, but this possibility needs to be tested directly.

Clinical trials for ERT show seroconversion frequencies of more than 50% for males treated
with 0.2 mg/kg agalsidase-alfa [9] and 88% for 1.0 mg/kg agalsidase-beta [8, 86]. Increasing the
dose of administered enzyme in seroconverted patients raised antibody titers in some patients
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[86, 87]. IgG antibody status shows a strong association with serious infusion associated adverse
reactions [87]. IgG positive serum from Fabry patients exhibits in vitro neutralization of enzyme
activity [88] and lessens targeting to key disease organs in a Fabry mouse model [89]. The dis-
ease marker of urinary globotriaosylceramide levels is increased in seropositive patients as com-
pared to seronegative patients [86, 88]. It has been proposed that higher doses of administered
enzyme could overcome the inhibitory effect of antibodies on treatment effectiveness [86]. By
using an enzyme that is more active on a per mg basis, a therapeutic effect equivalent toWT is
achievable through administration of a lower dose. Future studies should include examination
of these mutant enzymes relative toWT in cultured cells [90] and in mouse models [91, 92].

The specificity constant (kcat/Km) has a maximum possible value determined by the fre-
quency at which enzyme and substrate molecules collide in solution [93]. If every collision re-
sults in formation of an enzyme-substrate complex, diffusion theory predicts that kcat/Km will
attain a value of 108 – 109M−1s−1 [93]. The kcat/Km of WT human αGal is approximately 5.49 ×
103M−1s−1 (Table 6) suggesting the possibility that altered forms of the human enzyme may
exist that have higher catalytic activity. A BLAST analysis [94] identified the 33 sequences most
closely related to αGal and kinetic parameters have been reported for 6 of these enzymes
(Table 6). These enzymes share a high degree of sequence and structural similarities and are all
in the same family 27 of glycosyl hydrolases [94]. There is a broad range in the values reported
(Table 6) for Km, kcat and kcat/Km. Thus, a detailed structural comparison of these enzymes
may permit the identification of key amino acid residues that influence these
kinetic parameters.

Truncation of the C-terminus of the coffee bean α-galactosidase (Fig. 9) showed that dele-
tion of one or two amino acids decreases activity and deleting 3 or more residues abolished ac-
tivity completely [103]. The results with the coffee bean enzyme contrast those presented here
for the human enzyme. Both results however demonstrate that the C-terminus of αGal is criti-
cal for enzyme function.

We examined a superposition between the crystal structure of the human enzyme and a ho-
mology model of the coffee bean enzyme (see Methods) to explore a structural basis for this
biochemical dissimilarity. The N-terminal catalytic (α/β)8 domain superimposes very well
(RMSD of 0.729 Å over 1126 total atoms) while the C-terminal antiparallel β-domain superim-
poses poorly (RMSD of 2.494 Å over 342 total atoms). A primary sequence alignment shows a
comparable trend; the catalytic domain shows high sequence conservation while the C-termi-
nal domain does not. An alignment of the C-terminal ends of the human and coffee bean en-
zymes is presented (Fig. 9) indicating secondary structure alignment (left) and primary

Table 6. Literature Values of Km, kcat, and the specificity constant (kcat/Km) for Glycosyl Hydrolase Family 27 αGal Enzymes.

Pubmed Accession code Genus and species Colloquial name Km (mM) kcat (s
−1) kcat/Km (M−1 s−1) Relative kcat/Km Ref.

NP_000160 Homo sapiens Human 6.88 37.8 5.49 × 103 1 [95]

NP_038491 Mus musculus Mouse 1.40 N/A N/A N/A [96]

WP_004844583.1 Ruminococcus gnavus Bacteria 1.80 30.1 1.67 × 104 3 [97]

AAC99325 Saccharopolyspora erythraea Bacteria 0.650 23.3* 3.58 × 104 6 [98]

P41947 Saccharomyces cerevisiae Yeast 4.50 286 6.36 × 104 12 [99]

BAB83765 Clostridium josuil (Catalytic Domain) Bacteria 0.810 61.9* 7.64 × 104 14 [100]

AAG24511 Phanerochaete chrysosporium Fungus 0.198 272 1.37 × 106 250 [101]

Note. PNPαGal substrate was used to calculate kinetic values. Family 27 enzymes include the human αGal and related enzymes in the CAZy database

[102] that are most closely related as indicated by BLAST analysis [94]. *kcat values for S. erythraea and C. josuiI were calculated based on the reported

Vmax, and molecular weights.

doi:10.1371/journal.pone.0118341.t006
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sequence alignment (right). If the C-terminal domain governs a conserved mechanism of enzy-
matic regulation across the human and coffee homologs, then the deleterious effect of remov-
ing C-terminal amino acids from the coffee enzyme is consistent with observations made by
Miyamura et al. [63] on the human enzyme.

