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Abstract

The rapid and large-scale urbanization of peri-urban areas poses major and complex chal-

lenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the

influence of urban encroachment, fire, and fauna crossing structures, with and without

accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-

dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expand-

ing city of Perth, Australia. We surveyed two metapopulations over one and a half years, and

parameterized the PVA models using largely field-collected data. The models revealed that

spatial isolation imposed by housing and road encroachment has major impacts on I. obesu-

lus. Although the species is known to persist in small metapopulations at moderate levels of

habitat fragmentation, the models indicate that these populations become highly vulnerable

to demographic decline, genetic deterioration, and local extinction under increasing habitat

connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire,

with large-scale fires having greater negative impacts on population abundance than small-

scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small-

to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recom-

mend that remnant vegetation and vegetated, structurally-complex corridors between habitat

patches be retained. Well-designed road underpasses can be effective to connect habitat

patches and reduce the probability of inbreeding and genetic differentiation; however, adjust-

ment of fire management practices to limit the size of unplanned fires and ensure the reten-

tion of long unburnt vegetation will also be required to ensure persistence. Our study

supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation

approach is required that manages species at the metapopulation level and that prioritizes

metapopulations and habitat with greater long-term probability of persistence and conserva-

tion capacity, respectively. This strategy may help us prevent future declines and local extir-

pations, and currently relatively common species from becoming rare.
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Introduction

Worldwide, urbanization is driving the rapid and large-scale clearing and fragmentation of

natural ecosystems [1], with immediate and on-going consequences for mammalian wildlife in

and nearby metropolitan regions (e.g., [2, 3]). While some species are highly sensitive to

urbanization and are quickly lost at the onset of urban development, others are able to persist

in small and relatively isolated remnant populations. These populations may appear stable, but

are subject to demographic, genetic, and environmental stressors, as well as demographic and

environmental stochasticity, which combine to accentuate their extinction risk, a process

known as the small-population paradigm [4, 5].

Small- to medium-sized ground-dwelling mammals can be particularly vulnerable to frag-

mentation in urban areas for a number of reasons [6–8]. Firstly, loss of habitat connectivity

due to housing and road encroachment impairs dispersal between habitat patches, diminishing

habitat availability and preventing habitat recolonization after local extinction. Loss of connec-

tivity can also reduce gene flow, which can lead to inbreeding depression and loss of genetic

diversity, with consequent reduced fitness and reduced ability to adapt to environmental

change [5]. Roads and other linear structures are a major cause of isolation and subsequent

genetic differentiation, but also direct mortality through vehicle collision [9]. Secondly, the

simplification of habitat and consequent reduction of dense vegetation cover—due to altered

fire regimes, for example—reduces shelter and nesting habitat resources, which increase pre-

dation exposure, and can affect breeding and recruitment (e.g., [6]).

Wildlife road crossing structures (underpasses and overpasses) are increasingly used to mit-

igate the impacts of roads on wildlife and to restore habitat connectivity in urban areas (e.g.,

[10, 11]). Yet, there is a recognized lack of understanding about the effectiveness of these struc-

tures in restoring functional connectivity in impacted populations [12, 13]. Importantly,

whether road crossings provide opportunity for gene flow to efficiently reduce inbreeding and

genetic drift in isolated populations has seldom, if ever, been analysed [14–16].

In Mediterranean-climate cities, urbanization is associated with increased fire frequency,

especially at intermediate human population densities, such as those found in peri-urban areas

[17]. In these cities, preventing the decline and local extirpation of small- to medium-sized

ground-dwelling mammal species requires an understanding of how habitat connectivity,

small population processes (e.g., inbreeding depression), and fire regimes interact to affect

metapopulation dynamics. Population viability analysis (PVA) provides a robust framework to

address this challenge, allowing landscape managers to forecast and compare the relative

impact of different stressors and management scenarios on population size and extinction risk

[18, 19].

In this study, we used PVA to investigate the viability of two metapopulations of a

medium-sized ground dwelling Australian marsupial inhabiting relatively small, fire-prone

urban remnants connected by road underpasses. We compared the impacts of five scenarios,

with and without accounting for inbreeding effects: (i) increased urban encroachment, (ii)
removal of underpasses, (iii) increased number of underpasses, (iv) local- and (v) regional-

scale fire. By modelling population dynamics using demographic and genetic data, we build

on previous studies [11, 20], including a PVA for the same species [21], to elucidate how hab-

itat connectivity, inbreeding depression, and fire regimes interact to affect the persistence of

small metapopulations of medium-sized ground-dwelling mammals in urbanizing land-

scapes. Importantly, our study assesses how underpasses can mitigate the predicted demo-

graphic and genetic consequences of loss of habitat connectivity due to roads on wildlife

populations.
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Material and methods

Study species

The southern brown bandicoot (Isoodon obesulus, Shaw 1797) is an omnivorous, medium-

sized ground-dwelling marsupial (0.4–2 kg, 28–33 cm; family Peramelidae). The species was

once widespread across temperate southern Australia. However, habitat loss and fragmenta-

tion, predation by introduced carnivores, and changes to fire regimes have resulted in severe

decline across most of its geographic range [22]. Nevertheless, the species is one of the very

few ground-dwelling marsupials within the most extinction-prone ’critical weight range’

group, i.e., 0.035–5.5 kg [23, 24], that persists in peri-urban areas of Australian state capital cit-

ies [21, 25]. The eastern subspecies I. obesulus obesulus is federally listed as endangered [26],

whereas the western subspecies I. obesulus fusciventer, here studied, occurs in Perth and is

state-listed as a priority species.

