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Abstract

Recently, new loci related to body mass index (BMI) or blood pressure (BP) have been iden-

tified respectively in genome-wide association studies (GWAS). However, limited studies

focused on jointly associated genetic variance between systolic pressure (SBP), diastolic

pressure (DBP) and BMI. Therefore, a bivariate twin study was performed to explore the

genetic variants associated with BMI-SBP, BMI-DBP and SBP-DBP. A total of 380 twin

pairs (137 dizygotic pairs and 243 monozygotic pairs) recruited from Qingdao Twin Registry

system were used to access the genetic correlations (0.2108 for BMI-SBP, 0.2345 for BMI-

DBP, and 0.6942 for SBP-DBP, respectively) by bivariate Cholesky decomposition model.

Bivariate GWAS in 137 dizygotic pairs nominated 27 single identified 27 quantitative trait

nucleotides (QTNs) for BMI and SBP, 27 QTNs for BMI and DBP, and 25 QTNs for SBP and

DBP with the suggestive P-value threshold of 1×10−5. After imputation, we found eight

SNPs, one for both BMI-SBP and SBP-DBP, and eight for SBP-DBP, exceed significant sta-

tistic level. Expression quantitative trait loci analysis identified rs4794029 as new significant

eQTL in tissues related to BMI and SBP. Also, we found 6 new significant eQTLs

(rs4400367, rs10113750, rs11776003, rs3739327, rs55978930, and rs4794029) in tissues

were related to SBP and DBP. Gene-based analysis identified nominally associated genes

(P < 0.05) with BMI-SBP, BMI-DBP, and SBP-DBP, respectively, such as PHOSPHO1,

GNGT2, KEAP1, and S1PR5. In the pathway analysis, we found some pathways associated

with BMI-SBP, BMI-DBP and SBP-DBP, such as prion diseases, IL5 pathway, cyclin E

associated events during G1/S transition, TGF beta signaling pathway, G βγ signaling

through PI3Kγ, prolactin receptor signaling etc. These findings may enrich the results of

genetic variants related to BMI and BP traits, and provide some evidences to future study

the pathogenesis of hypertension and obesity in the northern Chinese population.
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Introduction

Hypertension and obesity are public health challenges worldwide [1, 2]. Hypertension

increases the risk of several diseases, such as chronic renal disease, stroke, dementia and coro-

nary artery disease, etc. [3–7]. Obesity is related to cardiovascular disease, diabetes, cancer and

increase global burden worldwide [8–10]. Both of hypertension and obesity are complex

chronic diseases effected by genetic and environmental factors [11, 12]. SBP, DBP and BMI

are important anthropometric measurements of hypertension and obesity, respectively. A sys-

temic review reported the estimated heritability of SBP ranging from 17% to 52%, and DBP

from 19% to 41% [13]. Another review estimated the heritability of BMI from 47% to 90%

[14]. There were some mechanisms linking obesity with hypertension, such as sympathetic

nervous system activation, hypothalamic-pituitary axis dysregulation, insulin resistance/

hyperinsulinemia, and renin-angiotensin-aldosterone system activation [15, 16]. Several twin

studies previously presented multivariate modeling of BMI and BP to explore their common

genetic and environmental background [17, 18]. And it was demonstrated that the genetic cor-

relation between BMI and BP ranged from 0.15 to 0.49, and additive genetic factors accounted

for 65%-86% of the phenotypic correlations between BMI and BP components [19–23].

Genome-wide association studies (GWAS) are used to nominate loci for complex diseases

[24]. Recently, new loci related to BMI or BP have been identified in GWAS [25–27]. However,

all associated loci can only explain 2.7% of total variance of BMI, 2–3% of SBP, and 1.3–2.6%

of DBP [28, 29]. Therefore, more causal loci need to be found. Univariate GWAS has been

conducted with single trait that failed to take into account clinical relatedness and correlation

among phenotypes. Multivariate GWAS has higher power outperforming univariate approach

to explore more single nucleotide polymorphisms (SNPs) and pleiotropic genes potentially

related to correlated phenotypes [30, 31]. A key advantage of it is to demonstrate how genetic

variants effect on correlated phenotypes directly, instead of coincidental overlap of two traits.

