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A B S T R A C T   

Mineral nutrients play a significant role in influencing the quality of tea. In order to detect the quantitative 
relationships between tea quality and mineral elements from the soil and tea plant, samples of soil and tea leaves 
from ’Baiyeyihao’ and ’Huangjinya’ cultivars were collected from 160 tea plantations, and these were used to 
determine 16 types of soil mineral elements, 16 leaf nutrient elements, and 10 key tea quality compositions. 
Three predictive models including linear regression, multiple linear regression (MLR) and random forest (RF) 
were applied to predict the main constituents of tea quality. The usage of mineral elements in the soil and tea 
leaves improved the estimation accuracy of tea quality compositions, the RF performed best for EGCG (R2 

=

0.67–0.77), amino acid (R2 = 0.61–0.88), tea polyphenols (R2 = 0.68–0.77) and caffeine (R2 = 0.59–0.68), while 
the MLR performed well for predicting the soluble sugars (R2 = 0.54–0.84). The multi-source information 
demonstrated a superior accuracy in predicting the biochemical components of tea when compared to individual 
mineral elements.   

Introduction 

Tea (Camellia sinensis L.), characterized by its distinct flavor and 
myriad health benefits, ranks among the most consumed beverages 
globally (Zaman et al., 2022). Tea boasts an array of secondary metab
olites, including tea polyphenol (TP), amino acid (AA), soluble sugars 
(SS), alkaloids, and terpenes. These components are closely tied to tea 
quality, contributing to its diverse tastes, flavors, and health benefits 
(Jiang et al., 2019). Past studies suggest that a higher content of these 
multifaceted components forms the foundation of superior quality tea 
(Pang et al., 2022). Among the 26 types of AA identified in tea leaves, 
theanine stands out as a unique component pivotal to the formation of 
taste and aroma (Guo et al., 2018). TP, caffeine (CAF), and catechins 
primarily control the bitterness of tea infusion. With enhanced esterifi
cation of catechins, a majority of polyphenols undergo oxidation by 
oxidative enzymes, forming theaflavins (TFs) and thearubigins (TRs) in 
black tea (Zhao et al., 2020). In particular, high levels of EGCG and low 
levels of EC in green tea, as observed in 11 Kenyan clones, serve as in
dicators of the quality potential for ordinary black tea derived from the 

tea plant (Owuor and Obanda, 2007). Additionally, the contents of TPs, 
CAF, epigallocatechin gallate, and epigallocatechin show a significant 
and positive correlation with the sensory evaluation of tea quality (Ma 
et al., 2022). TPs are potent antioxidants, capable of preventing and 
treating diseases by neutralizing free radicals and regulating the activity 
of different oxidases in the body (Yan et al., 2020). Furthermore, during 
the formation of green tea, an increase in total SS content can amplify 
sweetness and mellow taste. The SS, along with high boiling volatile 
compounds, form glycosides that can enhance the broth’s flavor (Deng 
et al., 2022). Hence, the taste of tea is predominantly determined by 
chemical components such as AA, TPs, CAF, and SS. 

Mineral elements have been shown to influence the growth of tea 
trees and the quality of tea leaves (Yang et al., 2022). For instance, ni
trogen (N) is crucial for the growth and development of tea plants, 
promoting AA accumulation during N metabolism (Wang et al., 2021). 
Notably, the contents of free AA such as theanine and glutamic acid are 
negatively correlated with phosphorus (P) and Potassium (K) nutrient 
content (Wei et al., 2022). A sufficient concentration of zinc (Zn) could 
boost the synthesis of polyphenols, free AA, and CAF (Tseng & Lai, 
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2022). Previous studies have employed multi-factor analysis in acidic 
soils, revealing that aluminum (Al) negatively affects the concentrations 
of magnesium (Mg), P and manganese (Mn), thereby influencing tea 
quality (Dupré et al., 2019). Conversely, galloylated catechins were 
positively associated with leaf iron (Fe) concentration (Tolrà et al., 
2020). Research by Sentkowskar et al. (2009) delved into the antioxi
dant interaction between selenium and TPs. The application of micro
nutrients significantly affected the percentages of P, Zn, and copper 
(Cu). A combination of N and K micronutrients had a notable impact on 
CAF content. Although lead (Pb) and mercury (Hg) are not essential for 
the growth of tea trees, they play a significant role in assessing the 
quality and safety of tea (Ye et al., 2021). 

Earlier research has indicated the feasibility of using simple linear 
regression (LR) to construct crop quality estimation models. For 
example, Chen et al. (2015) employed a unitary LR model to establish 
the relationship between the intensity of laser-induced breakdown 
spectroscopy characteristic line and the concentration of chromium (Cr), 
enabling the prediction and analysis of Cr content in potatoes. However, 
since quality parameter formation is influenced by multiple factors, 
Huang et al. (2021) utilized a multiple linear regression (MLR) equation 
to establish the relationship between mineral nutrient elements and fruit 
quality, and the results showed the MLR can more accurately predict the 
soluble solids, titratable acid content, and the ratio of soluble solids to 
titratable acid in fruits compared to unary LR models. Soil properties 
also significantly influence crop quality. For instance, Liu et al. (2021) 
demonstrated that soil Zn and Cu were the main factors affecting the 
content of SS in capsicum through stepwise multivariate regression 
analysis, while available K primarily determined the content of vitamin 
C in capsicum. Therefore, when constructing quality estimation models, 
the mineral elements in the soil must also be taken into account. How
ever, the effectiveness of soil properties in improving quality estimation 
remains under-studied. 

The quality prediction has been studied based on the relationship 
between mineral element content and fruit quality in several crops such 
as loquat, persimmon, and pepper, while few researches have been re
ported for quality prediction mechanism of tea (Li et al., 2019). Our goal 
is to establish the tea quality prediction mechanism based on the con
centration of mineral nutrients in leaves or soil. Specifically, our ob
jectives are: (a) to examine the quantitative relationships between tea 
quality parameters and mineral elements in tender leaves, mature 
leaves, and soil; (b) to develop an optimal estimation model for tea 
quality parameters using different regression algorithms; (c) to investi
gate the optimum range of mineral elements for achieving the optimal 
levels of tea quality. 

