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Abstract
Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention 
task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decre-
ment of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which 
stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted 
phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained atten-
tion task to examine the electrophysiological basis of such effect. We aimed to characterize the phase-coupling networks 
to untangle different phases involved in sustained attention and study how they are modulated by vigilance decrement. We 
computed the time–frequency domain wPLI from each block and subject and constructed a fourth-order tensor, containing 
the time, frequency, functional connectivity (FC), and blocks × subjects. This tensor was subjected to the TCA to identify the 
interacted and low-dimensional components representing the frequency-specific dynamic FC (fdFC). We extracted four types 
of neuromakers during a sustained attention task, namely the pre-stimulus alpha right-lateralized parieto-occipital FC, the 
post-stimulus theta fronto-parieto-occipital FC, delta fronto-parieto-occipital FC, and beta right/left sensorimotor FCs. All 
these fdFCs were impaired by vigilance decrement. These fdFCs, except for the beta left sensorimotor network, were restored 
by rewards, although the restoration by reward in the beta right sensorimotor network was transient. These findings provide 
implications for dissociable effects of vigilance decrement on sustained attention by utilizing the tensor-based framework.

Keywords  Sustained attention · Vigilance decrement · Motivation · Frequency-specific dynamic functional connectivity · 
Weighted phase lag index · Tensor component analysis

Introduction

Human attentional resources are not limitless. Sustaining 
attention on stimuli for a prolonged duration results in task 
performance declines and mental fatigue increases. This 
effect is known as time-on-task effect or vigilance decre-
ment (Davies and Parasurman 1982; Gillberg and Åkerstedt 
1998; Lim and Dinges 2008; Mackworth 1948; See et al. 
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1995). Vigilance decrement leads to increased safety risks 
and decreased productivity at work. Efforts have been made 
to explore the mechanisms of vigilance decrement. In par-
ticular, three theoretical categories—underload, overload, 
and motivational control—have emerged in the mechanisms 
of vigilance decrement (Liu et al. 2020a; Reteig et al. 2019). 
The underload theories maintain that cognitive tasks are too 
monotonous to maintain task performance for a prolonged 
period of time (Manly et al. 1999). Whereas the overload 
theories hold that a limited pool of cognitive resources is 
depleted during a long period of task performance (Cag-
giano and Parasuraman 2004). Furthermore, the motiva-
tional control theories insist that the decrement of vigilance 
is associated with mental representations of costs and ben-
efits and the task performance decreases when the costs out-
weigh the benefits (Kurzban et al. 2013). However, these 
three theories still have limitations to interpret all fatigue-
related changes. In recent years there have been theoretical 
frameworks synthesizing different theoretical categories. For 
instance, Boksem and colleagues (Boksem and Tops 2008) 
proposed a hybrid model synthesizing the motivational con-
trol and energetical costs, stating that human task perfor-
mance is determined by the energetical state and the mental 
representations of costs and benefits. Other hybrid models 
synthesizing underload and overload theories (Thomson 
et al. 2015) and synthesizing underload and motivational 
control theories (Seli et al. 2015) have also been proposed 
in the literature. Despite substantial efforts have been made 
for this, the mechanisms of vigilance decrement are still 
ambiguous.

Sustained attention has been widely used in the studies 
of vigilance decrement in the laboratory because tests of 
sustained attention are reliable and the neural mechanisms of 
sustained attention have been fairly well acknowledged. Sus-
tained attention studies using perfusion functional magnetic 
resonance imaging (fMRI) and fMRI have uncovered that 
the fronto-parietal attention network decreases during pro-
longed sustained attention task engagement (Lim et al. 2010; 
Taya et al. 2018). Previous electroencephalogram (EEG) 
work of sustained attention has implicated that the theta and 
alpha frequency bands mainly at frontal and parietal brain 
regions are associated with vigilance decrement (Sauseng 
et al. 2007; Sun et al. 2014). While the summarized attention 
network and oscillations are useful neuromakers of vigilance 
decrement, few studies have addressed the frequency-spe-
cific dynamic functional connectivity (fdFC) without a prior 
selection of time windows, frequency bands or brain regions 
in the functional connectivity (FC) or oscillatory analysis.

In essence, whole-brain interactions through phase syn-
chronization in specific frequency band form and dissolve 
dynamically and transiently to support cognitive processes 
(Bola and Sabel 2015; Fries and Str 2015; O’Neill et al. 
2017; Rosenberg et al. 2016; Vidaurre et al. 2018). Sustained 

attention encompasses a variety of fundamental cognitive 
processes, including attentional preparatory, attentional sta-
bility, working memory, and enhancement or inhibition of 
selected or unselected information (Clark et al. 2015; Reteig 
et al. 2019; Rosenberg et al. 2016; Slagter et al. 2016). Brain 
regions rapidly shift the patterns of FC on the basis of the 
cognitive process demands (Cole et al. 2013). To success-
fully execute a sustained attention task, the fdFCs should 
emerge dynamically, with the temporal scale of milliseconds 
(Bola and Sabel 2015). Nevertheless, it is still unclear how 
oscillations are involved in brain networks during a sustained 
attention task. Little is known which stage or a combination 
of stages are impaired by vigilance decrement.

High-temporal resolution modality matching the rapid 
timescales of the brain is efficient for tracking the dynamics 
of FC. In the present study, we adopt a high-temporal reso-
lution EEG dataset collected when participants performed 
a sustained attention task as long as 80 min and they were 
provided with unexpected monetary rewards 20 min before 
the end of the task (Reteig et al. 2019; Slagter et al. 2016). 
A different set of results based on this dataset extracted three 
univariate neuromarkers of vigilance decrement, consisting 
of the pre-stimulus alpha power, the early post-stimulus P1/
N1 component, and the post-stimulus theta phase (Reteig 
et al. 2019). However, they did not use multivariate fashion 
through the integrity of the whole-brain networks. By utiliz-
ing the analysis framework composed of the weighted phase 
lag index (wPLI) and tensor component analysis (TCA), we 
aim to characterize the fdFC corresponding to temporal-
spectral-spatial signatures that can be used to interpret the 
neural mechanisms of different phases of sustained attention 
and to reflect the modulations by vigilance decrement.