Several bivariate analyses of SBP and DBP demonstrated some SNPs located in chromosomes

3 and 9 [32]. Also, some pathways were found associated with BMI and BP [29, 33]. However,

limited bivariate GWAS about BMI and BP phenotypes were conducted in the northern Chi-

nese population. And genetic variance and genes potentially related to hypertension and obe-

sity still remain unknown, and thus need further exploration. Therefore, we designed this

bivariate twin study to: (1) identify genetic variants associated with BMI-SBP, BMI-DBP and

SBP-DBP, respectively; and (2) identify potential causal genetic variation; (3) determine the

common pathways associated with hypertension and obesity.

Methods

Twin samples

The participants were recruited from Qingdao twin registry system by internet, newspaper

and local community hospital. More details of recruitment have described in literatures [34,

35]. Questionnaire data and examination data were collected from all twin samples. The par-

ticipants were included if: they were 18 years old and over; questionnaire data, examination

data and laboratory data were available; and twin pairs can be followed up. The participants

were excluded if: they were in pregnant or in lactation; with serious illness or cognitive

impairment; taking anti-hypertensive or lose-weight medicine within one month, as well as

the incomplete twin pairs. 380 pairs of eligible twin samples (243 pairs of monozygotic (MZ)

twin and 137 dizygotic (DZ) twins) were included. Zygosity was identified by sex, blood type

and DNA markers at Qingdao Blood Center. This study has been approved by the Regional

Ethics Committee of the Qingdao CDC Institutional Review Boards.
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Phenotypes

BMI was defined as an individual’s body weight in kilograms divided by the square of his/her

height in meters (kg/m2). Blood pressure was taken by a standard procedure using mercurial

table stand model sphygmomanometer. Systolic blood pressure was defined as Korotkoff of

phase I (appearance of sound), and diastolic blood pressure was defined as Korotkoff phase V

(disappearance of sound). Average values were used after three measurement.

Genotyping, quality control, and imputation

137 DZ pairs was genotyped using Infinium Omni2.5Exome-8v1.2 BeadChip (Illumina, San-

Diego, California, USA) on autosomes. Ultimately, 1,338,796 SNPs from 274 samples were

analyzed in this bivariate GWAS according to inclusion criteria (Calling rate > 0.98; minor

allele frequency, MAF > 0.05; Hardy-Weinberg, Hwe significance > 1×10−4; locus missing

<0.05) [20].

To identify new risk variants, IMPUTE 2 [36] software was performed to impute typed

SNPs using 1,000 Genomes Project Phase 3 as the reference panel (105 Han Chinese South

samples, and 103 Han Chinese Beijing samples) [37] according to Linkage Disequilibrium (r2

>0.6), MAF>0.05, and Hwe>1×10−4. Finally, 7,401,356 SNPs were included in this study.

Statistical analysis

Heritability. Bivariate Cholesky decomposition model [38] was used to assess the genetic

and environmental effects on phenotypic correlation between BMI and BP using Mx software

package (http://www.vcu.edu/mx) with age and sex adjusted. Due to the deviation of the distri-

bution, the Blom’s formula was used to guarantee the normal distribution or approximate nor-

mal distribution. Bivariate Cholesky model decomposed variations for both phenotype into

additive genetic (A), common (shared) environmental (C), and unique /non-shared environ-

mental (E) variance. Nested models were conducted by dropping A (CE model) or C (AE

model) after fitting the full model (ACE). The likelihood ratio χ2 tests compared whether the

full model and nested model has significant difference [38, 39]. The parsimonious model was

chosen according to lower Akaike’s Information Criterion (AIC) as the best fitting model [40].

Genotyping, GWAS and conditional analysis. The genome-wide efficient mixed-model

association (GEMMA) [41] was applied Genetic relatedness matrix and Bayesian sparse linear

mixed model [42] were performed to estimate associations between genetic variance and phe-

notypic pairs in SNP-based analysis of BMI-SBP, BMI-DBP and SBP-DBP for 137 DZ twins,

with age and sex adjusted. The conventional Bonferroni-corrected threshold of P< 5 × 10−8

was adopted as significant threshold [43, 44], and the commonly used threshold of

P< 1 × 10−5 as a suggestive evidence level [45, 46]. When none SNPs reaches significant

threshold, suggestive evidence level was applied to find more SNPs. Quantile-Quantile plot