Materials and methods 

Experimental sites 

This study was conducted in Liyang city of Jiangsu province, China 
(Fig. S1), 31◦09′-31◦41′N, 119◦08′-119◦36′E). The climate of the region 
is subtropical monsoon, with an annual average temperature of 15.4 ℃ 
and average precipitation of 1149.7 mm. Given these conditions, the 
area is well-suited for tea cultivation and spans a cultivation area of 
4800 ha (Kaleita et al., 2017). The primary tea cultivars were 
’Baiyeyihao’ and ’Huangjinya’ in this experimental area. 

Plant and soil sampling 

Each sampling location was accurately recorded using a Trimble 
GeoXH6000 (Trimble, CA, USA) device. At each point, a bud along with 
two tender leaves, and 4–6 mature leaves were manually collected from 
a single tea plant. Additionally, five soil samples were collected from a 
depth of 0–30 cm over an approximately 100 m2 area surrounding the 
sampling point. These soil samples were then gathered into a single 
representative sample for that particular location. The collected tea 

samples were cleaned with ultrapure water and then dried using a 
dehydration machine at 80 ◦C for 12 h. Post-drying, each sample was 
ground into powder, sieved through a 0.425 mm diameter mesh, and 
stored in sealed bags at room temperature for subsequent chemical 
analyses. 

Chemical analysis for plant and soil samples 

Determination of the tea quality parameter 
TPs were quantified using the ferric tartrate colorimetric method 

(GB/T8313-2002), SS by the anthrone colorimetric method, and AA by 
the ninhydrin colorimetric method (GB/T8314-2002). ECG, EC、 
EGCG、EGC、GOG、GC and CAF content was determined via high- 
performance liquid chromatography (HPLC) under specified condi
tions: detection wavelength at 280 nm, flow rate at 0.8 mL per minute, 
column temperature at 40 ◦C, injection volume at 2 μL, with a mobile 
phase gradient elution employing 5 % acetonitrile with 0.26 % phos
phoric acid (Phase A), and 80 % methanol solution (Phase B). 

Determination of mineral elements from tea leaves and soil samples 
Total carbon (C) and total N contents in fresh tea leaves were 

analyzed using the dry combustion method, where in 15 mg of sieved 
(100-mesh), dried, and ground tea leaves were directly measured with 
an automated C/N analyzer (Multi EA 5000, Jean, Germany). Approx
imately 0.1 g of each soil sample was placed into a Teflon digestion tank, 
combined with 4.5 mL of HCl and 1.5 mL of HNO3, and then left to stand 
for 24 h. Following this, the sample was subjected to microwave 
digestion (Yang et al., 2022). The resulting acid solution was then 
transferred to a 200 mL volumetric flask and diluted to the 200 mL mark 
with ultrapure water, yielding the soil sample solution. Similarly, 
around 0.2 g of tea leaf samples was placed into a Teflon digestion tank, 
combined with 3 mL of HNO3, and left for 12 h, after which it was 
subjected to microwave digestion. The resulting acid solution was 
transferred into a 100 mL volumetric flask and diluted to the 100 mL 
mark with ultra-pure water, yielding the tea leaf sample solution. 

From each sample solution, 10 mL was filtered through a 0.22 μm 
membrane and stored in a refrigerator at 4 ◦C until testing. Concentra
tions of select metals, including Zn, Ni, Mn, Cr, Cu (quantified using ICP- 
OES) and Cd, As, Pb, Hg (quantified using ICP-MS), were determined 
(Brzezicha-Cirocka, Grembecka, & Szefer, 2016). Standard reference 
materials were utilized during these analytical procedures to measure 
the concentrations of Zn, Ni, Mn, Cr, Cu, Cd, As, Pb, Hg, and Se 
(Table S1). 

Data processing and statistical analysis 

The relationships between quality parameters and mineral elements 
derived from tea leaves and soil were examined based on the experi
mental data from ’Baiyeyihao’, ’Huangjinya’, and the combination of 
two cultivars. 70 % of the collected experimental data was allocated for 
model calibration, with the remaining 30 % set aside for model vali
dation. To construct the quality parameter estimation model, three 
methods were employed: LR, MLR, and the RF algorithm. The ’lm’ and 
’randomForest’ packages in R software (v. 3.4.4., R Development Core 
Team, 2018) were utilized during the model construction and validation 
processes. The predictive capacities of each modeling method were 
evaluated using the coefficient of determination (R2), the root mean 
square error (RMSE; equation 1) and relative error (RE; equation 2), the 
model with larger R2 and smaller RMSE and RE was selected. 

RMSE =
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Where n represents the number of samples, Oi and Pi represent the 
observed and predicted values, respectively. 

Results 

The variability analysis of mineral elements 

The descriptive statistics of mineral elements from the tender leaf 
were evaluated, the results showed a significant variations in the two 
cultivars (Table S2). In the ’Baiyeyihao’ cultivar, GCG displayed the 
highest coefficient of variation (CV) value at 43 %, while in ’Huangji
nya’, the mineral element GC showed the most variation with a CV value 
of 75 %. EGCG, EGC, AA, TP, and SS demonstrated similar CV values 
between the two cultivars. When considering the results from the ’two 
cultivars combination’, GC (55 %) and GCG (53 %) had the highest CV 
values, followed by EC (49 %), SS (42 %), ECG (31 %), AA (27 %), EGC 
(25 %), CAF (24 %), EGCG (19 %), with TP displaying the lowest CV 
value at 14 %. 

Correlation analysis between quality parameters and mineral elements 

The correlations between the quality parameters and mineral ele
ments from tender, mature leaves and soil were analyzed for ’Baiyeyi
hao’, ’Huangjinya’ cultivars, as well as the ’two cultivars combination’ 
(Fig. 1). For the ’Baiyeyihao’ cultivar (Fig. 1a), the Cu demonstrated the 
highest correlation with both EGCG and EGC, with r values of 0.85 and 
0.34 respectively. The correlation between K and AA was the highest (r 
value of 0.74). Cu showed the highest correlation with TPs (r value of 
0.49), and the C element correlated most strongly with both CAF and SS, 
having r values of 0.49 and 0.48 respectively. In the case of the 
’Huangjinya’ cultivar (Fig. 1b), Cu remained the most correlated with 
EGCG (r value of 0.85). K displayed the highest correlation with AA (r 
value of 0.91), while P was most correlated with TPs (r value of 0.92). 