Isoodon obesulus inhabits dense, scrubby, often swampy vegetation adjacent to less dense

areas (e.g., pastures, urban lawns, and post-fire regenerating heathland) that are used for

foraging [27]. Home ranges vary between 0.5–5 ha, with smaller individuals and females typi-

cally occupying smaller areas than larger males [22]. The species has limited dispersal ability

across cleared habitat, but is able to use vegetated corridors of either native or non-native

species< 350 m to disperse between habitat patches [28]. Longer dispersal distances (up to 2

km) have also been recorded in forestry areas [29].

Study area

Perth is a sprawling city with a development footprint that extends over 140 km along the

coast, and a population of 2 million that is estimated to reach 3.2 million by 2030 [30]. Since

the 1960s, urbanization has been the main driver of habitat fragmentation in the metropolitan

region. Remnant vegetation persists in a few large conservation and Crown Land areas on the

city boundaries, small and isolated urban reserves, roadside verges, and rural private properties

[31].

We surveyed two I. obesulus metapopulations inhabiting patches of remnant vegetation

surrounding two different entrances to the Kwinana freeway, a main N-S oriented highway

serving the Perth Metropolitan Area (Fig 1). The two sites, here named ‘Roe Highway’ (32˚

05’13.07”S, 115˚51’06.11”E) and ‘Mandjoogoordap Drive’ (32˚28’51.28”S, 115˚46’15.35”E), are

isolated from each other and located 45 km apart. The Roe Highway site is composed of four

patches of remnant vegetation (R1 = 5.6 ha, R2 = 1 ha, R3 = 4.6 ha, and R4 = 9.5 ha), whereas

the Mandjoogoordap Drive site is composed of two patches (M1 = 13.5 ha and M2 = 6.3 ha)

(Fig 1). At both sites, habitat patches are separated by highway entrances, which are fenced

(1.8 m tall, 50 mm wide chainmesh, 0.5 m buried skirt fence) and have fauna underpasses

underneath them. Roe Highway has three underpasses, two enclosed (22 and 29 m long) and

one open (25 m), and Mandjoogoordap Drive has three enclosed underpasses (34, 41 and 47

m long). These wildlife underpasses were incorporated in the road design of the Roe Highway

and Mandjoogoordap Drive, and were built in 2007 and 2009, respectively.

The Roe Highway site is highly isolated, being surrounded by the highway, suburbia, and

an industrial site (Fig 1). The four patches are fully fenced, except when adjoining suburbia,

where a mixture of suburban fencing occurs. Although very unlikely, dispersal of I. obesulus
may occur with remnant habitat located southeast of the site (R5; edge-to-edge distance of 320

m; Fig 1). In contrast, the Mandjoogoordap Drive site is unfenced (except for the highway

access) and bordered by a main road and suburbia to the west, and a rural landscape with rem-

nant vegetation in the other directions. Dispersal is possible to and from two habitat patches,
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M3 and M4, located 310 m and 140 m from M1 and M2, respectively (Fig 1). Thus, despite

being both relatively small metapopulations, landscape connectivity is greater at the Mandjoo-

goordap Drive site.

The vegetation at the study sites varies from open Banksia woodland with a relatively sparse

shrub understorey in up-land areas (predominant at the Roe Highway site), to dense mid- and

understorey heath surrounding swampy lowland areas (predominant at the Mandjoogoordap

Drive site). Habitat quality at both sites is generally good and similar across the different sur-

veyed patches. In terms of the surrounding habitat patches, M3 is broadly similar to M1 and

Fig 1. Study area in Perth, Western Australia. (a) Map of study area showing the location of the two study sites (b) Roe Highway and (c) Mandjoogoordap Drive,

in Perth, Australia.

https://doi.org/10.1371/journal.pone.0191190.g001
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M2. However, M4 and R5 have lower habitat suitability due to the partial clearing of the

understorey, which is an important habitat component for I. obesulus.

Trapping and monitoring of underpass use

Trapping sessions of four consecutive nights took place in the autumn, winter, and spring of

2012, and winter of 2013. Eighty-three trap sites were used at Roe Highway and 99 at Man-

djoogoordap Drive, giving a total trapping effort of 1328 and 1584 trap nights at the two sites,

respectively. Medium-sized wire cage traps (220 x 220 x 450 mm; Sheffield Wire Products,

Welshpool WA) covered with a hessian sack and baited with universal bait (mixture of rolled

oats, peanut butter and sardines) were set in a 50 m grid evenly spaced throughout the habitat

patches (Fig 1). Traps were checked and cleared each morning at first light, before being reset.

Trapped bandicoots were transferred to a dark cloth bag where they were weighed and stan-

dard measurements of pes length, head length, reproductive status and body weight were

recorded. The sex of each bandicoot was also determined and their pouch (if female) was

checked for pouch young. The number, sex, and crown-rump length of the pouch young were

recorded. Tissue samples were taken from all adults (ear-biopsies), and stored in 100% ethanol

for DNA analysis. A subset of adults (N = 37 at Roe Highway and N = 27 at Mandjoogoordap

Drive) were genotyped at 12 microsatellite loci using conditions outlined in [32] to obtain

allele frequencies and genetic diversity parameters for model input. Numbered ear tags and

microchips (Trovan ID100, Trovan, Ltd., North Humberside, UK) implanted between the

scapulae were used to individually identify animals. The use of the road underpasses was mon-

itored using motion-activated cameras (Reconyx HC600) and flatbed microchip readers (Dor-

set ID ANT612/ LID650N), as described in [33].