(Q-Q plot) depicted and compared the distribution of observed P- values of SNPs against the

expected P- values. The genomic inflation factor λ revealed if there was evidence of inflation of

test statistics due to population stratification. Manhattan plots provided a compact visual way

of demonstrating P- values of SNPs ordered by chromosome on the x axis. PLINK software

was used to perform conditional analysis on GWAS data to identify independently associated

variants [47]. The region containing top variant with ±5 Mb upstream and downstream was

selected. And we re- evaluated each variant conditioning on the top variant. Then we repeated

this process and tested whether still significant variants associated with phenotypic pairs. The

conditional analysis consists of a new group of much less tests compared to the unconditional

analysis, therefore, a separate P-value of 0.001 was adopted as significant threshold.
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Expression quantitative trait loci (eQTL) analysis. Expression quantitative trait loci has

been widely used to uncover effect of genetic variants on phenotypes [48, 49]. To determine

the potential causal SNPs related to blood pressure and BMI, we queried relative SNPs and

genes on Haploreg V4.1 (http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

(Accessed data: November, 2020; Last Update Date: 5th, November, 2015) [50] and publicly

available eQTL data from Genotype-Tissue Expression (GTEx) Project (https://www.

gtexportal.org/home/) (Accessed data: November, 2020; Latest Data Release: V8) [51]. cis-
eQTLs were identified in adipose-subcutaneous, artery-aorta, artery-coronary, artery-tibial,

brain-cerebellar-hemisphere, heart-atrial appendage, and heart-left ventricle tissue.

Gene-based analysis. We used VEGAS 2 [52, 53] to determine the association between

specific genes and phenotypic pairs. All of the SNPs were from “1000G East ASIAN” sample.

As we obtained 19001 genes, a P- value below 2.63×10−6 (0.05/19001) was considered to be

genome-wide significant. P- value below 0.05 was considered as nominal significance thresh-

old [54].

Pathway enrichment analysis. PASCAL programme was used to calculate pathway-

scored [55]. The genetic markers SNPs were firstly mapped to genes, then pathway scores were

calculated through combining corresponding gene scores. Pathways with high scores were

selected and evaluated by chi-squared or empirical score. Pathways and corresponding annota-

tion can be obtained from KEGG, Reactome, and Biocarta.

Results

The characteristics of eligible participants are shown in Table 1. A total of 380 twin pairs are

identified, including 137 dizygotic pairs. 380 twin pairs are used in heritability analysis. The

mean age of participants is 51.5±7.6 years; the mean BMI is 24.3±3.3 kg/m2, and mean SBP

and DBP are 130.8±20.1mmHg and 83.1±10.9mmHg, respectively. 137 DZ pairs were used in

GWAS with mean age of 51.0±7.2 years, mean BMI of 24.6±3.1 kg/m2, and mean SBP and

DBP of 132.5±20.2mmHg and 84.1±10.5mmHg, respectively.

Heritability analysis

The phenotypic correlation of BMI-SBP, BMI-DBP, and SBP-DBP are 0.214, 0.256, and 0.684,

respectively under the best fitting model AE (S1 Table). Genetic correlations are 0.2108,

0.2345, and 0.6942, respectively (Table 2). The standardized path coefficients from best fitting

AE model are presented in Fig 1.

Table 1. Characteristics of participants by sex.

Variable All Female Male

Mean±SD N Mean±SD N Mean±SD N

380 twin pairs Age(year) 51.5±7.6 760 50.9±6.7 392 52.1±8.5 368

BMI(kg/m2) 24.3±3.3 760 24.3±3.4 392 24.3±3.1 368

SBP(mmHg) 130.8±20.1 760 126.2±19.9 392 135.6±19.1 368

DBP(mmHg) 83.1±10.9 760 80.2±9.9 392 86.1±11.0 368

137 DZ pairs Age(year) 51.0±7.2 274 51.1±7.1 136 50.8±7.3 140

BMI(kg/m2) 24.6±3.1 274 24.5±3.2 136 24.7±3.0 140

SBP(mmHg) 132.5±20.2 274 129.6±20.7 136 135.3±19.4 140

DBP(mmHg) 84.1±10.5 274 81.9±9.9 136 86.2±10.7 140

https://doi.org/10.1371/journal.pone.0246436.t001
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Bivariate GWA analysis