Lastly, the C element was found to correlate most strongly with CAF (r 
value of 0.59) and SS (r value of 0.55). Regarding the mineral elements 
from the tender leaf of the ’two cultivars combination’ (Fig. 1c), Cu 
displayed the strongest correlation with EGCG (r value of 0.82), while 
the most significant correlation was observed between N and AA (r value 
of 0.78). Cu also correlated most with TPs (r value of 0.59), and the C 
element showed the strongest correlation with both CAF (r value of 
0.62) and SS (r value of 0.6). 

For the mature leaf of ’Baiyeyihao’ (Fig. 1d), Cu demonstrated the 
strongest correlation with EGCG (r value of 0.47). The strongest corre
lation was seen between K and AA (r value of 0.56), while P and TPs had 
the highest correlation (r value of 0.38). The C element exhibited the 
highest correlation with CAF (r value of 0.42), and Cu had the strongest 
correlation with SS (r value of 0.33). In the mature leaf of ’Huangjinya’ 
(Fig. 1e), Cu showed the correlation with EGCG (r value of 0.47). The 
correlation was between N and AA (r value of 0.56). The highest cor
relation was observed between P and TPs (r value of 0.38), and N and 
CAF (r value of 0.42). Finally, the C element showed the correlation with 
SS (r value of 0.33). For the mature leaf of the ’two cultivars combina
tion’ (Fig. 2f), Cu had the highest correlation with EGCG (r value of 
0.47), and the strongest correlation was observed between K and AA (r 
value of 0.56). The highest correlation was seen between P and TPs (r 
value of 0.38), and the C element and CAF (r value of 0.42). Lastly, the C 
element showed the highest correlation with SS (r value of 0.33). 

In the combined soil data of ’Baiyeyihao’ (Fig. 1g), P showed the 
highest correlation with EGCG (r value of 0.22), Cu with TPs (r value of 
0.24) and P exhibited the highest correlation with CAF (r value of 0.25). 
For the combined soil data of ’Huangjinya’ (Fig. 1h), the strongest 
correlation was observed between P and EC (r value of 0.31), and Zn had 
the highest correlation with EGC (r value of 0.28). The C element 
showed the strongest correlation with GCG (r value of 0.39), Fe with 
CAF (r value of 0.25), and Zn with SS (r value of 0.27). For the combined 
soil data from the ’two cultivars combination’ (Fig. 1i), the element Fe 

Fig. 1. Correlation of quality parameter and mineral element: from tender leaves of (a) ‘Baiyeyihao’, (b) ‘Huangjinya’ and (c) ‘two cultivars combination’; from 
mature leaves of (d) ‘Baiyeyihao’, (e) ‘Huangjinya’ and (f) ‘two cultivars combination’; from tender, mature leaves and soil combined data of (g) ‘Baiyeyihao’, (h) 
‘Huangjinya’ and (i) ‘two cultivars combination’. The symbols *, ** and **** indicate statistical significance at p < 0.05, p < 0.001 and p < 0.0001, respectively. 
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exhibited the strongest correlation with EC (r value of 0.21). P demon
strated the highest correlations with EGCG (r value of 0.22), GCG (r 
value of 0.28), and GC (r value of 0.19). Lastly, Zn was most closely 
correlated with SS, with an r value of 0.2. 

Quality parameter estimation using LR model 

LR analyses were conducted between the optimal mineral elements 
and quality parameters for ’Baiyeyihao’, ’Huangjinya’ and the com
bined data (Table 1). The relationships between mineral elements and 
ECG, EC, EGC, GCG, and GC yielded low R2 values for both calibration 
(0.05–0.38) and validation (0.01–0.43) (Table S3). However, mineral 
elements demonstrated good accuracy for the estimation of EGCG, AA, 
TP, CAF, and SS. Cu was most strongly correlated with EGCG in both 
tender and mature leaves, yielding R2

c values of 0.18–0.54, 0.57–0.67, 
and 0.54–0.70 for ’Baiyeyihao’, ’Huangjinya’, and the combined data, 
respectively. For the estimation of AA in tender and mature leaves from 
both cultivars, K (R2

c = 0.50–0.66) and N (R2
c = 0.59–0.62) performed 

best. Among all mineral elements, Cu (R2
c = 0.44) and P (R2

c =

0.32–0.63) yielded the best accuracy for TP estimation in the two cul
tivars. For CAF estimation in tender and mature leaves, C and N showed 

high accuracy, with R2
c values of 0.48–0.72 and 0.46, respectively. For 

the estimation of SS, C outperformed all other mineral elements in both 
cultivars. 

Quality parameter estimation using MLR 

Five optimal elements from tender and mature leaves were combined 
to construct the quality parameter estimation models using MLR 
(Table 2). The results indicated that the MLR model improved the ac
curacy of ECG, EC, EGC, GCG, and GC estimation compared to the LR 
model (Table S4). In tender leaves, the AA estimation model achieved 
the highest accuracy among all quality parameters using MLR for both 
cultivars, with R2

v, RMSE, and RE values of 0.69–0.73, 0.16–0.46, and 
5.55–13.97 %, respectively. In mature leaves, the TP estimation model 
exhibited the highest accuracy among all quality parameters using MLR 
for both cultivars, with R2

v, RMSE, and RE values of 0.61–0.70, 
1.13–1.77, and 5.54–8.91 %, respectively. 

Five optimal elements derived from tender and mature leaves, along 
with soil data, were combined to construct the quality parameter esti
mation models using MLR method (Table 2). The ECG, EC, EGC, GCG, 
and GC estimation models demonstrated commendable calibration 

Fig. 2. The Increase in Node Purity (InNoderity) value of each input parameter from the RF model estimation at the (a) EGCG content (b)AA content (c) TPs content 
(d) CAF content (e) SS content. 

Table 1 
The calibration and validation results of quality parameter estimation models based on the mineral elements from tender and mature leaf using LR algorithm.  