All animal handling procedures were approved by The University of Western Australia’s

Animal Ethics Committee (approval numbers RA/3/100/539, RA/3/100/1213 and RA/3/100/

1117) under licenses provided by the Western Australian Department of Biodiversity, Conser-

vation and Attractions (License numbers SF009026, SF009580, SF008789, SF008410, and

SF008197). Animal handling procedures also followed the Australian Code of practice for the

Care and Use of Animals for Scientific Purposes endorsed by the National Health and Medical

Research Council of Australia [34].

Population viability analysis

The viability of the two studied metapopulations was primarily analysed using the software

RAMAS GIS 5.0 [35]. Estimates of demographic and life history parameters for I. obesulus
were derived from field work, published literature, personal observations and, in some circum-

stances, assumed based on our best knowledge of the species (Table 1). We provide a descrip-

tion of the model below. Further details about model parameterization are in S1 Appendix.

Isoodon obesulus produces on average 2.61 litters in a year [27], typically in spring and win-

ter, possibly due to the higher abundance of food resources available during this period. Gesta-

tion varies between 12–15 days and weaning between 60–70 days [22]. Sexual maturity is

reached at 4–6 months [22, 36, 37]. Maximum recorded longevity is four years [22, 27].

We developed a stage and sex-structured model with four-month time steps to reflect the

species biology and time of first reproduction. We included males and females separately in

the model because the species has a polygynous and, to a lesser extent, polyandrous mating

system (Ottewell and Chambers, personal observation; see also [39]). Paternity analysis shows

that although all adult males can potentially breed, younger, smaller males are largely outcom-

peted by older, larger males and as a consequence have a lower breeding participation rate

(Ottewell and Chambers, personal observation). Based on this information we constructed a
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matrix model with five stages: juvenile females, adult females, juvenile males, young adult

males, and older adult males.

Fecundity rates were estimated using field-collected data from the two metapopulations

and an additional three sites surveyed over the same period in the study area. Fecundity (the

number of male/female offspring per year produced by a female) was calculated for a four-

month time step using the formula [(survival rate of adult females � number of litters per year
� mean litter size at birth � sex ratio (male/female))� 3]. Juvenile survival rates were calculated

as the field-collected survival rate of pouch young multiplied by the survival rates of sub-adults

estimated by [27]. Adult survival rates were estimated with field-collected mark-recapture data

from the two metapopulations and the robust design model using the program MARK [40].

These rates were initially calculated for the time-periods between capture occasions, which

were 3 months for the periods between the first 3 capture occasions, and 9 months for the final

interval. These survival estimates were then converted to a four month time step by raising the

three month estimates to the power of 4/3 (1.3333) and the nine month estimate to the power

of 4/9 (0.4444).

Population densities were estimated using a spatially explicit capture-recapture model [41]

and a maximum-likelihood estimator with the buffer distance set at 250 m, which was approxi-

mately four times the trap-revealed-range statistic [41]. Initial abundances were calculated by

Table 1. Demographic and population parameters used for the population viability analysis of I. obesulus, and respective data sources.

Parameter Value Data source

Roe Highway Mandjoogoordap Drive

Demographic rates

Age at first breeding 4 months [22, 36, 37]

Maximum reproductive age 4 years [22, 27]

Number of litters per year 2.61 [27]

% adult females breeding 100 Assumed�

% young adult males breeding 50 Assumed�

% older adult males breeding 100 Assumed�

Mean litter size at birth 2.65 (N = 18 litters) 2.65 (N = 25 litters) Field data

Sex ratio at birth (M/F) 0.47/0.53 0.31/0.69 Field data

Fecundity (daughters per female) 0.998 ± 0.100 1.133 ± 0.113 Field data

Fecundity (sons per female) 0.885 ± 0.089 0.509 ± 0.051 Field data

Survival rates of juvenile females 0.384 ± 0.038 0.384 ± 0.038 Field data

Survival rates of adult females 0.817 ± 0.096 0.712 ± 0.118 Field data

Survival rates of juvenile males 0.384 ± 0.038 0.384 ± 0.038 Field data

Survival rates of young adult males 0.677 ± 0.192 0.706 ± 0.103 Field data

Survival rates of older adult males 0.677 ± 0.192 0.706 ± 0.103 Field data

Population parameters

Maximum growth rate (Rmax) 1.31 Field data

Density dependence affects Survival rates Assumed

Density dependence is based on All stages [21]

Density dependence type Scramble Assumed

Temporal trend in K 0.033 [38]

Carrying capacity (K) 85 (R1 = 23 ± 2.3; R2 = 4 ± 0.4; R3 = 19 ± 1.9; R4 = 39 ± 3.9) 116 (M1 = 39 ± 3.9; M2 = 77 ± 7.7) Field data

Initial abundances 37 (R1 = 23; R2 = 4; R3 = 3; R4 = 7) 27 (M1 = 9; M2 = 18) Field data

(� Based on Ottewell and Chambers, personal observation)

https://doi.org/10.1371/journal.pone.0191190.t001
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multiplying the estimated mean density in each patch over the survey period by its area. A sta-

ble stage distribution was assumed.