SNP-based analysis, imputation and conditional analysis. A total of 1,338,796 eligible

SNPs from 137 DZ twin pairs are included in bivariate GWA analysis. Q-Q plot (Fig 2) indi-

cated no evidence of genomic inflation of test statistics or the bias from the population stratifi-

cation. As illustrated in Manhattan plot (Fig 3), 27 SNPs of both BMI-SBP and BMI-DBP, and

25 SNPs of SBP-DBP reached suggestive evidence level (P< 1 × 10−5), although none of the

SNPs exceeded statistically significant level (P<5×10−8).

Among top signals associated with BMI-SBP, the strongest associated SNP is rs200126670

(P = 2.94×10−7). Ten SNPs near LINC00343 gene located on chromosome 13q33.2 (S2 Table).

Among top signals associated with BMI-DBP, the strongest associated SNP is rs2025924

(P = 3.41×10−7). Eleven SNPs near LINC00343 gene were located on chromosome 13q33.2.

Two SNPs at SLC39A11 gene located on chromosome 17q24.3-q25.1 (S3 Table). Among top

signals associated with SBP-DBP, the strongest associated SNP is rs113511958 (P = 5.14×10−7).

Three SNPs near LINC00624 gene were located on chromosome 1q21.1-q21.2. And two SNPs

at TRAPPC9 gene were located on chromosome 8q24.3 (S4 Table). Moreover, rs4794029 is

related with BMI-SBP, BMI-DBP, and SBP-DBP.

Table 2. Estimated genetic and environmental correlations and phenotypic correlation between traits.

Phenotypic pairs rG(95% CI) rC(95% CI) rE(95% CI) Phenotypic correlation

Full model

BMI-SBP 0.3299(-0.0694,0.7262) -1(-1,1) 0.2302(0.1102,0.3437) 0.211

BMI-DBP 0.2082(-02678,0.6084) -1(-1,1) 0.3218(0.2077,0.4274) 0.256

SBP-DBP 0.8604(0.3403,1) 0.3488(-1,1) 0.6627(0.5870,0.7268) 0.683

Best fitting Model

BMI-SBP 0.2108(0.0843,0.3302)� - 0.2360(0.1194,0.3462)� 0.214

BMI-DBP 0.2345(0.1027,0.3571)� - 0.3183(0.2067,0.4218)� 0.256

SBP-DBP 0.6942(0.6006,0.7698)� - 0.6728(0.6031,0.7323)� 0.684

rG: Genetic correlation; rC: Shared environmental correlation; rE: Non-shared environmental correlation.

�: p< 0.05.

https://doi.org/10.1371/journal.pone.0246436.t002

Fig 1. Best bivariate model (AE model) for BMI-SBP (A), BMI-DBP (B), and SBP-DBP (C) with standardized path coefficients. A1, A2: genetic variance components;

E1, E2: unique environmental variance components; a11 through a22: genetic path coefficients, of which a22 demonstrates specific genetic influence on BP. e11 through

e22: unique environmental path coefficients, of which e22 demonstrates specific unique environmental influence on BP.

https://doi.org/10.1371/journal.pone.0246436.g001
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After imputation, more risk variants are identified (Fig 4). One SNP related to BMI-SBP,

and eight SNPs related to SBP-DBP reached significant statistic level. However, still no SNPs

associated with BMI-DBP exceeds the significant threshold (Table 3).

To eliminate the effects of linkage disequilibrium and identify independently associated

variants, we re-evaluated each variant conditioning on the top variant, which located at chro-

mosome 1, 13, and 5, respectively (S1–S3 Figs).