Because of the low sequence homology observed in the C-terminal residues it can be hy-
pothesized that the effect on the catalytic activity due to C-terminus deletions in both the
human and coffee bean α-galactosidase is due to disruption of the enzyme’s three-dimensional
structure. This disruption could have an effect on enzyme dimerization, the ability to bind sub-
strate, or potential interactions with other molecules in the cell.

The most straightforward expectation of a series of C-terminal deletions is a direct correla-
tion between the extent of the deletion and the effect on enzyme activity. In this sense, the re-
duced activity of the Δ8 mutant relative to the other C-terminal deletion mutants (Table 3) is
unanticipated. However, we note that similar effects have been reported by others who carried
out C-terminal deletion studies, including the IN269 mutation for the integrase of HIV [104],
the Δ8 and Δ9 mutants of the thymidine kinase of Epstein-Barr virus [105], and the D5 and
D10 mutants of the plant vacullar H (+)-pyrophosphatase [106]. Differential proteolysis may
also explain why the Δ8 construct does not follow the same trend as the other mutants.

The crystal structure of αGal [94] revealed that the last visible residue of the C-terminus is
separated by approximately 45 Å from the active site on the opposite monomer and is too far
to have a direct effect on catalysis. However, within the same crystal structure (PDB 1R47) we
measured C-terminal end to be only 20–25 Å away from a second ligand binding site for β-D-

Fig 9. The C-termini of human and coffee αgalactosidase. The crystal structure of human αGal and a predicted model of the coffee homolog were
superimposed. Underlined terminal residues, (MSLKDLL) in humans and (Q) in the coffee bean enzyme, indicate amino acids that could not be modeled due
to conformational disorder. The terminal amino acid of the coffee enzyme (glutamine, Q) aligns with (threonine, T) in the human enzyme and is located 9
amino acids (MQMSLKDLL) from the C-terminus of the human enzyme.

doi:10.1371/journal.pone.0118341.g009
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galactopyranose [85], demarcated by Tyr329 (Fig. 10). Directly visualizing a putative interac-
tion between the C-terminus and the second binding site is not possible because C-terminal
disorder limits resolution to the 7th or 8th amino acid from the full length C-terminal end. If
these 7 or 8 amino acids were to adopt a fully-extended conformation, they would span a dis-
tance of 22–26 Å (see Methods), bringing the C-terminus within potential contact distance of
the secondary binding site. A crucial missing detail is the functional significance of the second-
ary site. It may serve as a site for small molecule chaperoning [85]. It also might participate al-
losterically in a manner similar to phosphofructokinase-1, that is allosterically activated by
ADP [107, 108], a product of the enzyme’s ATPase function. The ligand that binds the second-
ary site on αGal is β-D-galactopyranose [85], which is the mutarotated product of the enzyme’s
glycoside hydrolase function. A dynamic interplay may exist between the C-terminus, the sec-
ondary site and its ligand to affect the catalytic activity of αGal through allostery or structural
stability of the protein. Further mechanistic studies will be needed to work out the exact rela-
tionships between these putative components and their relevance to in vitro catalysis.

Due to the lack of direct contact between the carboxyl-terminal amino acids and the catalyt-
ic site of αGal, the explanation for the effect of the deletions of the carboxyl-terminal amino
acids is not obvious. Another hypothesis to be tested is that αGal is in a class of enzymes like
the E. coli dihydrofolate reductase [109–113] in which tunneling and coupled motion accounts
for the effects of mutations distal from the catalytic site on enzyme function.

Fig 10. C-terminal Distance from Secondary Binding Site and Opposite Active Site. The homodimeric crystal structure of αGal (PDB ID 1R47) solved by
[94] is displayed in two different perspectives. Distance relationships relative to one out of the two possible C-termini are discussed. The carbon backbone is
rendered in a ribbon format. The C-terminus on monomer A is separated by 20 Å to 25 Å from a secondary binding site for β-D-galactopyranose on the same
monomer [85] which is marked by Tyr 329 rendered as spheres. The C-terminus on monomer A is also separated by 45 Å to 50 Å from the active site of
monomer B which is marked by the α-D-galactopyranoside ligand also rendered as spheres.

doi:10.1371/journal.pone.0118341.g010
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Conclusions
C-terminal truncation mutants of αGal were constructed, expressed and purified from P. pas-
toris using Con A and Thio-Gal affinity column chromatography. Michaelis-Menten parame-
ters were measured on the purified mutants. Deletion of 2, 4, 6 and 10 amino acids
approximately doubles kcat/Km relative to WT (0.8-1.7-fold effect) while deleting 8 amino acids
decreases kcat/Km (7.2-fold effect). Mutants with increased activity are proposed as an im-
proved alternative therapy over WT enzyme for Fabry disease patients. These results also illus-
trate the principle that in vitromutagenesis can be used to generate αGal derivatives with
improved enzyme activity.

Supporting Information
S1 Fig. Quantification of Bands in SDS-PAGE. Band intensities of the SDS-PAGE in (Fig. 3)
were quantified by Image Acquisition and Analysis software (VisionWorks1LS, UVP Inc.,
Upland, CA).
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