Ecological carrying capacity (K) for I. obesulus is poorly understood. Evidence of sustained

high densities in areas that are predator-free and/or have additional food resources [42] is con-

sistent with the patterns observed in the two study populations, and suggests that K is depen-

dent on the landscape context. As such, for the Roe Highway metapopulation, we estimated K
as the mean maximum density (bandicoots/ha) multiplied by patch size (K = 4.12�patch size).

For the Mandjoogoordap Drive metapopulation, we used the formula (K = 2�patch size), with

the value of 2 bandicoots/ha being the maximum population density observed by Thomas [36]

and Chambers in nearby reserves (also see [21]).

We used a ‘scramble’ model (Ricker-type function) of density dependence, which assumes

that resources are shared more or less equally among individuals, with a maximum growth

rate (Rmax) of 1.31 per four month period. Rmax is the maximal proportion by which the popu-

lation increases at each time step when there are no density dependence effects [37], and was

calculated based on the population growth observed between May 2012 and May 2013 at

another site in the Perth Metropolitan Area where the species was rapidly recovering from low

densities after fire (see S1 Appendix). Further, we assumed that density affects only survival

rates (not fecundity), and depends on the abundance of individuals in all stages (as in [21]).

Dispersal rates between surveyed habitat patches were estimated as the proportion of

micro-chipped animals that were recorded using the underpasses, whereas dispersal rates

between surveyed and surrounding habitat patches were assumed based on the landscape per-

meability (S1 Appendix, Tables A and B). We assumed a relative dispersal value of 1 for juve-

niles and 0.2 for adults, given that dispersal occurs primarily in juveniles, with adults typically

showing high site fidelity [27]. We included dispersal amongst surveyed and surrounding hab-

itat patches in our models, but did not include populations in these surrounding patches (M3,

M4, R5) in the calculation of the total metapopulation size. Initial abundances and carrying

capacity for M3 were assumed to be proportionally the same as for its nearby surveyed meta-

population. Parameters for M4 and R5 were assumed to be 50% of their nearby surveyed meta-

populations, given their lower habitat suitability (see S1 Appendix, Table C).

Demographic and environmental stochasticity were included in the models. Demographic

stochasticity was modelled by sampling, after each time step, the number of survivors from a

binomial distribution, and the number of offspring from a Poisson distribution [35]. Environ-

mental stochasticity was modelled by randomly drawing values of fecundity and survival from

lognormal distributions determined by their mean and standard deviation values. Standard

deviations for survival rates and K were calculated from the data collected, whereas standard

deviations for fecundity rates were assumed to be 10% of the estimated mean (see S1 Appendix

for more details). All simulations were run for 50 years (150 time steps) and replicated 1000

times.

Management scenarios

We modelled the effect of five management scenarios and their combinations on the viability

of the two I. obesulus metapopulations: (i) increased urban encroachment, (ii) removal of

underpasses, (iii) increased number of underpasses, (iv) local- and (v) regional-scale fire.

Firstly, we tested the effects of urban encroachment leading to a total loss of connectivity

between the surveyed patches and surrounding remnant vegetation (dispersal rates = 0). Sec-

ondly, we tested the effects of road underpasses in two different scenarios: no underpasses (dis-

persal rates between surveyed patches = 0); and increased number/efficiency of underpasses.

The latter was modelled by increasing the recorded dispersal rates by 2-fold for the Roe
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Highway model and 10-fold for the Mandjoogoordap Drive model. A greater relative increase

of underpass dispersal rates in the Mandjoogoordap Drive model was used because the

recorded rates at this site were very low, and a 10-fold increase equalled the average dispersal

rate observed at the Roe Highway site (see S1 Appendix, Tables A and B). Thirdly, we investi-

gated the effects of two types of fire spatial extent: local (probability of fire occurrence is inde-

pendent for each habitat patch); and regional (fire affects all patches at once) [35]. Both types

of fire are possible at the study sites because the habitat patches are relatively close together

and the fuel loads relatively connected. Unplanned fires may be contained within individual

patches if response times are swift and fire weather is not severe, but if response times are slow

or fire weather severe then multiple patches may burn during the same fire. We assumed that

fire decreases population abundances by 70% (based on the long-term study of the impacts of

a wildfire on I. obesulus population dynamics by [43]) and K by 50%, and that K takes 5 years

to recover to pre-fire levels at a 3.3% rate (based on vegetation density measures by [38]).

Moreover, we estimated that the probability of a fire occurrence is 0.025 per time step (i.e., one

fire occurrence every 13 years), based on a desktop GIS analysis of the fire history (1971–2013)

in the region.

We compared the impacts of the different scenarios on expected minimum abundance

(EMA), probability of decline, and extinction risk. We focused on the EMA results because

they provide a more robust indication of propensity to decline than extinction risk [44].