Fig 2. Q-Q plot for SNP associations with BMI-SBP (A), BMI-DBP (B), and SBP-DBP (C). The red line represents the expected value under the null distribution. The x-

axis shows the expected -log10 P-values, while y-axis shows the observed -log10 P-values. The gray shaded gives the 95% acceptance region. N refers to the number of

SNPs. λ refers to genomic inflation.

https://doi.org/10.1371/journal.pone.0246436.g002

Fig 3. Manhattan plot of individual SNP associations with BMI-SBP, BMI-DBP, and SBP-DBP. Manhattan plot

depicts the individual SNP ordered by chromosome. The x- axis shows the order of chromosome, while y-axis shows

the P-values of SNPs. The red line indicates genome-wide significance level (5×10−8), and the horizontal lower line

indicates suggestive evidence level (1 × 10−5).

https://doi.org/10.1371/journal.pone.0246436.g003
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Expression quantitative trait loci (eQTL) analysis. We queried SNPs from S2–S4 Tables

and Table 3 with LD threshold r2>0.8 and Asian population referenced. Among them,

rs4794029 located on 17q21.32 was the significant eQTL in three tissues (Adipose-Subcutane-

ous (P = 8.4×10−8), Heart-Atrial Appendage (P = 1×10−6), and Heart-Left Ventricle (P = 2.5×
10−5)) related to BMI and SBP. As for SBP and DBP, we found significant eQTLs located on

17q21.32 and 8q12.1 that related to blood pressure, such as rs4400367, the significant eQTL in

several tissues (Heart-Atrial Appendage (P = 2.7×10−14), and Heart-Left Ventricle

Fig 4. Manhattan plot of individual SNP associations with BMI-SBP, BMI-DBP, and SBP-DBP after imputation.

For details see Fig 3.

https://doi.org/10.1371/journal.pone.0246436.g004

Table 3. SNPs that reached P< 5×10−8 from bivariate GWAS of BMI-SBP, BMI-DBP and SBP-DBP after imputation.

SNP Chr. Position(bp) P-value Gene/Nearest gene

BMI-SBP

7:19534588 (rs540063109) 7 19534588 2.06E-08 TMEM196
SBP-DBP

rs61118809 11 78630891 6.84E-10 TENM4
rs5792827 11 78645913 9.14E-09 TENM4
rs5013388 11 78646117 9.14E-09 TENM4
rs79840843 11 78643557 1.04E-08 TENM4
rs57611205 11 78645171 1.34E-08 TENM4
rs673456 11 78629612 1.42E-08 TENM4
rs12419933 11 78630596 2.07E-08 TENM4
7:19534588 (rs540063109) 7 19534588 2.90E-08 TMEM196

Chr, chromosome. bp: base pair.

https://doi.org/10.1371/journal.pone.0246436.t003
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(P = 7.3×10−12), Artery-Aorta(P = 1.2×10−6, P = 1.3×10−5), and Artery-Tibial (P = 1.7× 10−5)).

However, none significant eQTL was found in tissues related to BMI and DBP (Table 4).

Gene-based analysis. We found no genes exceeding the statistically significant level

(2.63×10−6). However, 1043 genes of BMI-SBP, 1103 genes of BMI-DBP, and 1100 genes of

SBP-DBP reached suggestive evidence level (P< 0.05). PHOSPHO1 is related to both BMI-SBP

and BMI-DBP with smallest P- value. Top 10 genes are displayed in Table 5 ordered by P- value.

In addition, above mentioned genes were queried in GTEx, and then number of significant

eQTLs in interest tissues were displayed in S5 Table.

Pathway enrichment analysis. 628 pathways were significantly associated with BMI-SBP,

599 with BMI-DBP, and 766 with SBP-DBP (P< 0.05), such as prion diseases, IL5 pathway,

and Cyclin E associated events during G1/S transition, respectively. TGF beta signaling path-

way, G βγ signaling through PI3Kγ, prolactin receptor signaling, ADP signaling through

P2RY1 pathway etc. More details of top 20 pathways are displayed in S6 Table.

Discussion

We conducted the first bivariate GWAS of joint BMI and BP phenotypes in northern Chinese

population. This investigation included 380 twin pairs with mean age of 51.5±7.6 years; mean

Table 4. P-values of SNPs in different tissues related to BMI-SBP, and SBP-DBP.