Data 
source 

Quality 
parameter 

Baiyeyihao Huangjinya Two cultivars combination 

Optimal 
element 

R2
c R2

v RMSE RE 
(%) 

Optimal 
element 

R2
c R2

v RMSE RE 
(%) 

Optimal 
element 

R2
c R2

v RMSE RE 
(%) 

Tender 
leaf 

EGCG Cu  0.54  0.64  0.87  13.16 Cu  0.67  0.66  0.58  8.48 Cu  0.70  0.60  0.91  14.03 
AA K  0.64  0.63  0.58  17.37 K  0.66  0.53  0.23  8.47 N  0.62  0.55  0.52  17.94 
TPs Cu  0.44  0.44  2.26  12.21 P  0.63  0.43  0.34  6.10 P  0.68  0.39  0.72  11.23 
CAF C  0.70  0.37  0.70  24.28 C  0.59  0.34  0.14  6.54 C  0.48  0.32  0.49  18.96 
SS C  0.62  0.42  0.80  40.18 C  0.61  0.57  0.66  43.49 C  0.54  0.48  0.77  46.51 

Mature 
leaf 

EGCG Cu  0.18  0.52  1.01  15.60 Cu  0.57  0.43  0.65  10.88 Cu  0.54  0.47  0.98  15.41 
AA K  0.50  0.48  0.59  19.02 N  0.59  0.40  0.40  13.17 K  0.50  0.23  0.81  29.02 
TPs P  0.32  0.27  1.07  10.56 P  0.56  0.46  1.29  6.15 P  0.32  0.25  2.00  10.33 
CAF C  0.49  0.34  0.48  19.05 N  0.46  0.31  0.35  14.25 C  0.49  0.32  0.48  20.21 
SS C  0.52  0.30  0.88  46.81 C  0.53  0.82  0.67  43.33 C  0.52  0.39  0.82  44.16 

Note: R2
c and R2

v represent the calibration and validation R2, respectively. 
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accuracy, albeit the validation results were slightly less impressive. For 
the calibration results of EGCG, AA, TPs, CAF, and SS, the combined 
model utilizing tender, mature, and soil data showed a higher R2

c 
(0.81–0.91) compared to individual models for tender (R2

c = 0.75–0.89) 
and mature leaves (R2

c = 0.69–0.86). 

Quality parameter estimation using RF algorithm 

Quality parameter estimation models were also constructed using 
five optimal elements from tender and mature leaves via the RF algo
rithm (Table 3). The resulting models for ECG, EC, EGC, GCG, and GC 
showed slightly reduced validation accuracy, with the exceptions of EC 
(R2

v = 0.48–0.60), GCG (R2
v = 0.37–0.50), and GC (R2

v = 0.53–0.54) for 
the combined cultivars (Table S5). The RF algorithm achieved strong 
accuracy for estimating EGCG, AA, TP, CAF, and SS using data from the 
tender and mature leaves of both cultivars. In the ’Baiyeyihao’ cultivar, 
the EGCG estimation model (R2

v = 0.72, RMSE = 0.81, RE = 12.99 %) 
achieved higher validation accuracy based on tender leaf data compared 
to other quality parameters, while the amino acid estimation models 
performed optimally for ’Huangjinya’ (R2

v = 0.85, RMSE = 0.17, RE =
5.84 %) and the combined cultivars (R2

v = 0.78, RMSE = 0.34, RE =
10.57 %). When mature leaf data was employed, the TP estimation 
model demonstrated superior accuracy, boasting R2

v, RMSE, and RE 
values of 0.61–0.70, 1.22–1.80, and 5.72–9.42 % respectively across the 
two cultivars. 

Utilizing the RF algorithm and a combination of five optimal 

elements from tender and mature leaves and soil data, quality parameter 
estimation models were constructed (Table 3). The EGCG, AA, TP, CAF, 
and SS estimation models all demonstrated robust accuracy. The RF 
model achieved the highest accuracy in amino acid estimation (R2

v =

0.88, RMSE = 0.21, RE = 7.13 %) for the ’Baiyeyihao’ cultivar, while the 
TP model delivered the most optimal validation results for both 
’Baiyeyihao’ (R2

v = 0.68, RMSE = 1.77, RE = 9.23 %) and the combined 
cultivars (R2

v = 0.71, RMSE = 1.53, RE = 7.80 %). 

The importance analysis of the governing variables on tea quality 

The aforementioned results suggest that the RF models are proficient 
in predicting the levels of EGCG, AA, TPs, CAF, and SS in tea with high 
accuracy. As a subsequent step, we sought to identify the input variable 
in the RF model that exerts the most significant impact on the output 
variable. In simpler terms, we aimed to discern which mineral elements 
in tea have the most profound influence on EGCG, AA, TPs, CAF, and SS. 
Consequently, we carried out an increase in node purity (InNoderity) by 
incorporating all variables to assess the model’s stability. 

The results of the importance analysis for the EGCG prediction model 
are displayed in Fig. 2a. The RF model featuring Cu content in tender tea 
leaves exhibited the highest importance. The influence of mineral ele
ments in tea on EGCG, in descending order, was: Cut, Cum, Pt, Pm, Cm, 
Znt, Cdt, Fes, Ass, Ct, Crs, Znm, Cus, Fem, and Ps. Fig. 2b presents the 
importance analysis results for the AA prediction model. The RF model 
with the highest importance was that with the N content of tender tea 

Table 2 
The calibration and validation results of quality parameter estimation models based on the mineral elements from tender, mature leaf and soil using MLR algorithm.  

Data source Element Baiyeyihao Huangjinya Two cultivars combination 

R2
c R2

v RMSE RE(%) R2
c R2

v RMSE RE(%) R2
c R2

v RMSE RE(%) 

Tender leaf EGCG  0.88  0.65  0.86  12.85  0.83  0.58  0.57  78.14  0.84  0.60  0.91  13.84 
AA  0.89  0.71  0.46  13.97  0.86  0.69  0.16  5.55  0.87  0.73  0.39  11.93 
TPs  0.75  0.62  1.82  10.50  0.77  0.66  1.16  5.39  0.78  0.72  1.51  7.27 
CAF  0.89  0.54  0.80  41.05  0.78  0.51  0.23  10.35  0.83  0.52  0.41  15.79 
SS  0.83  0.50  0.73  36.61  0.76  0.59  0.84  54.45  0.80  0.56  0.74  39.70 