Inbreeding depression and genetic diversity

We used genotypic data from each metapopulation to investigate the impacts of inbreeding

and genetic diversity loss on population viability. Because several of the assumptions required

to satisfactorily model inbreeding depression in RAMAS GIS could not be met, we used the

individual-based software Vortex 10.0.0.1 [45], which allows simultaneous tracking of demo-

graphic and genetic parameters over time. We replicated the demographic models in Vortex

adding additional information on mating patterns. Although all adult males can potentially

breed, younger, smaller males are largely outcompeted by older, larger males in gaining access

to mates (Ottewell and Chambers, personal observation). We incorporated this information

into estimates of reproductive rates and mate monopolization (S1 Appendix, Table D). We

seeded each model with allele frequency data generated from 12 microsatellite loci genotyped

in each metapopulation (S1 Table). In addition, we applied inbreeding depression to each of

the base models and scenarios affecting dispersal (urban encroachment, underpasses) to assess

the impact of inbreeding on population viability. Inbreeding depression was applied at two

rates: (i) ‘mild’ 3.14 diploid lethal equivalents (rate estimated from captive populations; [46]);

and (ii) ‘stressful’ 6.29 diploid lethal equivalents (estimated from wild populations; [47]), rep-

resenting a reduction in first-year survival of inbred individuals due to recessive alleles. We

assessed the impacts of these genetic effects on EMA, allelic diversity, and expected and

observed heterozygosity. In addition, we estimated genetic differentiation (GST) between the

surveyed habitat patches at each site at the end of the simulation (50 years). The Vortex and

RAMAS models produced largely congruent projections of metapopulation abundance and

extinction risk under the different management scenarios, with minor variation in EMA

(S1 Fig).

Sensitivity analysis

To assess the RAMAS models’ sensitivity to variation or uncertainty in parameter estimates,

we analysed the effects on EMA of changes (ranging from -10% to +10%) in mean demo-

graphic rates, environmental stochasticity (SD of demographic rates), K, and Rmax.
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Results

Initial abundances in Roe Highway and Mandjoogoordap Drive metapopulations were 37 and

27 individuals, respectively. The base model (if current conditions were to be maintained) for

the Roe Highway metapopulation projected a small increase in the average population abun-

dance up to 56 individuals (S2A Fig) and an extinction risk of 12% in the next 50 years. This

extinction risk increased up to 76% in the worst-case scenario combining the effects of a wide-

spread fire with loss of habitat connectivity, both among the surveyed patches and with the

surrounding landscape (Table 2, Fig 2). In contrast, the base model for the Mandjoogoordap

Drive metapopulation projected a substantial increase up to 180 individuals (S2A Fig) and a

null extinction risk. However, in the worst-case scenario, a 20% extinction risk was predicted

for this metapopulation (Table 2, Fig 2).

Fire occurrence was projected to have a substantial negative impact on the viability of the

more isolated Roe Highway metapopulation, with a 67–73% decline in EMA compared to the

base model, and a 48–55% extinction risk, in the case of a local and regional fire, respectively

(Table 2, Figs 2 and 3). The combined effects of fire and further isolation through loss of

underpasses or urban encroachment decreased EMA by 80–82% and 76–83%, respectively,

practically driving the metapopulation to local extinction (Table 2, Figs 2 and 3).

Urban encroachment had a marked negative impact on the viability of the Mandjoogoor-

dap Drive (38% decline in EMA), and to a lesser extent, Roe Highway (25% decline in EMA)

metapopulations (Table 2, Figs 2 and 3). Importantly, under the current urban extent, the

Mandjoogoordap Drive metapopulation was barely affected by a local fire, suffering a 21%

decline in EMA in the case of a regional fire. However, in a scenario of urban encroachment,

EMA declined by 60–70% and extinction risk increased by 13–18% (Table 2, Figs 2 and 3).

The underpasses currently in place at the Roe Highway site are important to the viability of

this metapopulation and their removal would decrease EMA by 36% and increase the impacts

of fire and urbanization (Table 2, Figs 2 and 3). In contrast, the removal of the underpasses at

the Mandjoogoordap Drive site had little influence in the metapopulation’s viability, even

Table 2. Expected minimum abundance (EMA) and probability of a 25%, 50%, 75%, and 100% decline in metapopulation size at least once in the next 50 years, for

the two studied I. obesulusmetapopulations, under the alternative management scenarios.