SNP ID Tissue Site Detail P-Value Gene Symble

BMI and SBP

rs4794029 Adipose—Subcutaneous 8.40E-08 GNGT2
Heart—Atrial Appendage 1.00E-06 GNGT2
Heart—Left Ventricle 2.50E-05 GNGT2
Artery—Aorta 9.50E-05 GNGT2

SBP and DBP

rs4400367 Heart—Atrial Appendage 2.70E-14 SDCBP
Heart—Left Ventricle 7.30E-12 SDCBP
Artery—Aorta 1.20E-06 NSMAF
Artery—Aorta 1.30E-05 SDCBP
Artery—Tibial 1.70E-05 CYP7A1

rs10113750 Heart—Atrial Appendage 6.90E-15 SDCBP
Heart—Left Ventricle 2.00E-12 SDCBP
Artery—Tibial 4.50E-06 CYP7A1
Artery—Aorta 5.70E-06 NSMAF
Artery—Aorta 1.30E-07 SDCBP

rs11776003 Heart—Atrial Appendage 1.40E-15 SDCBP
Heart—Atrial Appendage 1.40E-15 SDCBP
Heart—Left Ventricle 3.60E-12 SDCBP
Artery—Aorta 1.40E-07 SDCBP

rs3739327 Heart—Atrial Appendage 3.30E-14 SDCBP
Heart—Left Ventricle 2.10E-11 SDCBP
Artery—Aorta 1.60E-06 NSMAF
Artery—Aorta 1.40E-05 SDCBP
Artery—Tibial 2.00E-05 CYP7A1

rs55978930 Heart—Atrial Appendage 2.90E-05 GNGT2
rs4794029 Heart—Atrial Appendage 1.00E-06 GNGT2

Heart—Left Ventricle 2.50E-05 GNGT2
Artery—Aorta 9.50E-05 GNGT2

https://doi.org/10.1371/journal.pone.0246436.t004
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BMI of 24.3±3.3 kg/m2, and mean SBP and DBP of 130.8±20.1mmHg and 83.1±10.9mmHg,

respectively. Bivariate structural equation models indicated a genetic component in pheno-

typic correlation between BMI and BP. The significant genetic correlation of BMI-SBP,

BMI-DBP, and SBP-DBP were 0.2108, 0.2345, and 0.6942, respectively. Previous studies

proved the genetic correlation between BMI and BP range from 0.15 to 0.49 [22, 56]. There-

fore, the pleiotropic gene variants related to both BMI and BP need to be further explored.

This current GWAS identified 6 potential causal SNPs. rs4794029 may affect the gene

expression level of GNGT2 on BMI and SBP. GNGT2 was reported to be involved in inflam-

matory and immune responses through mediating β-arrestin 1-induced Akt phosphorylation

and NFκB activation [57, 58]. We identified 6 SNPs in result of SBP and DBP. Of which, 3

eQTLs (rs4400367, rs10113750, rs3739327) effect NSMAF on gene expression level. NSMAF

plays a pro-apoptotic role in tumor necrosis factor (TNF) delivering immune signals [59].

Table 5. Top 10 genes that reached P<0.05 from bivariate GWAS of BMI-SBP, BMI-DBP and SBP-DBP.

Gene Chr. SNP(n) From To P
BMI-SBP

PHOSPHO1 17 2 47300731 47308128 6.00E-06

GNGT2 17 5 47283595 47287936 6.00E-06

KEAP1 19 5 10596795 10614054 6.40E-05

NAP1L1 12 11 76438671 76478738 1.53E-04

ABI3 17 8 47287588 47300587 1.65E-04

PSMB3 17 5 36908965 36920484 1.89E-04

PFKFB3 10 131 6186842 6277507 2.17E-04

TP53I13 17 2 27895738 27900175 2.34E-04

S1PR5 19 4 10623417 10628668 2.39E-04

THRB 3 317 24158644 24536313 2.75E-04

BMI-DBP

PHOSPHO1 17 2 47300731 47308128 1.10E-05

GNGT2 17 5 47283595 47287936 2.40E-05

LINC00346 13 6 111516333 111522655 2.80E-05

KEAP1 19 5 10596795 10614054 6.20E-05

FMO9P 1 8 166573152 166594473 8.10E-05

TFF2 21 3 43766466 43771208 1.35E-04

TP53I13 17 2 27895738 27900175 1.75E-04

FEV 2 2 219845808 219850379 1.84E-04

FBLIM1 1 12 16085254 16113084 2.31E-04

MRPS28 8 28 80831094 80942506 2.62E-04

SBP-DBP

LINC00346 13 6 111516333 111522655 4.00E-05

TFF2 21 3 43766466 43771208 9.20E-05

SLC37A4 11 7 118895060 118901616 2.00E-04

TRAPPC4 11 3 118889240 118894385 2.06E-04

LOC339593 20 12 11247306 11254031 2.18E-04

LINC01158 2 14 105421882 105467934 2.23E-04

S100A9 1 2 153330329 153333503 2.30E-04

CLIP4 2 45 29320541 29406679 2.32E-04

TREML2 6 14 41157486 41168925 2.37E-04

REM2 14 3 23352431 23356889 2.38E-04

Chr, chromosome.