Mature leaf EGCG  0.75  0.51  1.01  14.96  0.72  0.50  0.84  13.37  0.75  0.58  0.94  14.35 
AA  0.85  0.57  0.55  16.91  0.77  0.53  0.61  23.66  0.86  0.50  0.46  15.55 
TPs  0.74  0.61  1.77  8.91  0.69  0.43  0.62  5.54  0.76  0.70  1.13  5.68 
CAF  0.78  0.56  0.38  15.96  0.72  0.45  0.35  14.19  0.81  0.60  0.29  11.81 
SS  0.77  0.48  0.79  43.22  0.72  0.65  0.68  30.28  0.76  0.55  0.78  41.83 

T + M + S EGCG  0.89  0.59  0.93  14.14  0.85  0.69  1.28  19.56  0.86  0.53  0.98  14.86 
AA  0.91  0.74  2.07  23.60  0.88  0.71  0.25  7.97  0.89  0.63  1.39  39.91 
TPs  0.85  0.61  2.36  12.60  0.84  0.76  1.11  5.18  0.85  0.69  1.50  7.22 
CAF  0.91  0.66  2.74  28.96  0.81  0.50  0.35  15.17  0.86  0.61  0.38  16.43 
SS  0.84  0.54  0.77  35.36  0.86  0.84  0.56  36.73  0.84  0.58  0.73  46.78 

Note: R2
c and R2v represent the calibration and validation R2, respectively. T + M + S indicate the combined mineral element data from tender, mature leaf and soil. 

Table 3 
The validation results of quality parameter estimation models based on the mineral elements from tender, mature leaf and soil using RF algorithm.  

Data source Element Baiyeyihao Huangjinya Two cultivars combination 

R2
v RMSE RE(%) R2

v RMSE RE(%) R2
v RMSE RE(%) 

Tender leaf EGCG  0.72  0.81  12.99  0.80  0.98  15.87  0.68  0.85  13.83 
AA  0.67  0.48  15.66  0.85  0.17  5.84  0.78  0.34  10.57 
TPs  0.64  1.71  8.68  0.80  1.21  5.4  0.72  1.44  7.40 
CAF  0.52  0.39  15.53  0.55  0.21  9.22  0.65  0.35  13.5 
SS  0.49  0.73  37.29  0.78  0.6  41.51  0.61  0.67  35.27 

Mature leaf EGCG  0.55  1.00  16.05  0.61  0.96  15.96  0.58  0.95  15.23 
AA  0.61  0.49  15.79  0.71  0.29  9.96  0.54  0.49  16.03 
TPs  0.61  1.80  9.42  0.70  1.22  5.72  0.69  1.51  7.76 
CAF  0.62  0.43  18.02  0.51  0.28  12.03  0.55  0.39  15.63 
SS  0.79  0.87  48.79  0.81  0.66  46.01  0.83  0.86  48.03 

T + M + S EGCG  0.69  0.90  14.61  0.77  1.09  17.93  0.67  0.92  14.94 
AA  0.69  0.59  21.46  0.88  0.21  7.13  0.61  0.47  16.37 
TPs  0.68  1.77  9.23  0.77  1.28  5.77  0.71  1.53  7.80 
CAF  0.68  0.45  19.39  0.59  0.24  10.75  0.66  0.36  14.10 
SS  0.48  0.76  37.47  0.77  0.72  51.09  0.55  0.74  40.07 

Note: R2
v represent the validation R2. T + M + S indicate the combined mineral element data from tender, mature leaf and soil. 
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leaves. The mineral elements in tea impacting AA, from highest to lowest 
influence, were: Nt, Nm, Kt, Alt, Alm, Fet, Znm, Znt, Km, Fem, Hgs, Ks, Pbs, 
Cs and Cus. The TPs prediction model’s importance analysis results are 
shown in Fig. 2c. The RF model with the P content of tender tea leaves 
was of the highest importance. The mineral elements in tea influencing 

TPs, in order of decreasing effect, were: Pt, Pm, Cut, Ct, Cum, Znt, Znm, Cm, 
Hgm, Ses, Ass, Nt, Cus, Ps, and Fes. Fig. 2d illustrates the importance 
analysis results of the CAF prediction model. The RF model with the 
highest importance was that with the C content of tender tea leaves. The 
sequence of mineral elements in tea impacting CAF, from highest to 

Fig. 3. Response surface plot of the EGCG content, AA content, TPs content, CAF content and SS content under different mineral elements content in tea. (a) Tea Cut, 
Pt content and the EGCG content; (b) Tea Cum, Pm content and the EGCG content; (c) Soil Ass, Fes content and the EGCG content; (d) Tea Nt, Kt content and Amino acid 
content; (e) Tea Nm, Alm content and Amino acid content; (f) Soil Ks, Hgs content and Amino acid content; (g) Tea Pt, Cut content and TPs content; (h) Tea Pm, Cum 
content and TPs content; (i) Soil Ass, Ses content and TPs content; (j) Tea Ct, Nt content and CAF content; (k) Tea Cm, Nm content and CAF content; (l) Soil Nis, Pbs 
content and CAF content; (m) Tea Ct, Cut content and SS content; (n) Tea Cm, Cum content and SS content; (o) Soil Zns, Cds content and SS content. 
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lowest, was: Ct, Cm, Nt, Nm, Znm, Kt, Pt, Cdm, Alm, Fet, Nis, Pbs, Mns, Fes 
and Cus. Lastly, the importance analysis results for the SS prediction 
model are presented in Fig. 2e. The RF model showcasing the highest 
importance had the C content of tender tea leaves. The mineral elements 
in tea influencing SS, from most to least influential, were: Ct, Cm, Cut, 
Cum, Nt, Kt, Nm, Alt, Zns, Znm, Cds, Ps, Km, Cus, and Crs. 