The wPLI is used to estimate the contributions of phase 
leads and lags, with the advantage of being insensitive to the 
volume-conduction or noise (Vinck et al. 2011). The TCA is 
applied to characterize the interacted and low-dimensional 
components. Compared with the matrix decomposition anal-
ysis, the TCA provides a good approach for identifying brain 
activities in multiple domains simultaneously without stack-
ing or concatenating the data (Cong et al. 2015 2014; Liu 
et al. 2020b). The analysis framework was firstly proposed 
by our team and successfully derived the temporal, spectral, 
and spatial modes of covariation (third-order tensor) during 
freely listening to music (Zhu et al. 2019). The reliability 
and stability of this analysis framework (third-order tensor) 
was further validated using the MEG data collected during a 
hand movement task and a working memory task (Zhu et al. 
2020a). We then apply this framework to track the temporal, 
spectral, spatial, and feature modes of covariation (fourth-
order tensor) simultaneously during a prolonged sustained 
attention task. In order to find the divergences between dif-
ferent responses during sustained attention, we perform the 
same framework in conditions of correct rejections, hits, 
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and misses, respectively. We compute the time–frequency 
domain wPLI between whole-brain electrodes from each 
block and subject. Considering the equalization of the trial 
numbers, we perform the wPLI for 100 times and then aver-
age the time–frequency domain FC. We construct a fourth-
order tensor including time points, frequency bins, pairs of 
connections, and subjects × blocks. The fourth order tensor 
is subjected to the TCA to derive the interacted and low-
dimensional TCA components, consisting of the temporal 
factor (dynamic temporal fluctuations), spectral factor (oscil-
latory distributions), connectivity factor (FC), and features 
(representations of fdFC influenced by time-on-task and 
motivation). With the use of the tensor-based framework, 
we seek to identify which frequency bands, in which time 
windows, and how the FC patterns involved in cognitive 
tasks and provide evidence for the modulations by complex 
factors.

Materials and Methods

Data Description

We adopted a sustained attention EEG dataset published on 
the Open Science Framework (OSF) platform, which is a 
free, open platform to support our research and enable col-
laboration. The contributors of this dataset have reported a 
different set of results in a prior study (Reteig et al. 2019). 
The description of the data and preprocessing procedure in 
detail could be found at the link: https​://doi.org/10.17605​/
OSF.IO/EMF9H​.

The EEG data of twenty-one participants (ten males, aged 
21.6 ± 3.4 years) collected during a modified version of sus-
tained attention task (Maclean et al. 2009) was reported on 
the OSF platform. All stimuli were presented on a 17–inch 
monitor at a viewing distance of 100 cm. Participants were 
asked to maintain their fixation on a central yellow square 
(0.11° × 0.11°) against a black background throughout the 
task and covertly and continuously direct their attention to 
the stimuli located at 3° to the left and 1.5° lower than the 
fixation. The stimuli were presented only in the left hemi-
field, with the right hemifield never relevant. The outline of 
each trial is presented in Fig. 1. In each trial of 2 s, a light 
gray line was shortly presented at the to-be-attended loca-
tion for 150 ms and was followed by a mask stimulus for 
the remaining 1850 ms. The light gray line with a width of 
0.03° could either be a long (non-target, 80%) or short line 
(target, 20%). The long line was fixed on 1.89° in length, 
whereas the short one was calibrated individually before 
the main task. Participants were instructed to conduct a 
response to the rare target with their right index figure and 
withhold a response to the non-target. The mask stimulus 
was composed of many lines (0.03° × 0.12°), positioned with 

a space of 0.21° × 2.44°. These lines were randomly shifted 
in a small height (within ± 0.06°) on each presentation to 
prevent participants from recognizing the length of (non-)
target line relative to the mask lines.

The Parameter Estimation by Sequential Testing (PEST) 
(Maclean et  al. 2009; Taylor and Creelman 1967) was 
adopted to adjust the length of the short (target) line for indi-
vidual participants, achieving a minimum accuracy of 80% 
in the task. The short line length ranged from 1.21° to 1.59° 
(1.40° ± 0.01°). After the execution of PEST (7–13 min), 
participants performed the main task for an interval of 
80 min, consisting of 2400 trials (480 target trials) in total 
(Fig. 1). At the beginning of the task and every 10 min (300 
trials), participants were provided with two 7–point scales 
to evaluate their levels of motivation (1: “not motivated”, 
7: “highly motivated”) and aversion (1: “no aversion”, 7: 
“strong aversion”). In the last 20 min of the main task, par-
ticipants were informed an additional monetary reward of 
€30 (unknown to them until then) if they outperformed 65% 
of the other participants (Lorist et al. 2009). The instruction 
of monetary rewards—appeared at 60 min task-onset—dis-
appeared until a button click or until a maximum of 60 s.

Data Acquisition and Preprocessing

EEG data was recorded using the BioSemi ActiveTwo with 
64 Ag/AgCl electrodes arranged according to the interna-
tional 10–10 system. The EEG signals were digitized at a 
sampling rate of 512 Hz. Each electrode was referenced to a 
common mode sense electrode online. Two additional chan-
nels were placed to the left and the right earlobes and four 
other external electrodes were used to record the horizontal 
(left and right outer canthi) and vertical (below and above 
the left eye) EOGs.

10 min 10 min

No reward  reward 

185 0 ms

150  ms

Target (20%)

Non-target (80%)Mask

300 trials / 10  min

10 min 10 min 10 min 10 min 10 min 10 min

2400 trials (480  target tria ls)

Fig. 1   Outline of the experiment procedure and an example of one 
trial in the sustained attention task

https://doi.org/10.17605/OSF.IO/EMF9H
https://doi.org/10.17605/OSF.IO/EMF9H
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The preprocessing was conducted in MATLAB with the 
EEGLAB toolbox (Delorme and Makeig 2004). The EEG 
signals were high-pass filtered at 0.1 Hz and then segmented 
into epochs from − 2000 to 3000 ms peri-stimulus with 
buffer zones to reconcile the edge effects. Bad channels were 
interpolated using the spherical spline interpolation. With 
a visual inspection, parts of epochs containing eye move-
ments, muscle activities, and other artifacts were removed. 
By running the independent component analysis (ICA), arti-
ficial components distinguishable from the neural activities 
were removed. Epochs were average referenced and seg-
mented into − 1000 to 1000 ms peri-stimulus. Based on the 
markers of stimuli and responses, epochs were divided into 
four conditions, namely correct rejections, false alarms, hits, 
and misses. The condition of false alarms was not analyzed 
because the number of trials was too small.

Data Processing

The segmented epochs were further analyzed following the 
main steps of data processing. A schematic of the data analy-
sis is demonstrated in Fig. 2.

Trial Binning

Consistent with previous analysis (Reteig et al. 2019), tri-
als were split into eight 10–min blocks in the condition of 
correct rejections and binned into four 20–min blocks in 

conditions of hits and misses as the number of trials was too 
small. Obviously, the number of trials were different in each 
block for each participant, which might have a significant 
effect on results, especially the phase-based analysis results 
(Cohen 2014). Therefore, the number of trials was equalized 
across blocks for each participant by randomly selecting a 
minimum number of trials over blocks. Using the subsam-
pling process, the number of trials in the correct rejections 
condition (167 ± 22.5, range = 124–213) and in the hits and 
misses conditions (24 ± 5.4, range = 11–33) was determined. 
The subsampling process was repeated 100 times. We com-
puted the wPLI connectivity (Dynamic functional connectiv-
ity analysis section) at each time. The wPLI measures of all 
100 times were further averaged to achieve the final value.