Scenarios Roe Highway Mandjoogoordap Drive

25% 50% 75% 100% EMA 25% 50% 75% 100% EMA

Base model 0.98 0.79 0.43 0.12 11.5 0.00 0.00 0.00 0.00 45.0

Local fire (LFire) 1.00 0.98 0.84 0.48 3.8 0.00 0.00 0.00 0.00 43.6

Regional fire (RFire) 1.00 0.99 0.89 0.55 3.1 0.12 0.05 0.01 0.00 35.4

No underpasses (NoUP) 1.00 0.95 0.67 0.14 7.4 0.00 0.00 0.00 0.00 45.0

Double underpasses (2xUP) 0.98 0.79 0.40 0.12 11.8 0.00 0.00 0.00 0.00 45.1

Urban encroachment (Urb) 0.99 0.84 0.55 0.43 8.6 0.12 0.04 0.02 0.01 28.0

Lfire+NoUP 1.00 1.00 0.95 0.51 2.3 0.00 0.00 0.00 0.00 43.6

Lfire+2xUP 1.00 0.99 0.84 0.50 3.7 0.00 0.00 0.00 0.00 43.5

Rfire+NoUP 1.00 1.00 0.95 0.55 2.1 0.13 0.05 0.01 0.00 35.3

Rfire+2xUP 1.00 0.98 0.88 0.60 2.8 0.13 0.06 0.01 0.00 35.5

Lfire+Urb 1.00 0.99 0.85 0.70 2.8 0.56 0.37 0.21 0.13 17.8

Rfire+Urb 1.00 1.00 0.92 0.77 2.0 0.73 0.52 0.32 0.18 13.7

Urb+NoUP 1.00 0.97 0.77 0.46 4.9 0.08 0.03 0.03 0.02 26.3

Urb+2xUP 0.99 0.83 0.54 0.42 8.9 0.08 0.02 0.01 0.01 29.3

Lfire+NoUP+Urb 1.00 1.00 0.96 0.77 1.3 0.76 0.53 0.32 0.18 13.5

Rfire+NoUP+Urb 1.00 1.00 0.97 0.76 1.4 0.79 0.58 0.32 0.20 12.3

https://doi.org/10.1371/journal.pone.0191190.t002
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Fig 2. Risk curves for the base model and the alternative management scenarios estimating the probability of the

Roe Highway (a) and Mandjoogoordap Drive (b) metapopulations falling below a specified population threshold

(x-axis) during the next 50 years. Scenarios increasing the number of underpasses and those combining three

management options are not represented for visual simplification and because the former had negligible influence on

population viability.

https://doi.org/10.1371/journal.pone.0191190.g002
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when taking fire or urbanization into account. Doubling the number of underpasses had only

a marginal positive effect, if any, on both metapopulations (Table 2, Fig 3).

Genetic diversity and inbreeding

Both metapopulations had moderate genetic variation (HE = 0.68 and 0.66; Roe Highway and

Mandjoogoordap Drive, respectively) and no evidence of current inbreeding (FIS = -0.013 and

-0.017, respectively) (S1 Table). If current environmental conditions prevail, the Mandjoo-

goordap Drive metapopulation is predicted to be only slightly affected by inbreeding effects in

50 years (4–9% decline in EMA with mild and stressful inbreeding, respectively), whereas the

Roe Highway metapopulation is predicted to be severely impacted (74–100% decline in EMA).

Similarly, genetic diversity loss is predicted to be substantial for the Roe Highway metapopula-

tion (56% of the starting heterozygosity expected to be remaining) but only minimal (94%

remaining) for the Mandjoogoordap Drive metapopulation (Fig 4a).

The Roe Highway metapopulation was sensitive to the combined effects of fire and under-

pass removal (36–38% of the starting heterozygosity expected to be remaining), and both

metapopulations were affected by urban encroachment, particularly when in combination

with additional stressors (22–29% remaining) and stressful inbreeding, leading to complete

extinction (Fig 4a). Removal of underpasses led to a marked accumulation of inbreeding and

high genetic differentiation amongst the surveyed populations in the Roe Highway metapopu-

lation, and in both metapopulations when urban encroachment led to further loss of habitat

connectivity (Fig 4b, S2B and S2C Fig).

Under inbreeding depression, neither loss nor addition of underpasses greatly altered any

of the metapopulation trajectories. However, urban encroachment with inbreeding depression

led to a 90/97-100% decline in EMA in both metapopulations (S2B Fig).

Fig 3. Projected declines in expected minimum abundance (EMA) under alternative management scenarios in

relation to the base model for the Roe Highway (solid line) and Mandjoogoordap Drive (dashed line)

metapopulations.

https://doi.org/10.1371/journal.pone.0191190.g003
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Sensitivity analysis

The Roe Highway metapopulation was substantially more sensitive to changes in the tested

parameters than the Mandjoogoordap Drive metapopulation. Varying Rmax had the greatest

effect on both metapopulations, with a 10% decline in this parameter decreasing the EMA of

Roe Highway and Mandjoogoordap Drive metapopulations by 90% and 5%, respectively (Fig

5). A 10% increase in Rmax was predicted to increase the former’s EMA by 149%. Small

changes in K, fecundity and survival rates also had a significant impact on the Roe Highway

metapopulation, with a 10% reduction in K leading to a 100% decline in EMA (and vice-

versa), and a 10% decline in fecundity and survival increasing its EMA by 24% and 10%

respectively (Fig 5).

Fig 4. (a) Proportion of initial genetic diversity (expected heterozygosity) remaining, and (b) Wright’s inbreeding

coefficient (FIS) under the alternative management scenarios after 50 years, for the Roe Highway (solid lines) and

Mandjoogoordap Drive (dashed lines) metapopulations. FIS was not calculated for scenarios with high extinction

probabilities due to small sample size.

https://doi.org/10.1371/journal.pone.0191190.g004
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Discussion

Vulnerability to habitat connectivity loss and other interacting stressors

Housing and road encroachment leading to loss of habitat area and connectivity are major fac-

tors influencing the viability of I. obesulus metapopulations in rapidly urbanizing landscapes.

Our study suggests that small I. obesulus metapopulations may be viable when embedded in

relatively permeable and connected peri-urban landscapes, but become highly vulnerable to

threatening factors, such as fire, once urbanization leads to their spatial isolation. Small and

highly isolated I. obesulus metapopulations have an intrinsic high risk of population decline,

genetic diversity loss, inbreeding depression, and local extinction in the long term. They are

also more vulnerable to demographic and environmental stochasticity, as shown in the greater

sensitivity of the Roe Highway metapopulation to variations in the demographic and environ-

mental parameters (see also [48]). This metapopulation was particularly sensitive to changes in

maximum growth rate, with lower growth rates reducing population viability, as has also been

observed for the mountain pygmy possum [49]. Despite the striking difference between the

two metapopulations in their sensitivity to this parameter, the estimate used is the best avail-

able and likely realistic, being based on field-collected, post-fire recovery data.