The analysis of response surface plots 

Response surface plots of the highly important parameters were 
conducted to grasp the influence of these parameters and identify their 
optimal levels for achieving superior tea quality. The relationships be
tween the contents of Ct, Cm, Nt, Nm, Pt, Pm, Kt, Ks, Cut, Cum, Alm, Ass, and 
other elements in the tea and EGCG, AA, TPs, CAF, and SS were analyzed 
through these response surface plots (Fig. 3). Fig. 3a-c demonstrated that 
the impact of Pt, Cut, Pm, Cum, Ass, and Fes content in tea on EGCG. 
Greater EGCG levels were observed in samples with higher Pt content 
(2770–3600 mg kg− 1), higher Cut content (6.46–13.99 mg kg− 1), 
elevated Pm content (1000–2200 mg kg− 1), substantial Cum content 
(1.06–4.68 mg kg− 1), lower Ass content (17.61–31.68 mg kg− 1), and 
lesser Fes content (10800–43700 mg kg− 1). The influence of Nt, Kt, Nm, 
Alm, Ks, and Hgs content in tea on AA is displayed in Fig. 3d-f. Greater AA 
levels were associated with higher Nt content (73800–88900 mg kg− 1), 
increased Kt content (7100–9100 mg kg− 1), higher Nm content 
(29100–78200 mg kg− 1), elevated Alm content (1010–3450 mg kg− 1), 
substantial Ks content (2700–8250 mg kg− 1), and lower Hgs content 
(0.05–0.23 mg kg− 1). However, when the Nt content fell below 60000 
mg kg− 1, a significant reduction in the tea’s AA level was observed. 
Fig. 3g-i exhibited the effect of Pt, Cut, Pm, Cum, Ass, and Ses content in 
tea on TPs. Lower TPs levels were found in places with lower Pt content 
(2770–3600 mg kg− 1), medium Cut content (6.15–7.6 mg kg− 1), lower 
Pm content (650–1800 mg kg− 1), medium Cum content (1.06–4.68 mg 
kg− 1), high Ass content (17.61–31.68 mg kg− 1), and medium Ses content 
(0.29–1.01 mg kg− 1). When the Cu content exceeded 8 mg kg− 1, the TPs 
level in the tea noticeably increased. Higher levels of CAF were found in 
samples with increased Ct content (569000–752000 mg kg− 1), elevated 
Nt content (66300–88900 mg kg− 1), substantial Cm content 
(522000–864000 mg kg− 1), increased Nm content (32000–78200 mg 
kg− 1), moderate Nis content (17.3–43.15 mg kg− 1), and diminished Pbs 
content (19.96–30.69 mg kg− 1). The response surface plot of the impact 
of Ct, Cut, Cm, Cum, Zns, and Cds content in tea on SS is shown in Fig. 3m- 
o. Higher SS concentrations were observed in instances with elevated Ct 
content (637000–751000 mg kg− 1), increased Cut content (6.46–13.99 
mg kg− 1), substantial Cm content (617000–893000 mg kg− 1), increased 
Cum content (3.22–7.12 mg kg− 1), low Zns content (26.52–53.03 mg 
kg− 1), and medium Cds content (0.03–0.14 mg kg− 1). 

Discussion 

Detecting the quantitative relationships between mineral elements and 
quality indices of tea leaf using different regression methods 

A large number of studies have shown that the quality index is 
affected by mineral elements, so people have tried many times to eval
uate the quality of tea by chemical analysis (Jabeen et al., 2019). In this 
study, by analyzing the correlation between different mineral elements 
and quality indexes, we selected the mineral elements with the best 
relationship with quality indexes. For AA prediction, the LR model based 
on K element in white and ’Huangjinya’ buds performed best. Ye et al. 
(2021) produced the highest free AA increments through potted and 
field experiments with K nutrient application, and our results are the 
same. Our results are different from previous studies in which the effect 
of N element on AA in tea was the most significant. This difference may 
be due to the improvement of N metabolism by potassium administra
tion, which led to an increase in AA synthesis, and the researchers 
focused more on the direct effect of N on AA formation. For CAF and SS, 

the prediction performance of C in tender and mature leaves was the 
best. This is mainly because the metabolism of CAF is closely related to 
that of nucleic acid, and the basic skeleton of nucleic acid is element C, 
so element C is closely related to the composition of CAF (Xia et al., 
2017). SS are carbohydrates, which depend on the amount of element C 
in the tea, similar to the results of this study (Shevchuk et al., 2022). 

Tea quality is influenced by a myriad of factors, necessitating the 
inclusion of a broader range of mineral elements in the quality index 
prediction model. The MLR model constructed outperformed the LR 
variant. The prediction accuracy for AA, as measured by the R2 value of 
0.87, was superior when multiple mineral elements were incorporated 
in the tender leaves of ’Baiyeyihao’ compared to a single N element (R2 

= 0.62). This finding echoes the study from Sun et al. (2022), who 
revealed that incorporating Fe, K, B, and Ca elements heightened the 
prediction precision for peach quality. In corroborating the assertion 
from Han et al. (2008) that soil fertility affects tea quality, this study 
extracted the five soil mineral elements best associated with the quality 
index. As Table 3 indicates, the model incorporating soil information 
(R2

v = 0.69–0.88) outperformed the singular model (R2
v = 0.67–0.78) in 

prediction efficiency. 
In pursuit of a more universally applicable quality index model, this 

study amalgamated two tea varieties. Despite the model and verification 
results being slightly inferior to those from the single-variety model, 
satisfactory outcomes were obtained for tender leaves (R2

v = 0.49–0.85), 
mature leaves (R2

v = 0.51–0.83), and multi-source data (R2
v =

0.68–0.88). This study deployed the RF algorithm to construct a tea 
quality prediction model that incorporated tender leaves, mature leaves, 
and soil mineral elements. For different quality indices of ‘Baiyeyihao’ 
and ‘Huangjinya’ varieties, the RF model outperformed the LR model. 
The results were comparable to those from MLR models. However, the 
RF algorithm performed superiorly in the joint modeling of the two 
varieties, with its proficiency in handling large datasets standing out. As 
illustrated by Diaz-Gonzalez et al. (2022), machine learning algorithms 
have proven highly effective in integrating multi-source information to 
predict crop quality status. The RF algorithm employed a bootstrap re- 
sampling method to generate multiple sample subsets from the orig
inal datasets. Each subset was utilized to build an independent decision 
tree. The amalgamation of predictions from these multiple decision trees 
formed the final result of the RF model. This unique algorithm renders 
the RF model more effective and stable when handling massive datasets, 
as well as dealing with noise and outliers (Wenzl et al., 2021). Several 
studies have highlighted the consistent performance of the RF algorithm 
in predicting soil properties, growth, and N status for various crops, 
including chilli, mango, and cocoa (Islam et al., 2021; Luo et al., 2020). 