Dynamic Functional Connectivity Analysis

Time–Frequency Representations  The spectral densities 
were estimated from each trial using the continuous wavelet 
transform with the complex Morlet wavelets. The frequency 
band from 1 to 30 Hz was linearly spaced in a resolution of 
1 Hz. To preserve the temporal precision in low and high 
frequency bands, the number of wavelet cycles was adjusted 
from 2 to 11. A total of nf = 30 linearly spaced frequencies 
and nt = 1024 time points (− 1000 to 1000 ms peri-stimulus) 
were estimated. Thus, we derived the time frequency repre-
sentations Sn

c
(t, f ) in time point t ∈ [1, nt] and frequency bin 

f ∈ [1, nf ] for trial n , where n ∈ [1,N] , N is the number of 
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Fig. 2   The pipeline of data processing. The number of stimulus-
locked trials were equalized over blocks for each participant. The 
subsampling process was repeated for 100 times. For each time, the 
signals from all trials were decomposed with the complex Morlet 
wavelet and then calculated with the wPLI, generating a third-order 
tensor (Time by frequency by connectivity) for each block and par-
ticipant. An average third-order tensor was obtained by averaging 
all third-order tensors from 100 repeated times. Based on the aver-

age tensor of each block and participant, we constructed a fourth-
order tensor by concatenating the blocks and subjects together. The 
fourth-order tensor was subjected to the TCA to extract the demixed 
components containing temporal course, spectrum, connectivity, and 
representations of blocks and subjects (features). The related com-
ponents involved in the sustained attention were selected based on 
prior knowledge in the literature and the significant correlations with 
behavioral data
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trials, c ∈ [1, nc] , nc is the number of channels, nc = 63 after 
removing the on-line reference channel.

Weighted Phase Lag Index  The wPLI was used to quan-
tify phase differences by the magnitude of imaginary of 
the cross-spectrum (Vinck et  al. 2011). Compared with 
the phase lag index (PLI) (Stam et al. 2007), the wPLI is 
less sensitivity to noise and volume conduction because 
of the contribution of weighted phase leads and lags. We 
computed wPLIs between all pairs of channels in each time 
point and frequency bin:

where Sn
c1
(t, f ) and Sn

c2
(t, f ) are time–frequency repre-

sentations from two different channels c1, c2 ∈ [1, nc] in 
time point t ∈ [1, nt] and frequency bin f ∈ [1, nf ] at trial 
n ∈ [1,N] . im() represents the imaginary part of a complex 
value. ∗ is the complex conjugate and | | is an absolute opera-
tion. We then constructed a third-order tensor P with the 
dimensions of nt × nf × C in each block and participant, 
where C = 1953 denotes the number of pairs of channels 
(63 × (63 − 1)∕2) . We computed the wPLI for 100 repeated 
times (Trial binning section) and averaged these 100 third-
order tensors forming a final third-order tenor in each block 
and subject. In view of the blocks and subjects, we created a 
fifth-order tensor O with dimension of nt × nf × C × S × B , 
where S = 21 is the number of participants and B is the block 
amount, B = 8 in the correct rejections condition and B = 4 
in the hits and misses conditions. Finally, we reshaped the 
tensor O into fourth-order tensor X

(
nt × nf × C ×M

)
 by 

concatenating the blocks and participants together, where 
M = S × B.

Tensor Component Analysis

In general, the multi-mode data were stacked or concate-
nated to facilitate two-way processing methods (e.g., inde-
pendent component analysis (ICA) and principal compo-
nent analysis (PCA)) for extracting interested brain activities 
(Bernat et al. 2005; Cong et al. 2010; Dien 2010; Tenke 
and Kayser 2005; Vigário and Oja 2008; Zhu et al. 2020b). 
The procedures of stacking and concatenating inevitably 
lost potential interaction information (Cong et al. 2015 
2013a). The TCA can be directly applied to the multi-way 
data, exploiting the interacted information among multiple 
modes (Hitchcock 1927). As one of the most fundamen-
tal models of TCA, the canonical polyadic (CP) model 
(A.Harshman 1970; Hitchcock 1927) was applied to extract 
demixed components in our study. As all elements in the 
fourth-order tensor X ∈ ℝ

nt×nf×C×M

+  were nonnegative, the 

(1)wPLI(c1,c2)(t, f ) =

���
∑N

n=1
im
�
Sn
c1
(t, f )Sn∗

c2
(t, f )

����
∑N

n=1

���im
�
Sn
c1
(t, f )Sn∗

c2
(t, f )

����

nonnegative constraint was used in the canonical polyadic 
decomposition (CPD) (Cichocki et al. 2009). For the input 
X  , the CPD is defined as an approximation of the sum of 
the outer products:

where Xj is the component j ∈ [1, J] of X  , and J is the 
number of TCA components. The outer product of four fac-
tor-vectors aj◦bj◦cj◦dj produces the rank-one tensorXj . The 
operator ◦ is the outer product of the factor-vectors. In this 
application (Fig. 2), aj is the temporal factor illustrating the 
temporal fluctuations, and bj is the spectral factor character-
izing the involvement of specific frequency band, and cj is 
the connectivity factor representing whole-brain FC, and dj 
is the feature factor indicating the alterations of specific time 
points, frequency bins, and FC affected by vigilance decre-
ment and motivation.

The realization of CPD is to solve the following minimi-
zation problem:

w h e r e  A = [a1, a2,… , aj] , B = [b1, b2,… , bj] ,C = [c1,

c2,… , cj] , and D = [d1, d2,… , dj] are factor matrixes of the 
temporal course, spectrum, FC, and features. The operator 
‖‖F is the Frobenius norm. The minimization problem in 
Eq. (3) can be solved by iterative optimization methods. 
The hierarchical alternating least squares (HALS) was 
applied in our study because the validity and high perfor-
mance of HALS have been confirmed by extensive studies 
(Cichocki et al. 2009, 2008, 2007). The component num-
ber J was determined by the difference of fits (DIFFIT) 
(Cong et al. 2014, 2013b). The DIFFIT measures the dif-
ferences in data fitting and is obtained by relative error 
and the explained sum of squares (Mørupa and Hansena 
2009). The number of component J was chosen from 1 to 
40 and the data fitting was averaged across 10 repetitions 
of CPD. In theoretical, the optimal component number J 
corresponds to the local maximum value of DIFFIT and a 
high data fit value.

Selection of TCA Components Modulated by Sustained 
Attention Tasks

By using the DIFFT, we determined J TCA components 
containing temporal course, spectrum, FC, and varia-
tions of blocks over subjects. Here, we aimed to select the 
related components modulated by the sustained attention 
task from the determined J components. Different methods 

(2)X ≈

J∑

j=1

Xj =

J∑

j=1

aj◦bj◦cj◦dj

(3)min

A,B,C,D

1

2

‖‖‖‖‖‖
X −

J∑

j=1

aj◦bj◦cj◦dj

‖‖‖‖‖‖

2

F
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of selecting task-modulated TCA components have been 
described in previous studies such as a method integrating 
the prior knowledge of multi-domain components with a sig-
nificant difference between experimental conditions (Cong 
et al. 2013b), a method combining the prior knowledge 
with significant correlations between variations of compo-
nents and musical features (Zhu et al. 2019), and a method 
matching prior knowledge and significant task-modulation 
FC (empirical null distribution constructed based on phase 
randomization) (Zhu et al. 2020a). In the present study, 
we performed the selection procedure based on the prior 
knowledge of temporal windows, frequency bands, and brain 
networks involved in sustained attention tasks and the sig-
nificant correlations between representations of components 
and behavioral data.