https://doi.org/10.1371/journal.pone.0246436.t005
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Also, lack of NSMAF result in a decrease in expression of interleukin 6 and various chemo-

kines important in immunoregulation [60]. CYP7A1 encodes a member of the cytochrome

P450 superfamily of enzymes. Cytochrome (CYP) P450 metabolites of arachidonic acid con-

tribute to the control of BP [61]. Previous studies confirmed other member of cytochrome

P450 family such as CYP17A1-CNNM2, CYP17A1, CYP1A2 genes associated with BP in Japa-

nese and European population [25, 62].

In gene-based analysis, nine genes (PHOSPHO1, GNGT2, KEAP1, S1PR5 etc.) were associ-

ated with both BMI-SBP and BMI-DBP. PHOSPHO1 up-regulated express in rabbit models

with hyperlipidemia and atherosclerosis [63]. Also, it has been proved that DNA methylation

at PHOSPHO1 in blood associated with type 2 diabetes risk [64, 65]. KEAP1 protein is one of

key redox-sensitive signaling proteins mediating the response to oxidant stress, which inhibit

regulator of transcription factor Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) [66].

The absence of Nrf2 could protect against weight gain and obesity [67]. S1PR5 encodes one of

receptors of sphingosine 1-phosphate (S1P), which activate the endothelial isoform of nitric-

oxide synthase (eNOS) [68]. As a key signaling protein, eNOS promote relaxation of vascular

smooth muscle and inhibit platelet aggregation [69].

In pathways enrichment analysis, 628 pathways were identified significant association with

BMI-SBP, 599 pathways with BMI-DBP, and 766 pathways with SBP-DBP. Some of them were bio-

logically plausible. G βγ signaling through PI3Kγwas found associated with BMI-DBP. The lipid

kinase PI3Kγ, as a central proinflammatory signal transducer, proposed a role in obesity-induced

inflammation and insulin resistance in hematopoietic cells [70, 71]. Previous research indicated the

increasing PI3Kγ in insulin-resistant obese subjects. Meanwhile, PI3Kγ participants in physiological

process of vascular smooth muscle cells [72]. Prolactin receptor signaling was found associated with

SBP-DBP. Previous studies demonstrated that for each 5-mg/dL increment in prolactin, increased

odds of low high-density lipoprotein cholesterol were observed in women. In men, a 5-mg/ dL

increment was associated with increased risk of incident hypertension and diabetes [73].

To our best knowledge, this is the first GWAS about BMI and BP phenotypes focusing on

northern Chinese population. Compared with univariate GWAS, bivariate design could iden-

tify more pleiotropic genes to reveal biological mechanisms related to obesity and hyperten-

sion. However, there are still some limitations existing. Firstly, the small twin sample due to

difficulty in recruitment and restriction in inclusion criteria might be the obstacle to find more

significant SNPs, genes and pathways. Secondly, due to lack of standard approach to define the

cutoff P value in bivariate GWAS, 5 × 10−8 and 1 ×10−5, which based on Bonferroni correction,

were still common used in current GWAS to solve multiple testing problem [74]. Since Bon-

ferroni correction is quite conservative, we applied P<1 ×10−5 as the suggestive association in

the discovery stage. However, low P-value threshold might lead to less significant genetic vari-

ants caught, thus, more further researches are required to explore the appropriate threshold.

Thirdly, since different genetic background and sample size in limited researches, most of our

result cannot be verified by other studies. Currently, many risk variants has been revealed asso-

ciated with obesity and hypertension, however, most of them are lack of direct biological rela-

tionship with obesity and hypertension in pathophysiology.

In conclusion, present GWAS identified several SNPs, genes and pathways associated with

both BMI and BP. Given there are still uncovered common genetic mechanism potentially

related to obesity and hypertension, more studies need to be performed.
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