Fire substantially amplifies the effects of habitat fragmentation on I. obesulus metapopula-

tions. It can lead to local extinction in small and isolated patches, as also observed by [50].

Furthermore, widespread, but also frequent or intense fires [51], eliminate long-unburnt vege-

tation patches, reducing habitat heterogeneity and complexity, which is a key feature for ban-

dicoots and other fire-sensitive small and medium-sized ground-dwelling mammals [43, 52,

53]. These species depend on long-unburnt understorey for shelter and nesting [28, 43], also

exploiting adjacent open habitat, including recently burnt areas, for food resources [54, 55].

The elimination of this habitat layer is associated with increased predation pressure and loss of

Fig 5. Sensitivity of population viability to changes in carrying capacity (K), maximum growth rate (Rmax), demographic rates (vital rates means), and

environmental stochasticity (vital rates standard deviations) for the Roe Highway (a) and Mandjoogoordap Drive (b) metapopulations. Sensitivity is

represented as the percent change in expected minimum abundance relative to the base model. Note that y-axes have different scales.

https://doi.org/10.1371/journal.pone.0191190.g005
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nesting habitat, with consequent population decline [56], slow post-fire recovery [43], and/or

reduced breeding and recruitment [52].

Although predation is a recognized threat for I. obesulus [21, 57, 58], we did not model its

effects because of difficulty in doing so in a meaningful manner. Introduced predators are

known to occur at both study sites and were recorded using the underpasses, including at the

Roe Highway site, where the metapopulation was nearly at carrying capacity. This is despite

the fact that fox predation following road construction had previously led to the extirpation of

one the populations at this site [59], which may also explain the low population numbers

recorded at the Mandjoogoordap Drive site (which was built two years later). The ability to

sustain population sizes at high densities in the presence of introduced predators, as observed

at the Roe Highway site, may indicate that the availability of anthropogenic resource subsidies

in the peri-urban matrix may be leading to a reduction in predation pressure (the ’predation

paradox’; [60, 61]). Also, I. obesulus abundance data from predator-managed peri-urban

reserves were not available for our study region.

Our study showed that genetic changes, such as inbreeding, loss of genetic diversity, and

population genetic differentiation, may go undetected in seemingly demographically stable

populations, yet may contribute substantially to cumulative extinction risks [62, 63]. The

observed accumulation of inbreeding when populations experienced isolation reinforces the

importance of maintaining gene flow to avoid both the fitness decline and loss of evolutionary

potential that is expected to occur with inbreeding and genetic drift, although some small pop-

ulations may purge genetic load over the longer term to retain fitness [5]. The lack of inbreed-

ing observed in the current populations (FIS� -0.01) may reflect a time lag effect, in that these

populations were only fenced recently (~6 years when the study was conducted) and insuffi-

cient generations have passed to observe an effect of accumulated inbreeding. The polygamous

mating system of I. obesulus may also buffer small populations from accumulation of inbreed-

ing, at least in the short term. Nonetheless, meta-analyses have shown that the loss of genetic

diversity at neutral genetic markers (as we have measured here) is often accompanied by an

equivalent or greater loss of diversity at other highly variable adaptive genetic loci, such as

major histo-compatibility complex (MHC) genes that are important in disease resistance [64,

65]. This is potentially an additional cause of decline for small, genetically-compromised popu-

lations, which are already likely to be susceptible to increased disease and parasite risk that typ-

ically accompanies urbanisation and exposure to domestic animals (e.g., [66]).

I. obesulus has several traits that influence its ability to persist and even increase in abun-

dance in peri-urban areas with high native vegetation cover. These include: 1) high reproduc-

tive and growth rates [22, 37]; 2) ability to exploit the urban environment for food, water, and

shelter [25, 67–69]; 3) omnivory, in opposition to species with a specialized diet, which tend to

be negatively affected by urbanization [70]: and 4) the ability to use small and overlapping

home ranges when resources are abundant [42]. These are traits typical of “urban adapter” spe-

cies [1] and enable I. obesulus and other species (e.g., [71]) to take advantage of the increased

resource availability that characterize urban and peri-urban areas compared to rural and natu-

ral areas [60, 61].

These traits, however, are seemingly insufficient to counteract the sensitivity of I. obesulus
to habitat fragmentation. Habitat connectivity has been identified as the main predictor of

occupancy of urban remnants for several small to medium-sized ground-dwelling mammals

that, as I. obesulus, have low-to-moderate vagility across human-modified environments and

specific habitat requirements [7, 8, 72]. These mammals are likely more vulnerable to urbani-

zation than those that are highly vagile and perceive the urban matrix as relatively permeable,

as well as those on the other side of the spectrum that have very limited dispersal ability and

small home ranges, and are able to persist in isolated patches [7, 8]. Thus, while still relatively
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common, I. obesulus is likely to be in a trajectory of decline in Perth, given the ongoing habitat

clearing, urban growth, and infill rates. This is consistent with the fact that the species is locally

extinct in the more urbanized and older suburbs of Perth, even in relatively large remnants

(400–450 ha; [25]), and is much less abundant in more urbanized cities (e.g., [21]).