On the one hand, prior knowledge has revealed that 
implanting a sustained attention task involves different 
neural functions such as attentional preparatory, attentional 
stability, working memory, and enhancement/inhibition of 
selected/ unselected information (Clark et al. 2015; Reteig 
et al. 2019; Rosenberg et al. 2016; Slagter et al. 2016). 
Regarding the multi-domain TCA components, the FC pat-
terns at different frequency bands should emerge in different 
time windows to subserve a variety of functions in sustained 
attention. Previous studies have demonstrated that prepara-
tory orienting of attention is indexed by the pre-stimulus 
alpha, activated in the right-lateralized visual hemifield 
(Reteig et al. 2019; Worden et al. 2000). The variability of 
attention processing has been associated with the post-stim-
ulus theta phase coherence, activated in frontal and parieto-
occipital brain regions (Lutz et al. 2009; Reteig et al. 2019). 
The FC between frontal, parietal, and occipital brain regions 
in delta and theta bands has been linked to the working 
memory (Düzel et al. 2010; Gulbinaite et al. 2014; Harper 
et al. 2017). Numerous research work has demonstrated that 
the beta power (13–30 Hz) in the motor cortex is related to 
movement execution and response inhibition (Pfurtscheller 
and Aranibar 1977; Pfurtscheller and Lopes Da Silva 1999; 
Zabielska-Mendyk et al. 2018). The 20 Hz (mu) rhythm in 
particular is associated with the motor cortical function of 
the hand, and even unimanual finger movement relates to 
the bilateral somatomotor cortex (Hari and Salmelin 1997).

On the other hand, behavioral measurements—hit rate, a 
variant of accuracy, and response time—and motivation and 
aversion ratings have been illustrated as reliable markers, 
reflecting the effects of time-on-task and motivation (Reteig 
et al. 2019). The changes in behavioral and questionnaire 
data are shown in Fig. 3. The hit rate, accuracy, and response 
time rather than the false alarm rate deteriorated with time-
on-task and transiently restored by motivation. Conse-
quently, these three behavioral measurements were used for 
association analysis to select task-modulated TCA compo-
nents. Although the ratings of motivation and aversion were 

significantly modulated by vigilance decrement and motiva-
tion, they were not applied for component selection because 
these ratings were not correctly corresponding to the values 
of each block.

We conducted correlation analyses between behavioral 
measurements and features of TCA components by connect-
ing these measurements and features from all blocks (a total 
of 168 samples in the correct rejection condition and 84 
samples in the hits and misses conditions). We selected the 
desirable TCA components that both consistent with prior 
knowledge with a visual inspection and closely related to the 
behavioral measurements. The component which only meets 
the criterion of prior knowledge or only meets the criterion 
of significant correlations were not selected, as shown in 
Figs. S1–3.

Statistics

In order to examine the changes of fdFC caused by vigilance 
decrement, the elements in feature factor were subjected 
to the one-way analysis of variances (ANOVAs) with the 
within-subject factor block (first 60 min without reward) and 
results were corrected by the Greenhouse–Geisser. We also 
conducted the pair-wise comparisons between blocks 6 and 
1 in the correct rejections condition and between blocks 3 
and 1 in the hits and misses conditions to directly reveal the 
differences of fdFC between low and high vigilance state 
(without considering variations in different blocks). We per-
formed the pair-wise comparisons between blocks 7 and 6 in 
the correct rejections condition and between blocks 4 and 3 
in the hits and misses conditions to indicate the modulations 
of fdFC produced by motivation. When the effects of reward 
on specific component were detected, we ran pair-wise com-
parisons between blocks 7 and 1 in the correct rejections 
condition and between blocks 4 and 1 in the hits and misses 
conditions to quantitatively investigate the improvement of 
fdFC by motivation relative to that in the high vigilance 
state. In case of significant differences between blocks 7 and 
1, we further ran the comparisons between blocks 8 and 1 to 
explore the continuous effect of motivation on fdFC. Both 
paired-sample t-test and Kruskal–Wallis test were applied 
to pair-wise comparisons. When the representations of the 
specific component followed the Gaussian distribution meas-
ured by the Jarque–Bera test, we used the paired-sample 
t-test, otherwise the Kruskal–Wallis test.

After testing the distribution of behavioral data and repre-
sentations of component with Jarque–Bera test, the Pearson 
correlation (following the Gaussian distribution) or Spear-
man rank correlation (non-parametric test) were used for 
correlation analysis between behavioral measurements (e.g., 
hit rate, accuracy, and response time) and the features of 
TCA components.
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The type I errors should be controlled during multiple com-
parisons when more than one TCA component was selected 
and multiple pair-wise comparisons were conducted. The 
p-values from selected components were corrected by the false 
discovery rate (FDR) to control the false discoveries (Ben-
jamini and Yekutieli 2005, 2001; Benjamini and Hochberg 
1995). The p-values (under one-tailed condition) from multi-
ple pair-wise comparisons were further corrected. In sum, the 
statistics were conducted in MATLAB 2018b and IBM SPSS 
Statistics version 22. All tests applied a significance level of 
0.05.

Results

The number of TCA components were determined by the 
DIFFIT, and the components modulated by the sustained 
attention task were selected from the retained TCA com-
ponents using the criterion of prior knowledge and the 
significant correlations with behavioral measurements. We 
presented the multi-domain TCA components involved in 
the sustained attention task in the conditions of correct 
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Fig. 3   The changes in behavioral measurements and questionnaire 
ratings affected by time-on-task and motivation. a Hit rate and b 
Accuracy declined with time-on-task and transiently recovered (block 
7) after providing rewards (after 60  min, as marked with the verti-
cal dotted green line). c Response time decreased with time-on-task 
and showed a partial restoration pattern in block 7 although no sig-
nificant difference. d False alarm rate did not change with time-on-
task. e Motivation ratings and f Aversion ratings were influenced by 
time-on-task, and the motivation ratings restored to the initial level 
whereas the aversion ratings remained high compared to the initial 

level. The ratings of motivation and aversion were conducted before 
the task performance (begin) and after providing the reward instruc-
tions (post), as well as every 10 min task performance. The red line 
in the box represents the mean value, the light red box represents the 
standard deviation (SD), and the blue line corresponds to the 95% 
confidence interval. Note: The statistical results of the behavioral 
measurements and questionnaire ratings have been presented (Reteig 
et al. 2019). We only displayed the changes of them with scatter and 
boxplot to directly reveal the reliability for correlation analysis to 
select the TCA components
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rejections, hits, and misses, and showed the variations of 
fdFC affected by vigilance decrement and motivation.