Relative importance of mineral nutrients to tea quality parameters of tea 

Our importance analysis revealed that the Cu and P elements found 
in tender and mature leaves significantly impact the content of EGCG 
and TPs. TPs are intricate substances consisting of various compounds, 
with EGCG, accounting for 9–14 % of green tea dry matter, being the 
most abundant bioactive component (Tang et al., 2021). Phosphorus 
plays a pivotal role in tea quality due to its promotion of photosynthesis, 
thereby increasing sugar content from which polyphenols are derived. A 
study by Ye et al. (2021) examined the correlation between different 
forms of phosphorus and tea quality-related components, concluding 
that phosphorus content can distinguish the quality of tea from different 
regions, with TPs content being the primary determinant. Furthermore, 
Ribeiro et al. (2022) established a correlation between Cu elements and 
polyphenols in green and roasted mate, and Fukushima et al. (2009) 
discovered that the Cu-reducing ability of green tea was tied to the 
polyphenols content, a finding consistent with Japanese tea-drinking 
habits. Our findings corroborate these studies, with our research high
lighting a robust correlation between P in mature leaves and EGCG and 
TPs. This correlation can be attributed to the positive association be
tween the accumulation of Cu and P elements in the tender and mature 
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leaves of tea trees (Han et al. 2020). 
The importance analysis also identified N in tender and mature 

leaves as having the most significant influence on tea’s AA content. 
Several studies have established that the accumulation of AA heavily 
relies on the N state, and the N element in tea trees determines the 
formation of AA in the tea’s tender leaves (Wang et al., 2021). Addi
tionally, it has been demonstrated that a decrease in total N is linked to a 
significant reduction in CAF and amino acid concentrations in mature 
leaves (Li et al., 2016), findings that align with ours. 

Our results, from both the linear equation and importance analyses, 
indicate a close relationship between the formation of theophylline and 
soluble sugar and the C element in tea. Earlier studies have leveraged the 
correlation between the C element in tea trees and CAF to classify tea 
beverages and identify tea tree varieties (Ding et al., 2019). Jean-Pierre 
et al. (2011) research on the chemical properties of green tea pectin 
concluded that the C element plays a crucial role in the formation of SS. 
It has also been shown that the C element can predict SS (Bian et al., 
2013). and that the C element in tea roasting forms the foundation for 
green tea to enhance the sensory quality of SS. 

Prior research has demonstrated that N fertilizer can enhance amino 
acid content in tea plants, potassium fertilizer can stimulate N element 
absorption and improve tea quality (Xi et al., 2023), and organic fer
tilizer can boost the C content concentration in soil, enhancing tea 
quality (Xie et al., 2019). However, no study has delineated the range of 
elements in high-quality tea. In this study, a range for these elements 
were determined, whereby an improvement in tea quality was notably 
observed. Specifically, when the content of Ct was between 
637,000–751,000 mg kg− 1, Cm between 617,000–752,000 mg kg− 1, Nt 
between 73,800–88,900 mg kg− 1, Nm between 59,900–61,000 mg kg− 1, 
Pt between 1,050–1,900 mg kg− 1, Pm between 1,200–1,800 mg kg− 1, Kt 
between 7,100–9,100 mg kg− 1, and Cut between 6.15 and 7.41 mg kg− 1, 
tea quality was significantly enhanced. This research established a 
theoretical basis for the study of the quantitative relationships between 
quality parameters and mineral elements from soil and tea leaves. 
Meanwhile, the research method provided the technical support for 
predicting the tea quality. In future studies, it is necessary to further 
explore the effect of multi-source factors on the formation of tea quality, 
such as soil and meteorological indices, more effective information 
should be integrated to build the more robust and stable model for tea 
quality prediction. 

Conclusion 

In this study, the Hg content was the most crucial independent var
iable for predicting EC, EGC, GCG, and GC, as indicated by the corre
lation analysis and LR model. Similarly, the P content emerged as the 
most vital independent variable for predicting ECG and TPs, the Cu 
content for predicting EGCG, the N content for predicting AA, and the C 
content for predicting CAF and SS. According to the RF model, the 
biochemical composition of tea leaves was most influenced by the 
contents of C, N, P, and K. A good correlation between tea quality and 
mineral elements from the soil and tea leaf was found in ’Baiyeyihao’ 
and ’Huangjinya’ cultivars. Compared to the LR, the MLR and RF 
methods performed a more accurate prediction for the tea quality 
components. The usage of multi-source information improved the esti
mation accuracy of tea quality compositions, the RF performed best for 
EGCG, AA, TPs and CAF, while the MLR performed well for predicting 
the SS. In practical production, the quality of tea leaves can be enhanced 
by optimizing each main component (AA, TPs, CAF, SS) through the 
adjustment of independent mineral elements. 
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Tolrà, R., Martos, S., Hajiboland, R., & Poschenrieder, C. (2020). Aluminium alters 
mineral composition and polyphenol metabolism in leaves of tea plants (Camellia 
sinensis). Journal of inorganic biochemistry, 204, Article 110956. https://doi.org/ 
10.1016/j.jinorgbio.2019.110956 

Tseng, W. Y., & Lai, H. Y. (2022). Comprehensive Analysis Revealed the Specific Soil 
Properties and Foliar Elements Respond to the Quality Composition Levels of Tea 
(Camellia sinensis L.). Agronomy, 12(3), 670. https://doi.org/10.3390/ 
agronomy12030670 

Wang, Y., Wang, Y. M., Lu, Y. T., Qiu, Q. L., Fan, D. M., Wang, X. C., & Zheng, X. Q. 
(2021). Influence of different nitrogen sources on carbon and nitrogen metabolism 
and gene expression in tea plants (Camellia sinensis L.). Plant Physiology and 
Biochemistry, 167, 561–566. https://doi.org/10.1016/j.plaphy.2021.08.034 

Wenzl, L., Schindler, J. T., Fan, X., Andika, I. T., & Yang, J. (2021). Random Forests as a 
Viable Method to Select and Discover High-redshift Quasars. The Astronomical 
Journal, 162(2), 72. https://doi.org/10.3847/1538-3881/ac0254 

Wei, K., Liu, M., Shi, Y., Zhang, H., Ruan, J., Zhang, Q., & Cao, M. (2022). Metabolomics 
Reveal That the High Application of Phosphorus and Potassium in Tea Plantation 
Inhibited Amino-Acid Accumulation but Promoted Metabolism of Flavonoid. 
Agronomy, 12(5), 1086. https://doi.org/10.3390/agronomy12051086 