The mitigating role of road underpasses

Consistent with other studies [10, 11], our results showed that underpasses mitigate the

impacts of roads on I. obesulus metapopulation viability by connecting habitat patches that

would be otherwise not large enough to support viable populations, thus increasing habitat

availability, and reducing the probability of inbreeding and genetic differentiation on metapo-

pulations affected by increased urbanization. Three aspects should be highlighted. First, even

with the current underpasses, the Roe Highway metapopulation was predicted to be affected

by inbreeding depression and lose nearly half of its genetic diversity within 50 years because of

sustained small population size and high spatial isolation. These results show how PVA using

genetic data offers a tool to prioritize locations to place road crossing structures [15]. Second,

the fact that underpasses had only a marginal influence on the viability of the Mandjoogoordap

Drive metapopulation is likely to indicate an inadequate underpass design [73]. Underpasses

at this site are relatively long, and long underpasses have been found to be used less by I. obesu-
lus and other bandicoot species [33, 74]. Third, our models assumed that dispersers success-

fully established and bred in their recipient populations, contributing to effective gene flow

amongst patches. While we do not have field data on the fate of dispersing individuals in our

study, we have evidence from paternity analyses indicating successful reproduction in recipi-

ent populations for a limited number of animals using underpasses (Ottewell and Chambers,

personal observation). However, since dispersal does not always result in gene flow [15, 16],

further study is required to better parameterise the role of underpasses in providing functional

connectivity. Consequently, our current estimates of dispersal via underpasses in these popula-

tions may be taken as the maximum potential rate of functional dispersal, while the realised

rate may be lower (which could further exacerbate the genetic effects in these populations).

Implications for conservation planning and ecosystem management

The fact that peri-urban areas are highly dynamic landscapes, from a spatial and temporal per-

spective [75–77], poses a major challenge for biodiversity conservation. In such environments,

‘what you see is not what you get’ [78], as the impacts of recent and ongoing habitat fragmenta-

tion and land-use change on biodiversity may take years to materialize [79], depending on the

rate and spatial configuration of land-use change [76]. Setting conservation objectives and pri-

orities in these ‘shifting’ landscapes is particularly challenging in the case of species that are

vulnerable to habitat fragmentation but have some ’urban adapter’ traits that allow them to tol-

erate or even respond positively to moderate levels of urbanization. These species may be per-

ceived as common but be, in fact, on a trajectory of decline [80].

Given knowledge of the species’ habitat requirements, and based on the results of this

study, we propose the following key interventions to safeguard the persistence of I. obesulus
in urban remnants. These interventions are likely to benefit other small-to-medium sized ver-

tebrates in the study area, and more broadly, inform conservation planning strategies to pro-

tect small-to-medium sized ground dwelling mammals in fire-prone, rapidly urbanizing

landscapes.

1. Retention of remnant vegetation, since smaller populations are more vulnerable to multiple

and interacting stressors and connectivity plays a major role in population viability.
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2. Enhancement of existing dispersal corridors, and implementation of new corridors, espe-

cially in new residential developments. Dense, weedy areas can be used for dispersal and

shelter by I. obesulus and other ground-dwelling vertebrates in modified landscapes [55,

81]. This demands thoughtful spatial and temporal planning in weed management and res-

toration practices, so that critical habitat is not removed before appropriate (structurally

complex and dense) habitat is available.

3. Installment of road underpasses that enable dispersal and frequent use. Underpass design is

a key factor determining their efficiency, and for I. obesulus they should be as short as possi-

ble and provide dense vegetation cover at the approaches. In the case of wide roads, a vege-

tated area (median strip) connecting two short underpasses is a better alternative to a

single, long underpass [33].

4. Fire management that 1) limits the size of unplanned fires, and 2) promotes mosaic burning

with the retention of significant areas of long-unburnt vegetation within the metapopula-

tion’s range. This could be achieved by limiting burning to only one inter-connected patch

at any of the sites, in any 5 year period. Mosaic burning has been shown to be important for

the conservation of other taxa in fire-prone ecosystems [82].

5. Reintroduction of I. obesulus into areas where local extirpations have occurred but that still

have reasonable habitat quality, size, and connectivity. Reintroductions into isolated

patches are unlikely to be successful unless patches are controlled for predators and popula-

tions managed to minimize inbreeding.

6. Adoption of a triage approach [83] that prioritizes management efforts on metapopulations

with greater long-term probability of persistence, and on habitat patches with greater long-

term conservation capacity.

Conclusions

The urbanization of peri-urban areas poses a major challenge for wildlife conservation. Small-

to medium-sized ground-dwelling mammals that are sensitive to loss of habitat area and

connectivity may persist in urban and peri-urban areas with moderate levels of habitat frag-

mentation, but are likely to decline under increasing urbanization. A proactive conservation

approach that manages species at the metapopulation level and that prioritizes metapopulations

with greater long-term probability of persistence is required to prevent future declines and

local extirpations, and importantly, prevent relatively common species from becoming rare.
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of population viability analysis in Conservation Biology. Nature. 2000; 404(6776):385–7. http://www.

nature.com/nature/journal/v404/n6776/suppinfo/404385a0_S1.html. https://doi.org/10.1038/35006050

PMID: 10746724
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