TCA Components in the Correct Rejections 
Condition

According to the DIFFIT, a total of 25 TCA components 
were determined in the inhibition of the correct rejec-
tions condition. Among the 25 components, we selected 
5 task-modulated components using the criterion based 

on prior knowledge and significant associations between 
representations of components and behavioral data. The 
five task components could be considered four types of 
neuromakers: (I) the pre-stimulus alpha right-lateralized 
parieto-occipital FC, (II) the post-stimulus theta fronto-
parieto-occipital FC, (III) the post-stimulus delta fronto-
parieto-occipital FC, (IV) the post-stimulus beta right 
sensorimotor FC, and (V) the post-stimulus beta left sen-
sorimotor FC, as shown in Fig. 4.

Fig. 4   The selected five TCA components in the correct rejections 
condition. Each row represents one component, consisting of four 
dimensional information: the temporal factor showing the temporal 
course during sustained attention (a); the spectral factor showing the 
involvement of specific spectrum (b); the connectivity factor repre-
senting the symmetrical weighted FC matrix (c) and the 2D weighted 
connectivity visualization (showing the top 2% of the links with high-
est values, and the 2% thresholding was only used for visualization), 
with different colors related to different connectivity strengths (d); 
the features of fdFC affected by time-on-task (blocks 1–6, marked 

with the vertical dotted green line) and motivation (blocks 7 and 8), 
and the red line in the bar represents the mean value, the yellow bar 
represents the standard deviation (SD), and the blue bar corresponds 
to the 95% confidence interval (Loftus and Masson 1994) (e). Corre-
lations between behavioral measurements, namely the response time 
(RT, in blue line), accuracy (ACC, in red line), and Hit rate (Hit, in 
green line) and variations of blocks across all subjects are displayed, 
significant relationships (p < 0.05) marked with * (f). Note that the 
insignificant correlations between the hit rate and features are not pre-
sented in scatters but in Fig. S1
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Pre‑stimulus Alpha Parieto‑Occipital FC

The component as shown in row I of Fig. 4 had significant 
associations with the response time ( r = 0.17, p = 0.03 ) 
and accuracy ( r = −0.16, p = 0.04 ). The FC that acti-
vated in the parietal and occipital brain regions, was 
right-lateralized. This FC emerged in the time window 
of − 1000 to 0 ms stimulus-onset was dominated by the 
alpha band. The strength of the fdFC was affected by 
vigilance decrement, with a slight increase with time-
on-task ( F(3.07, 61.31) = 2.86, pcorr = 0.057 ). Moreo-
ver, the strength was stronger in block 6 than in block 1 
( t(20) = 2.47, pcorr = 0.024 ). There was no significant dif-
ference between blocks 7 and 6, although the strength of the 
fdFC showed a decrease pattern ( t(20) = 1.22, pcorr = 0.149 ). 
Neither a significant difference between blocks 1 and 7 
( t(20) = 1.57, pcorr = 0.124 ) nor between blocks 1 and 8 
( t(20) = 1.08, pcorr = 0.184 ) was detected.

Post‑stimulus Theta Fronto‑Parieto‑Occipital FC

The component in Row II of Fig. 4 was significantly cor-
related with the response time ( r = −0.28, p < 0.01 ) and 
accuracy ( r = 0.15, p = 0.05 ). The temporal window of the 
fronto-parieto-occipital FC ranged from 100 to 500 ms stimu-
lus-onset, and the spectrum of it spanned the theta band. The 
strength of the fdFC decreased slightly during a long period 
of task engagement ( F(3.47, 69.41) = 2.61, pcorr = 0.057 ). 
The strength was weaker in block 6 than in block 
1  (  t(20) = 2.32, pcorr = 0.024  ) .  Monet a r y  reward 
increased the strength in block 7 relative to block 
6  (  t(20) = 2.59, pcorr = 0.022  ) .  The  s t r eng t h  o f 
the fdFC in block 1 was comparable to that in 
block 7 (  t(20) = 0.57, pcorr = 0.358 )  and block 8 
( t(20) = 1.11, pcorr = 0.184).

Post‑stimulus Delta Fronto‑Parieto‑Occipital FC

The component (row III of Fig. 4) was positively associ-
ated with the hit rate ( r = 0.28, p < 0.01 ) and accuracy 
( r = 0.25, p < 0.01 ), and negatively associated with the 
response time ( r = −0.35, p < 0.01 ). The fronto-pari-
eto-occipital FC peaked around 460 ms in the temporal 
course with the spectral modes ranging from 1–4 Hz cor-
responding to the delta band. There was a slight deteriora-
tion of the fdFC strength during a prolonged duration of 
task involvement ( F(3.83, 76.61) = 2.01, pcorr = 0.092 ). 
The strength was weaker in block 6 than in block 1 
( t(20) = 2.26, pcorr = 0.024 ). The strength of the fdFC 
in block 7 increased relative to block 6 after provid-
ing rewards ( t(20) = 2.78, pcorr = 0.022 ). There was 

no significant difference either between blocks 1 and 7 
( t(20) = 0.01, pcorr = 0.500 ) or between blocks 1 and 8 
( t(20) = 0.28, pcorr = 0.392).

Post‑stimulus Right and Left Beta Sensorimotor FCs

The component (row IV of Fig. 4) had a positive relation-
ship with the hit rate ( r = 0.22, p < 0.01 ) and accuracy 
( r = 0.24, p < 0.01 ), and had a negative relationship with the 
response time ( r = −0.34, p < 0.01 ). The right-lateralized 
sensorimotor FC that peaked around 740 ms stimulus onset 
in the temporal course and was dominated by 20 Hz in the 
spectrum. The strength of the fdFC was weaker in block 
6 than in block 1 ( t(20) = 2.07, pcorr = 0.026 ) and it was 
stronger in block 7 than in block 6 after providing rewards 
( t(20) = 2.30, pcorr = 0.033 ). There was no significant dif-
ference between blocks 1 and 7 ( t(20) = 0.86, pcorr = 0.333 ), 
whereas the strength of this fdFC was weaker in block 8 than 
in block 1 ( t(20) = 2.35, pcorr = 0.044).

The component (row V of Fig. 4) was closely related 
to the response time ( r = −0.37, p < 0.01 ) and accu-
racy ( r = 0.38, p < 0.01 ). The left-lateralized sensori-
motor FC that peaked around 670  ms stimulus onset 
was dominated by 20 Hz in the spectrum. A slight dete-
rioration of the left sensorimotor FC was detected with 
t i m e - o n - t a s k  (  F(2.32, 46.36) = 2.53, pcorr = 0.057  ) . 
The strength of it was weaker in block 6 than in block 1 
( t(20) = 2.21, pcorr = 0.024 ). There was no improvement 
of the strength in block 7 after manipulating motivation 
( t(20) = 0.46, pcorr = 0.326).