Xi, S., Chu, H., Zhou, Z., Li, T., Zhang, S., Xu, X., … Liu, X. (2023). Effect of potassium 
fertilizer on tea yield and quality: A meta-analysis. European Journal of Agronomy, 
144, 126767. https://doi.org/10.1016/j.eja.2023.126767 

Xia, E. H., Zhang, H. B., Sheng, J., Li, K., Zhang, Q. J., Kim, C., … Gao, L. Z. (2017). The 
Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of 
CAF Biosynthesis. Molecular Plant, 10(6), 866–877. https://doi.org/10.1016/j. 
molp.2017.04.002 

Xie, S., Feng, H., Yang, F., Zhao, Z., Hu, X., Wei, C., Liang, T., Li, H., & Geng, Y. (2019). 
Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and 
tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang 
Province. China. Environmental Science and Pollution Research, 26(3), 2464–2476. 
https://doi.org/10.1007/s11356-018-3732-1 

Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of TPs and 
its impact on health benefits. Animal Nutrition, 6(2), 115–123. https://doi.org/ 
10.1016/j.aninu.2020.01.001 

Yang, B., Ren, S., Zhang, K., Li, S., Zou, Z., Zhao, X., … Fang, W. P. (2022). Distribution 
of trace metals in a soil–tea leaves–tea infusion system: Characteristics, translocation 
and health risk assessment. Environmental Geochemistry and Health, 44(12), 
4631–4645. https://doi.org/10.1007/s10653-021-01190-9 

Ye, H., Li, G., Yuan, X., He, H., & Tang, L. (2021). The Distribution of Phosphorus Forms 
in Wuyi Rock Region and Its Effect on Tea Quality-Related Constituents in Tea 
Garden Soil. Polish Journal of Environmental Studies, 30(5), 15244. https://doi.org/10 
.15244/pjoes/132815. 

Ye, J. H., Zhang, Q., Liu, G. Y., Lin, L. W., Wang, H. B., Lin, S. X., … He, H. (2021). 
Relationship of soil pH value and soil Pb bio-availability and Pb enrichment in tea 
leave. the Science of Food and Agriculture, 102(3), 1137–1145. https://doi.org/ 
10.1002/jsfa.11450 

Zaman, F., Zhang, E., Xia, L., Deng, X., Ilyas, M., Ali, A., ... Zhao, H. (2022). Natural 
variation of main biochemical components, morphological and yield traits among a 
panel of 87 tea [Camellia sinensis (L.) O. Kuntze] cultivars. Horticultural Plant 
Journal, 9(3). https://doi.org/10.1016/j.hpj.2022.08.007. 

Zhao, Y., Lai, W., Xu, A., Jin, J., Wang, Y., & Xu, P. (2020). Characterizing relationships 
among chemicals, sensory attributes and in vitro bioactivities of black tea made from 
an anthocyanins-enriched tea cultivar. LWT - Food Science and Technology, 132, 
Article 109814. https://doi.org/10.1016/j.lwt.2020.109814 

B. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/S2095-3119(20)63208-7
https://doi.org/10.1016/S2095-3119(20)63208-7
https://doi.org/10.1016/j.scienta.2020.109873
https://doi.org/10.1016/j.scienta.2020.109873
https://doi.org/10.3390/AGRICULTURE11050387
https://doi.org/10.3390/AGRICULTURE11050387
https://doi.org/10.1016/j.arabjc.2015.03.011
https://doi.org/10.1016/j.arabjc.2015.03.011
https://doi.org/10.1016/j.jfca.2019.01.005
https://doi.org/10.1007/s11099-016-0677-9
https://doi.org/10.1007/s12011-019-01886-1
https://doi.org/10.1007/s12011-019-01886-1
https://doi.org/10.1016/j.plaphy.2016.06.027
https://doi.org/10.1016/j.plaphy.2016.06.027
https://doi.org/10.3389/fpls.2021.698796
https://doi.org/10.3390/horticulturae8121198
https://doi.org/10.1016/j.foodchem.2005.10.030
https://doi.org/10.1590/fst.115321
https://doi.org/10.1590/fst.115321
https://doi.org/10.1007/s12011-022-03314-3
https://doi.org/10.1016/j.foodres.2020.109122
https://doi.org/10.1016/j.foodres.2020.109122
https://doi.org/10.1016/j.scitotenv.2021.146328
https://doi.org/10.1016/j.scitotenv.2021.146328
https://doi.org/10.1016/j.jinorgbio.2019.110956
https://doi.org/10.1016/j.jinorgbio.2019.110956
https://doi.org/10.3390/agronomy12030670
https://doi.org/10.3390/agronomy12030670
https://doi.org/10.1016/j.plaphy.2021.08.034
https://doi.org/10.3847/1538-3881/ac0254
https://doi.org/10.3390/agronomy12051086
https://doi.org/10.1016/j.eja.2023.126767
https://doi.org/10.1016/j.molp.2017.04.002
https://doi.org/10.1016/j.molp.2017.04.002
https://doi.org/10.1007/s11356-018-3732-1
https://doi.org/10.1016/j.aninu.2020.01.001
https://doi.org/10.1016/j.aninu.2020.01.001
https://doi.org/10.1007/s10653-021-01190-9
https://doi.org/10.15244/pjoes/132815
https://doi.org/10.15244/pjoes/132815
https://doi.org/10.1002/jsfa.11450
https://doi.org/10.1002/jsfa.11450
https://doi.org/10.1016/j.lwt.2020.109814

	Tea quality estimation based on multi-source information from leaf and soil using machine learning algorithm
	Introduction
	Materials and methods
	Experimental sites
	Plant and soil sampling
	Chemical analysis for plant and soil samples
	Determination of the tea quality parameter
	Determination of mineral elements from tea leaves and soil samples

	Data processing and statistical analysis

	Results
	The variability analysis of mineral elements
	Correlation analysis between quality parameters and mineral elements
	Quality parameter estimation using LR model
	Quality parameter estimation using MLR
	Quality parameter estimation using RF algorithm
	The importance analysis of the governing variables on tea quality
	The analysis of response surface plots

	Discussion
	Detecting the quantitative relationships between mineral elements and quality indices of tea leaf using different regressio ...
	Relative importance of mineral nutrients to tea quality parameters of tea

	Conclusion
	Author contributions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