TCA Components in the Hits Condition

In the condition of hits, we extracted 35 TCA components 
based on the DIFFIT criterion and finally selected 3 task-
modulated components according to the mentioned crite-
rions. We derived three neuromarkers including the pre-
stimulus alpha right-lateralized parieto-occipital FC (row 
I of Fig. 5), the post-stimulus theta fronto-parieto-occipital 
FC (row II of Fig. 5), and the post-stimulus delta fronto-
parieto-occipital FC (row III of Fig. 5). These three neuro-
markers were also discovered in the correct rejections condi-
tion. However, the beta right/left sensorimotor FCs were not 
detected in the hits condition.

Pre‑stimulus Alpha Parieto‑Occipital FC

The component as shown in row I of Fig. 5 was signifi-
cantly correlated with the response time ( r = 0.34, p < 0.01 ) 
and accuracy ( r = −0.27, p = 0.01 ). The FC was mainly 
activated in the right-lateralized parietal and occipi-
tal brain regions. The FC emerged in the time window 
of –1000 to 0 ms was dominated by the alpha band. The 
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strength of the fdFC increased during the sustained atten-
tion task over time ( F(1.91, 36.29) = 5.32, pcorr = 0.027 ) 
and the strength was stronger in block 3 than in 
block 1 ( t(20) = −3.43, pcorr = 0.003 ). After provid-
ing rewards, the strength in block 4 decreased com-
pared to block 3 ( t(20) = 3.43, pcorr = 0.004 ) and the 
strength in block 4 recovered to the initial level in block 1 
( t(20) = 0.58, pcorr = 0.284).

Post‑stimulus Theta Fronto‑Parieto‑Occipital FC

There was a close association between the com-
ponent (row II of Fig.  5) and the response time 
( r = −0.29, p = 0.01 ). The temporal course of the 
fronto-parieto-occipital FC ranged from 0 to 500  ms 
and the spectrum of it peaked around 5 Hz. There was 
a decline of the strength of the fdFC during prolonged 
task engagement ( F(1.57, 31.35) = 3.26, pcorr = 0.049 ). 
The strength was weaker in block 3 than in block 1 
( t(20) = 3.38, pcorr = 0.003 ). The strength in block 4 was 
improved after providing incentives compared to block 3 

( t(20) = 2.61, pcorr = 0.013 ). This improvement reached the 
strength of it in block 1, with no difference between blocks 
1 and 4 ( t(20) = 0.95, pcorr = 0.285).

Post‑stimulus Delta Fronto‑Parieto‑Occipital FC

The component (Row III of Fig.  5) was significantly 
associated with the response time ( r = −0.39, p < 0.01 ) 
and accuracy ( r = 0.22, p = 0.47 ). The fronto-parieto-
occipital FC that peaked around 490  ms in tempo-
ral course was dominated by the delta band. Results 
revealed a decline of the strength of the fdFC with 
t i m e - o n - t a s k  (  F(1.69, 33.75) = 3.65, pcorr = 0.049  ) . 
The strength was weaker in block 3 than in block 
1(t(20) = 2.76, pcorr = 0.012 ). A slight increase of the 
strength in block 4 was detected after providing incen-
tives compared to block 3 ( t(20) = 1.70, pcorr = 0.053 ). 
There was no significant difference between blocks 1 and 
4 ( t(20) = 0.45, pcorr = 0.467).

Fig. 5   The selected three TCA components in the hits condition. 
Each row represents one component, consisting of four dimensional 
information including the temporal factor showing time varies during 
sustained attention (a), the spectral factor showing the specific oscil-
latory activations in the corresponding FC (b), the connectivity fac-
tor representing the symmetrical weighted connectivity matrix (c) and 
the 2D weighted connectivity visualization (showing the top 2% of 
the links with highest values, and the thresholding was only used for 
visualization), with different colors related to different connectivity 
strengths (d), and features’ changes affected by time-on-task (blocks 

1–3, marked with the vertical dotted green line) and motivation 
(block 4), and the red line in the bar represents the mean value, the 
yellow bar represents the standard deviation (SD), and the blue bar 
corresponds to the 95% confidence interval (e). Correlations between 
behavioral measurements, namely the response time (RT), and accu-
racy (ACC), and features are presented, with significant relationships 
(p < 0.05) marked with * (f). Note that the insignificant correlations 
between the hit rate and features are not presented in scatters but in 
Fig. S2
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TCA Components in the Misses Condition

We extracted 25 TCA components based on the DIFFIT and 
finally selected two components modulated by the sustained 
attention task, representing (I) the pre-stimulus alpha right-
lateralized parieto-occipital FC and (II) the post-stimulus 
theta fronto-parieto-occipital FC, as shown in Fig. 6. Similar 
to the hits condition, the beta right/left sensorimotor FCs 
were not detected in the misses condition, whereas different 
from the hits condition, the delta fronto-parieto-occipital FC 
was not observed in the misses condition.

Pre‑stimulus Alpha Parieto‑Occipital FC

The component in row I of Fig. 6 was positively corre-
lated with the response time ( r = 0.43, p < 0.01 ) and nega-
tively correlated with the accuracy ( r = −0.34, p < 0.01 ). 
The right-lateralized parieto-occipital FC emerged mainly 
around − 1000 to 0 ms stimulus-onset and was dominated by 
the alpha band. The strength of the fdFC increased slightly 
with time-on-task ( F(1.95, 39.04) = 3.38, pcorr = 0.068 ) 
and the strength was stronger in block 3 than in block 1 
( t(20) = 2.46, pcorr = 0.023 ). The impaired strength was not 
modulated by rewards, with no difference between blocks 4 
and 3 ( t(20) = 1.26, pcorr = 0.112).

Post‑stimulus Theta Fronto‑Parieto‑Occipital FC

Row II of Fig. 6 shows a component that has a significant 
relationship with the accuracy ( r = 0.23, p = 0.039 ). The 
fronto-parieto-occipital FC ranged in the time window 

of 0–500 ms and peaked around 5 Hz in the spectrum. 
There was a slight decline of the strength of the fdFC 
with time-on-task ( F(1.65, 32.89) = 2.83, pcorr = 0.068 ). 
The strength was weaker in block 3 than in block 1 
( t(20) = 2.85, pcorr = 0.020 ). The strength in block 4 
increased relative to block 3 ( t(20) = 2.90, pcor = 0.009 ) after 
providing rewards and the increment of the strength reached 
the level of it in block 1 ( t(20) = −0.55, pcorr = 0.443).

Discussion

By applying the analysis framework composed of wPLI and 
TCA to the high-temporal resolution EEG collected during 
a sustained attention task over 80 min, we examined how a 
cascade of fundamental functions was reflected by the fdFC 
and which stages or a combination of stages were affected 
by vigilance decrement and motivation. In tandem, we per-
formed the analysis framework in the correct rejections, hits, 
and misses conditions to explore the distinctive involvement 
of functions in different conditions. Following the main steps 
of the framework (Fig. 2), we firstly calculated the time–fre-
quency domain wPLI from whole-brain electrodes in each 
block and subject and then constructed a fourth-order tensor 
(Time × Frequency × Connectivity × (Subjects × Blocks)) by 
concatenating the data in blocks and subjects. Afterward, 
the TCA was applied to the fourth-order tensor to charac-
terize the interacted, low dimensional, and representative 
components, suggesting the when (specific time windows), 
how (particular frequency band), and where (definite brain 
regions) of sustained attention were affected by vigilance 

Fig. 6   Two selected TCA components in the misses condition. Each 
row represents one component, consisting of the temporal factor 
showing the time varies (a); the spectral factor showing the domi-
nated frequency band (b); the connectivity factor representing the 
symmetrical weighted connectivity matrix (c) and the 2D weighted 
connectivity visualization (showing the top 2% of the links with high-
est values, and the thresholding was only used for visualization), with 
different colors related to different connectivity strengths (d); the 
features’ factor affected by time-on-task (blocks 1–3, marked with 

the vertical dotted green line) and motivation (block 4), and the red 
line in the bar represents the mean value, the yellow bar represents 
the standard deviation (SD), and the blue bar corresponds to the 95% 
confidence interval (e). Correlations between behavioral measure-
ments, namely the response time (RT, in blue line), and accuracy 
(ACC, in red line), and variations of blocks across all subjects are 
displayed, significant relationships (p < 0.05) marked with * (f). Note 
that the insignificant correlations between the hit rate and features are 
not presented in scatters but in Fig. S3
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decrement. A total of four types of neuromarkers were 
identified, namely the pre-stimulus alpha right-lateralized 
parieto-occipital FC, the post-stimulus theta fronto-parieto-
occipital FC, delta fronto-parieto-occipital FC, and beta 
right/left sensorimotor FCs. These fdFCs emerged in differ-
ent time windows and conditions to support the implemen-
tation of a sustained attention task. Results demonstrated 
that all fdFCs were impaired by vigilance decrement, but 
they were differently modulated by motivation. The pre-
stimulus alpha parieto-occipital FC and the post-stimulus 
theta and delta fronto-parieto-occipital FCs were restored 
by the motivation to the initial level, but the beta left senso-
rimotor FC was not modulated by motivation. Interestingly, 
the beta right sensorimotor FC increased only in the first 
10 min but decreased in the last 10 min during the interval of 
motivation manipulation. Taken together, assisted with the 
tensor-based framework, we successfully derive a sequence 
of fdFCs involved in sustained attention and the discrepan-
cies of these fdFCs among distinct conditions, as well as 
the organizations of them modulated by time-on-task and 
motivation.

Horizontal Analysis: Fundamental Functions 
in Sustained Attention

In the present study, the time window of the alpha right-
lateralized parieto-occipital FC ranged from − 1000 to 
0 ms. The theta fronto-parieto-occipital FC peaked around 
280–320  ms and the delta fronto-parieto-occipital FC 
peaked around 460–490 ms across emerged conditions. The 
beta (peaked at approximately 20 Hz) right and left senso-
rimotor FCs peaked around 670 and 740 ms, respectively. 
These fdFCs emerged in the temporal order of the alpha 
parieto-occipital, theta fronto-parieto-occipital, delta fronto-
parieto-occipital, and beta right/left FCs. When these results 
are interpreted in the context of the roles suggested for the 
fdFCs, a series of fundamental functions underlying sus-
tained attention can be tracked.

A previous study has demonstrated that the event-related 
desynchronization within the alpha band in the occipital 
brain regions is associated with the anticipatory atten-
tion for a forthcoming stimulus (Bastiaansen et al. 2001). 
Moreover, the lateralization of alpha is a critical index of 
spatial attention (Thut et al. 2006). A large body of research 
has shown that the alpha band increases in the ipsilateral 
hemisphere while decreases in the contralateral hemisphere 
when humans deploy their attention to one location (Thut 
et al. 2006; Worden et al. 2000). The alpha right-lateralized 
parieto-occipital FC in our study might be an index of antici-
patory attention, although the lateralization is opposite to 
that in earlier studies. These diverging results concerning 
the lateralization might result from the specific task design 
where the stimulus was presented only on the left of the 

fixation, as pointed out in an earlier publication based on 
the same dataset (Reteig et al. 2019). Secondly, the post-
stimulus theta phase coherence in fronto-parieto-occipital 
topography has been linked to the attentional stability (Lutz 
et al. 2009) and the variability of brain responses (Reteig 
et al. 2019). In line with these previous studies, our results 
also observed the involvement of the frontal, parietal, and 
occipital brain regions in the theta band, suggesting that the 
attentional stability might be indexed by the theta fronto-
parieto-occipital FC. Next, earlier work has suggested that 
the fronto-occipital brain network in delta band is closely 
related to the working memory (Gulbinaite et al. 2014; 
Harper et al. 2017). Consistent with these findings, the delta 
fronto-parieto-occipital FC extracted in our study is likely 
to relate to the working memory. Finally, the close relation-
ship between the beta band and the response movement has 
been built in the literature (Pfurtscheller and Aranibar 1977). 
The 20 Hz mu rhythm is particularly associated with the 
motor cortical function, with the bilateral engagement of 
the somatomotor cortex even in unilateral movement (Hari 
and Salmelin 1997). In the present study, the beta (peaked 
around 20 Hz) right/left somatomotor FCs might provide 
evidence for response movement.

In sum, according to the timeline and the cognitive con-
tent, the four types of neuromarkers appear to correspond to 
a cascade of fundamental functions in sustained attention 
consisting of the attentional preparatory, attentional stability, 
working memory, and response movement.

Vertical Analysis: Functional Discrepancies 
in Different Conditions

Our study detected the pre-stimulus alpha parieto-occipital 
FC and the post-stimulus theta fronto-parieto-occipital FC in 
the correct rejections, hits, and misses conditions. The alpha 
and theta FCs continuously presented despite the different 
responses participants conducted. In line with our findings, 
a different set of results have reported that the pre-stimulus 
alpha power and the post-stimulus theta phase presented in 
these three conditions (Reteig et al. 2019). Integrating the 
fdFCs with the fundamental functions underlying sustained 
attention, these findings appear to indicate that people need 
to prepare attention for each upcoming stimulus and the 
attentional stability exists in all three conditions.

The delta fronto-parieto-occipital FC was derived only in 
correct responses, including correctly inhibiting non-target 
(the correct rejections condition) and detecting target (the 
hits condition), but not in error responses of detecting tar-
get (the misses condition). As referred above, the delta FC 
is related to working memory. It is likely that the inability 
to detect targets is owing to a failure of the target-related 
working memory process. The working memory encom-
passes subprocesses of information encoding, maintenance, 
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or retrieval (Düzel et al. 2010; Quentin et al. 2019), but our 
results cannot infer which subprocess or a combination of 
them are dysfunctional in the misses condition.

A substantial amount of studies have examined the role 
of beta band in the motor cortex during reaction responses, 
suggesting that the response execution is related to beta 
rhythmic desynchronization and the response inhibition is 
associated with beta synchronization (Pfurtscheller and Ara-
nibar 1977; Pfurtscheller and Lopes Da Silva 1999; Zabiel-
ska-Mendyk et al. 2018). The increased beta band during 
response inhibition to distractors is also well known as the 
“beta rebound” phenomenon (Bola and Sabel 2015). In this 
work, the beta right/left sensorimotor FCs emerged only 
in the correct rejections condition. Our findings are agree-
ment with previous studies showing the synchronization of 
beta band in response inhibition and desynchronization in 
response execution. Interestingly, we did not extract the beta 
FCs in the misses condition although no responses were con-
ducted in this condition. It is plausible that the inability to 
detect target is not the failure of response execution, but the 
failure of other functions such as working memory, which 
is consistent with the results presented by the delta fronto-
parieto-occipital FC.

Unlike the magnitude differences—alpha power, N1/P1 
component, and theta phase—between hits and misses con-
ditions reported in the previous study (Reteig et al. 2019), 
the present work successfully found the functional discrep-
ancies in the hits, misses, and correct rejections conditions. 
The patterns of fdFC shift to subserve distinct responses 
(e.g., correct rejections, hits, misses) during sustained 
attention.

The fdFCs Affected by Vigilance Decrement 
and Motivation

The pre-stimulus alpha parieto-occipital FC was more 
right-lateralized with the decrease of vigilance and less 
right-lateralized after manipulating motivation in our study. 
Similar results have been reported in an earlier study that 
increased attentional load and time-on-task give rise to more 
right-lateralization in posterior alpha asymmetry (Newman 
et al. 2013), although the earlier study does not explore the 
changes of lateralization influenced by motivation. Our 
results reaffirm that the non-spatial factor of time-on-task 
modulates the biases of spatial attention and further verify 
that the motivation is another non-spatial factor influenc-
ing the attention biases. In contrast to most externally-cued 
attention orienting studies, our study and the earlier study 
(Newman et al. 2013) did not set up pre-target cues, but we 
demonstrated that the anticipatory pre-stimulus alpha was 
also apparent in no-cued attention orienting.

We found that the post-stimulus theta fronto-parieto-
occipital FC decreased with time-on-task and increased after 

manipulating motivation. In line with previous studies (Lutz 
et al. 2009; Reteig et al. 2019), the theta FC could be inter-
preted as a reliable index indicating the changes of atten-
tional stability or brain responses modulated by time-on-task 
and motivation. These results suggest that human attentional 
stability could be impaired by vigilance decrement and this 
ability could be restored after providing rewards.

The post-stimulus delta fronto-parieto-occipital FC 
decreased with time-on-task and increased after providing 
rewards, indicating that the function of working memory in 
sustained attention was impaired by vigilance decrement and 
recovered by rewards. The impairment by the decrement of 
vigilance is supported by a piece of indirect evidence that 
higher working memory capacity is related to weaker fronto-
parietal FC (Gulbinaite et al. 2014). Consistent with our 
results, a previous study has demonstrated the enhancement 
effect of reward on the working memory capacity (Sanada 
et al. 2013). Our finding seems to show that the working 
memory, at least the function involved in sustained attention, 
is sensitive to both time-on-task and motivation.

The post-stimulus beta right/left sensorimotor FCs 
decreased after long durations of task performance. Akin to 
a previous study (Guo et al. 2018), we elucidated that time-
on-task is one of the main factors leading to the degrading of 
response inhibition. We also found that the ipsilateral right 
sensorimotor FC, but not the contralateral left sensorimotor 
FC, was restored by motivation when participants inhibited 
with a right finger’s response. This appears to illustrate that 
the right sensorimotor activation is more sensitive to motiva-
tion than the left sensorimotor, in the situation that bilateral 
somatomotor networks are engaged in the unilateral move-
ment. Although we cannot make conclusions on the source 
of the reward restoration, the connections between the right 
hemisphere and response inhibition have also been built in 
an earlier research (Aron et al. 2003). Another theoretical 
work also suggests that successful versus unsuccessful inhib-
ited differential responses are related to the right hemisphere 
during rewarded condition (Padmala and Pessoa 2010).

Transient and Partial Restoration of fdFCs After 
Manipulating Motivation

Prolonged performance (60 min) of a sustained attention 
task lead to vigilance decrement, impairing all types of 
fdFCs. Participants were motivated with an extra monetary 
reward in the last 20 min interval. Four types of fdFCs, 
except for the left sensorimotor FC, were restored by reward, 
although the recovery of the right sensorimotor FC was tran-
sient. The right sensorimotor FC increased only in the first 
10 min and then fell down to the low vigilance level in the 
last 10 min. The restoration of fdFCs by motivation appears 
to inconsistent with the overload theories, which states that 
cognitive resources are limited and vigilance decrement 
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is determined only by resource depletion. The partial and 
transient improvement by motivation might agree with the 
motivational control and energetical costs theoretical model, 
where participants evaluate the costs and benefits and also 
assess their energetic resources to decide to expend or 
reserve their efforts.

There are still three caveats in explaining the results. First 
of all, the modulation effect of reward on the pre-stimulus 
alpha parieto-occipital FC is detected in the correct rejec-
tions and hits conditions, but not in the misses condition. It 
is possible that the differences are from the robustness of 
motivation itself or the instability of preparation of attention 
in the misses condition. Secondly, the number of trials can-
not be equalized in the correction rejections and hits/miss 
conditions because of the experimental design. This imbal-
ance might result in some differences in the TCA compo-
nents. Finally, the task-related component selection is criti-
cal for the application of the tensor-based framework. Not 
only with the behavioral data association analyses but also 
more robustness and efficient methods should be developed 
for TCA component selection to provide comprehensive 
consideration.

Conclusion

We apply an analysis framework composed of wPLI and 
TCA to a long period of sustained attention EEG data-
set and derive a cascade of fdFCs involved in a sustained 
attention task. The pre-stimulus alpha parieto-occipital FC, 
post-stimulus theta fronto-parieto-occipital FC, delta fronto-
parieto-occipital FC, and beta right/left sensorimotor FCs 
are derived, corresponding to different functions in sustained 
attention. We successfully detect the modulations of fdFCs 
affected by vigilance decrement and motivation. All these 
fdFCs are impaired by vigilance decrement. Especially, the 
pre-stimulus alpha FC parieto-occipital drifts rightward 
with time-on-task. The impairments of fdFCs are partially 
restored by motivation. The post-stimulus beta left sensori-
motor network is not modulated by rewards. The right sen-
sorimotor FC is more associated with motivation than the 
left sensorimotor FC, although the effect of improvement 
by motivation on the right sensorimotor FC is transient. Our 
results lay the ground for the hybrid model that vigilance 
decrement is determined by motivational control and ener-
getical costs. The analysis framework provides feasibility 
for identifying dynamic organizations of frequency-specific 
FC in cognitive tasks.
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